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Abstract

Traceroute sampling is a common approach for exploring the autonomous system
(AS) graph of the Internet. It provides samples of links between autonomous sys-
tems, but these links are not drawn uniformly at random from all possible links.
Rather, the rules that each AS uses are idiosyncratic and emergent. Here, we are
interested in using the data from traceroute sampling to estimate the degree distri-
bution of the network, a quantity of common interest in network modeling more
broadly. We link these ideas to the methodology of multiple-recapture estimation
of the size of a closed population using log-linear models. We apply our approach
to produce new estimates of the degree distribution of the AS graph, and to provide
further evidence that the degree distribution does indeed have heavy tails.

1 Introduction

The Internet is a decentralized tangle of routers, with a natural clustering where each set of routers
under the common management are grouped as an Autonomous System (AS). The links between the
routers are not recorded in any central repository, and so obtaining accurate data on the link structure
of the AS graph is an important step in understanding the Internet. There are three techniques
for finding large sets of edges in the AS graph: the WHOIS database, BGP tables, and traceroute
sampling. No approach is clearly superior, and the results of the different approaches are compared
in detail in [16].

The present paper focuses on traceroute sampling, which consists of recording the paths that packets
follow when they are sent from monitor nodes to target nodes, and merging all of these paths to
produce an approximation of the AS graph. A seminal analysis using both traceroute sampling and
BGP tables concluded that the AS graph degree distribution follows a power-law (meaning that the
number of AS of degree k is proportional to k−α for a wide range of k values) [7]. This caused
a shift in simulation methodology for evaluating network algorithms and also contributed to the
avalanche of research developing new network models that produce power-law degree distributions.

Lakhina et al. [14, 19] called into question the true nature of the AS graph degree distribution by
computer experiments on synthetic graphs showing that if the sets of monitor and target nodes are too
small, then a simple model of traceroute sampling produces a power-law degree distribution, even
when the underlying graph has a tightly concentrated degree distribution. Mathematically rigorous
follow-up work proved that in many non-power-law graphs, including random regular graphs, an
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idealized model of traceroute sampling yields power-law degree distributions [5, 1]. See also the
more general result in [21] and the discussion in [12].

Flaxman and Vera [10] showed that an adhoc modification of the Petersen estimate from multiple-
recapture population estimation provides an unbiased estimator for the degree distribution of Erdős-
Rényi graphs under a simple model of traceroute sampling for the AS graph. The present paper
revisits their approach and draws more heavily from the theory of multiple-recapture population
estimation. We use log-linear modeling techniques to estimate the AS graph degree distribution
directly.

Viger, Barrat, Dall’Asta, Zhang, and Kolaczyk [22] applied a related technique from statistics known
as the frequencies of frequencies, or species problem, to reduce the bias of traceroute sampling. The
problem of correcting bias in sampled networks has a long history in sociological applications of
network modeling, although the biases in that domain seem somewhat different. See the surveys by
Frank, Klovdahl, or Salganik and Heckathorn for an overview [11, 13, 20].

2 Traceroute Sampling and a Shortest Path Sampling

We formalize traceroute sampling as follows. Let G = (V,E) be the AS graph, where V is the set
of autonomous systems, and undirected edges in E correspond to one hop connectivity between AS.
Traceroute sampling from a set of k monitors consists of sending packets to m target nodes from
each monitor and recording the paths that the packets follow en route. The union of the paths from
monitor i yields a sampled graph Gi for i = 1, . . . , k, and each Gi contains at least m nodes and
edges.

Conceptually, we can think of the paths discovered in traceroute sampling as approximations to the
shortest paths between the monitor and the target in the underlying AS graph G, akin to the paths
for packets in Milgram’s original small-world experiments. (See [13, 12]). There is now general
agreement that the paths that data actually take are not the shortest paths (see [15] for a discussion
of this approximation). Approximating the actual paths of traceroute sampling with the shortest path
in the graph is convenient for simulations, however. We use this approach in Section 4.

3 Estimation Technique

In contrast to the indirect approach taken in Flaxman and Vera [10], we estimate the degree distribu-
tion of the traceroute-sampled graph directly by estimating the number of nodes with degree at least
d for a range of values of d. This arises naturally in the context of the log-linear model approach to
multiple-recapture estimation of a population total.

In order to apply multiple-recapture techniques to the traceroute-sampled AS graph, we must come
up with recapture phases. We do this by identifying the edges discovered by traceroute samples from
(potentially overlapping) sets of monitors with recapture phases. This generalizes the approach
of Flaxman and Vera [10], who considered different monitors as different phases. Using sets of
monitors as phases allows a balance between the computational cost of using many recapture phases
and the potential effects on accuracy from taking the union of edge sets discovered by different
monitors.

Let G be a graph, and let i1, i2, . . . , ik denote the k monitor nodes in G. Let GS be the subgraph
consisting of the union of all routes discovered when sending packets from any monitor i ∈ S to
all m nodes in the target set. Flaxman and Vera considered disjoint singleton sets Sj = {ij} and
examined the degree of each observed node in each subgraph and in the pairwise intersections of
them. They used a combination of the Petersen estimators for a simple capture-recapture estimate
for each pair in order to estimate the population degree distribution by looking at the estimates of
the degree node by node.

We instead considered the complementary cumulative distribution of the degree distribution directly.
We work with the 2J contingency tables formed by fixing J (not necessarily disjoint) sets of monitor
nodes (S1, S2, . . . , SJ ) and enumerating the nodes in the GSj ’s with degree at least d, for d =
2, 3, . . . , n. In each such table, we do not get to observe the count of nodes of degree at least d,
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which are in none of the J subgraphs. We use multiple-recapture estimation to estimate the missing
cell in each of these tables.

One of the attractive features of the multiple-recapture technology is that all of the maximum likeli-
hood estimates of the number of nodes of degree at least d, Nd, take the form:

N̂d = nd + estimate of missing cell,

where nd is the observed number of nodes of degree at least d that appear in at least one of the J
subgraphs. We considered including one subgraph with all monitors, i.e.,GS with S = {i1, . . . , ik},
which results in nd matching the empirical cdf from the union of the traceroute samples. However,
this did not perform as well as the disjoint clusters used in the simulation experiments below.

If we estimate the missing cell in each contingency table separately, nothing prohibits the estimates
N̂d from increasing as d increases. But then when we difference the N̂d to get the degree distribution
we could in principle get negative probability estimates. To prevent this inconsistency, we consider
a decreasing-constrained variant of the log-linear model that fits models to all contingency tables
simultaneously and adds a constraint that N̂d is decreasing as a function of d.

We have focused for empirical tests on simulated networks, with number of nodes, edges, monitors,
and targets chosen similarly to that found in the traceroute-sampled AS graph collected in March
2003 by the skitter project. We considered two naive approaches—estimates from the union of all
edges discovered, and Petersen estimates derived from two disjoint-monitor-set subgraphs GS1

and
GS2 . We also considered log-linear models with first-order and second-order interactions, described
in more detail below, and an extension of the second-order log-linear model, which adds a constraint
that the degree distribution decreases, as described above.

The key feature of the log-linear model approach is to focus on dependencies in the traceroutes.
There is no reason to believe that the events “monitor i observes link j” are independent. Indeed,
when shortest-path routing is used (as an approximation of BGP routing), these events are highly
dependent.

Because of these dependencies, we used the log-linear model approach, which preserves marginal
sums from the 2J tables. The one-way margins directly count the number of nodes with degree
at least d in each subgraph. If we preserve only one-way margins, then when we fit only these
marginal sums, we are in effect assuming independence of degree-at-least d nodes appearing in
each subgraph, {GSj

}. The two-way marginal totals capture the first-order dependencies among the
subgraphs, providing a way to correct the erroneous assumption enforced by the first-order model.
For a detailed description of the estimation methodology, see Fienberg [9] and Bishop et al. [3], and
for extensions to this approach that add in features of heterogeneity among the nodes, see [8, 17].

In short, the first-order log-linear model of a 2J contingency table introduces parameters µj for
each of the J lists. It encodes the appearance/non-appearance of a node in list j as sj = ±1,
and then models the probability of the node appearing in a particular cell of the contingency table
by log ps =

∑J
j=1 sjµj . The cell counts are then modeled by a multinomial distribution, with

probabilities given by the ps’s.

The second-order log-linear model (with all two-factor interactions) augments the first-order model
with additional parameters µi,j for each pair of lists. These parameters are included in the probability
of a node appearing in a cell as a signed sum, log p′s = log ps +

∑
i 6=j sisjµi,j .

To realize the constraint that the N̂d values decrease as a function of d, in the second-order decreas-
ing log-linear model, we added a quadratic penalty function on the differenceDd = (N̂d−1− N̂d)+.

We fitted these models using Python/PyMC, by generating initial values with likelihood maximiza-
tion and drawing 5,000 samples with Adaptive Metropolis MCMC (after discarding 5,000 burn-in
samples) to obtain posterior means and uncertainty intervals on N̂d.

4 Validation with Simulated Data

This section describes the results of a series of computer experiments conducted to investigate how
well N̂d approximates the true degree distribution.
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We considered three different distributions for random graphs—the Erdős-Rényi model, the Prefer-
ential Attachment model, and the edge-percolated random geometric graph.

For each graph, we set edge e to be of length 1+ηe, where ηe is selected uniformly from the interval
[−1/n, 1/n], where n is the number of vertices. This ensures that there are not multiple shortest
paths between pairs of vertices. We approximated the path that data takes from a monitor to a target
node by the shortest path. This follows the experimental design used in [14].

For each graph distribution, we estimated the number of vertices with degree at least d using first-
order and second-order log-linear models, as well as the decreasing-constrained second-order log-
linear model. We also calculated the Petersen estimate on two subgraphs and the naive estimator
formed by considering the union of the edges discovered. The naive estimator, as the discussion
above makes clear, provides a form of lower bound on sensible estimates.

To measure the quality of each estimate, we calculated the relative median absolute error (MAE) of
the log of N̂d for each estimate compared to the log of the true degree distribution,

erri = Median

(∣∣∣∣∣100 log N̂d − logNd
logNd

∣∣∣∣∣
)

4.1 Random Graph, Gn,m

The Erdős-Rényi distribution of graphs, Gn,m, involves choosing a graph uniformly at random from
all graphs with n vertices and m edges [6]. It was not developed to model real-world graphs, but
it is analytically tractable and can provide insight into the behavior of more realistic graph models.
We generated instances with n = 10, 000 and m = 7.5n (to yield average degree 15), and simu-
lated traceroute sampling using shortest paths between 24 monitor nodes chosen at random without
replacement and 1, 000 target nodes also chosen at random without replacement. We used 4 sets
of 6 monitors each for the subgraphs. The uncertainty interval comes from running 64 independent
replicates of the experiment.

Method Relative MAE % (95% UI)
Union 27.80 ( 25, 35)

Petersen 8.07 ( 4, 12)
Log-Linear 1 11.53 ( 8, 17)
Log-Linear 2 8.96 ( 3, 16)

Log-Linear 2 Decreasing 7.75 ( 2, 14)
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4.2 Edge-Percolated Random Geometric Graph, G(X ; r)

To investigate the performance of the bias-reduction technique on graphs with clustering, we ex-
amined random geometric graphs G(X ; r). These graphs are formed by selecting a set of n points
independently and uniformly at random from the unit square, and linking two points with an edge if
and only if they are within `2 distance r (for a detailed treatment, see [18]). The edge percolation
then selected edges from this random geometric graph independently at random with probability p.
We generated instances with n = 10, 000, p = .1, and r chosen to yield average degree 15, and sim-
ulated traceroute sampling using shortest paths between 24 monitor nodes chosen at random without
replacement and 1, 000 target nodes also chosen at random without replacement. We used 4 sets of
6 monitors each for the subgraphs. The uncertainty interval comes from running 64 independent
replicates of the experiment.

Method Relative MAE % (95% UI)
Union 32.92 ( 27, 51)

Petersen 17.01 ( 14, 24)
Log-Linear 1 31.91 ( 26, 41)
Log-Linear 2 13.29 ( 8, 23)

Log-Linear 2 Decreasing 13.38 ( 10, 19)

4.3 Preferential Attachment Graph

The preferential attachment (PA) graph was proposed for a model of the Internet and the World
Wide Web by Barabási and Albert in [2], and this has generated a large body of subsequent research,
although the validity of the model as a representation of the router graph or the AS graph has been
questioned (see, for example, [4]). We generated instances with n = 10, 000 and minimum degree
15, and simulated traceroute sampling using shortest paths between 24 monitor nodes chosen at
random without replacement and 1, 000 target nodes also chosen at random without replacement.
We used 4 sets of 6 monitors each for the subgraphs. The uncertainty interval comes from running
64 independent replicates of the experiment.
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Method Relative MAE % (95% UI)
Union 42.87 ( 40, 46)

Petersen 41.93 ( 36, 50)
Log-Linear 1 39.92 ( 37, 44)
Log-Linear 2 7.64 ( 5, 15)

Log-Linear 2 Decreasing 14.85 ( 6, 26)

5 Recapture estimates for the AS graph

This section reports on the results of applying the bias-reduction technique to traceroute-sampled
data from the CAIDA skitter project.

Mahadevan et al. [16] provide a detailed analysis of CAIDA skitter data from March 2004. We
followed their methodology, and, in particular, we aggregated the routes observed over the course
of a month (from daily graphs provided by CAIDA). We also removed all AS sets, multi-origin AS,
and private AS, and discarded all indirect links.

The following graph shows results of applying the bias-reduction technique to the March 2003 skitter
data. There are 24 AS in the monitor set. Each monitor sees around 7,000 nodes and around 12,000
edges. Since there are 24 AS in the monitor set, the contingency table for log-linear estimation with
singleton clusters has 224 cells. To decrease computation time, we consider 4 sets of 6 monitors
each.
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6 Conclusion

In this paper, we have built on the notion from Flaxman and Vera on the link between bias cor-
rection of the degree distribution for the AS graph and the use of a variant of the traditional Pe-
tersen estimate from simple capture-recapture settings. But unlike those authors, we have used the
methodology from multiple-recapture settings involving log-linear models applied to a sequence of
constructed contingency tables in order to get direct estimates of the degree distribution. By building
in dependencies among the collections of traceroute subgraphs, we appear to have improved esti-
mates (relative to prior methods) of the degree distribution for three types of standard test graphs:
(1) the Erdős-Rényi Random Graph,Gn,m, (2) the Preferential Attachment Graph, and (3) the Edge-
Percolated Random Geometric Graph, G(X ; r, p).
We view these empirical results as preliminary since we have done only a limited set of experiments
in each setting. Moreover, the simple second-order log-linear interaction model would appear to
capture information on a restricted set of features from the simulated graphs. We expect the use
of somewhat more elaborate log-linear styled models will do a better job of capturing aspects of
heterogeneity and higher order dependence among subgraphs generated by traceroute paths and that
hierarchically smoothed versions of these models will perform even better.

Our use of multiple-recapture methodology is heuristically appealing because of the simple interpre-
tation of the minimal sufficient statistics of the first- and second-order log-linear models (see similar
heuristics in [22]). We need more formal probabilistic links between these and other multiple-
recapture models and common classes of network models to provide our work with a firmer theoret-
ical foundation.
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