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Abstract

Considering a clique as a conservative definition of community structure, we
examine how partitioning algorithms interact with cliques. We show that on a
wide range of empirical networks, from different domains, significant numbers of
cliques are split across different partitions by popular algorithms. We examine the
largest connected component of the subgraph formed by retaining only edges in
cliques, and apply partitioning strategies that explicitly minimise the number of
cliques split. We conclude that, due to the connectedness of many networks, any
partitioning community finding algorithm must fail to return at least some signif-
icant structure. Moreover, contrary to traditional intuition, strong ties and cliques
frequently do cross community boundaries.

1 Introduction

Groups of interacting entities can be considered as a complex system. It is popular to examine such
systems in terms of the networks their component entities form, to gain insight into properties of
the system as a whole. For example, the speed with which a contagion can spread through a system
is partly determined by the topology of its underlying network. The way subgroups of entities
interconnect is also important to investigate whether useful higher level abstractions — above the level
of individual entities — exist in the systems we study. To find such structures, an extensive variety
of algorithms have been developed, which attempt to find groups of nodes in the network that are
structurally significant in some way; these groups are referred to in the literature as ’communities’.
See [8] for an extensive review of these algorithms, which we will refer to as Community Finding
Algorithms, or CFAs.

CFAs have been put to a range of applications, across several domains. As CFAs are applied ever
more broadly, it is important that the structures they find, and the consequences of the design choices
that define them are well understood. Particular CFAs should not be assumed to work across all
complex networks, merely because they have evaluated well on some. In this research, we argue that
certain algorithms, notably CFAs that produce partitions of the original network, return incomplete
lists of the significant community structure, for at least some empirical networks. We show that
certain networks do not lend themselves well to partitioning, and caution against using partitioning
algorithms as universal community finding tools.

Each CFA finds structure that corresponds to a particular intuition of what a ’community’ is; however
there is little agreement on how exactly to define community. One idea that is common is that a
community should have a high density of edges among its nodes, where density refers to the ratio
of actual edges between the nodes of the community to the maximum possible. The bound of this
definition is the graph theoretic structure known as a ’clique’ — a fully connected subgraph, where
each node is connected to every other. Cliques, as discussed by Luce et al.[16], have long been



considered as community structure in human social networks. In the domain of social networks, this
is very intuitive; if a user is friends with several others on Facebook, all of whom are also friends,
then this is a significant structure of common friends. In addition to this intuitive appeal, cliques
are rare structures in the networks we study — due to the strict requirement for each node to connect
to every other, clique structure is unlikely to arise by chance in a sparse network. Cliques are thus
important structures — however, the definition of clique as a community is strict and conservative, for
if even one connection is missing — perhaps due to an incompletely observed network — the found
community will shrink. Many CFAs thus try and find communities which comprise groups of nodes
which are highly connected, but less connected than perfect cliques. However, we posit that a clique
is a good conservative lower bound estimate on community structure — a maximally interconnected
group of nodes, in a sparse network, always represent some interesting structure.

Many leading CFAs assign communities by partitioning the network, that is, grouping the nodes
into disjoint subsets, such that each node to one, and only one, subset. This partitioning approach
to community finding has become popular, perhaps due to the appeal of treating a complex network
as a graph, and the body of literature on graph partitioning problems. Early applications of graph
partitioning, such as [11], discuss problems that explicitly require partitions, such as electronic
component layout. In this work we are concerned about the completeness of the lists of found
community structure on more complex domains. Regarding cliques as underestimates of community
structure, we believe that regardless of what specific structures a given CFA finds, to be thorough,
it should find, for each clique, at least one structure which is a superset of that clique. A CFA —
considered as a tool that reveals structure in a complex network — that returns no community in
which a group of fully connected nodes are assigned together, is neglecting to provide a complete
list of the structures in the network. This is especially true if the clique is large in size.

We show that on many complex networks, partitioning CFAs split cliques, and hence fail to find
complete lists of structure. We examine why this occurs, investigating the intuition underlying
many partitioning CFAs, and their relationship with cliques. We show, using cliques as a tool, that
some traditional intuition about communities is not always correct. Instead, many of the graphs we
study exhibit a structure that can be better explained as the ’pervasive overlap’ discussed in [1],[7]
than as independent, weakly-connected modules. We analyse cliques, rather than any new definition
from the ’overlapping community finding’ literature, because we require a definition of structure
that is a fundamental and convincing conservative underestimate of community structure. For ex-
ample, analysing structures such as the percolated k-cliques of Palla et al.[18] we find no universal
k consistent across networks, with which to evaluate partitioning. We require, for every community,
a conservative subset of that community. Rather than choosing a new definition of community and
discussing whether it is sufficiently conservative, we instead return to the fundamental definition
of the clique alone, and examine its implications in detail. We analyse some of the same data as
Leskovec et al.[15] — however, while that influential work sought to investigate the quality of the
best community structure, at each scale, by evaluating it in terms of conductance, we investigate
network structure from a different angle, by using cliques to conservatively estimate community
cores, and characterise to what level every one of these may be recovered after partitioning methods
are applied, thus considering structure globally across the network.

Figure 1: Networks and communities, diagram from Newman[17], illustrative of traditional com-
munity intuition



2 Experiments

An illustration of the intuition behind many CFAs can be seen in Figurel from the influential paper
by Newman[17], with well defined separate modules connected by only narrow bridges. This same
intuition, conceptualising communities as connected by narrow bridges, can be traced back to the
seminal work of Granovetter[9] where he writes: “If the motivation to spread the rumor is dampened
a bit on each wave of retelling, then the rumor moving through strong ties is much more likely to
be limited to a few cliques than that going via weak ones; bridges will not be crossed.* Here,
Granovetter is using ’clique’ in the sociological sense, closer to the modern idea of community, and
the key idea is that bridges — narrow connecting links — need to be crossed to carry information
between such cliques. This idea is further summed up in the modern review of Fortunato[8] as: “If
it were possible for a clique to move on a graph, in some way, it would probably get trapped inside
its original community, as it could not cross the bottleneck formed by the inter-community edges. “
We now show that while this intuition may be appropriate in many cases, the structure of empirical
networks does indeed lead to cliques crossing the "bottleneck’ formed by inter-community edges.

We conducted experiments to investigate the extent to which commonly used partitioning meth-
ods would split the cliques present on empirical network datasets. To keep the number of cliques
we consider tractable, and in keeping with the sociological definition of clique[16], we constrain
our analysis to maximal cliques — for convenience, we will refer to the maximal cliques as simply
cliques. We generate the complete list of cliques present in each dataset using the fast Bron Ker-
bosch algorithm[3]. We then use the partitioning method under evaluation to assign each node to a
community, and characterise how the cliques interact with the partitions found, by examining each
maximal clique in turn, checking whether it is fully contained within a partition, or to what extent
it has been split across partitions. We quantify and present this for each network, using two distinct
partitioning methods; one popular and efficient modularity optimization method[2] and one min-cut
optimizing method[6].

2.1 Network Datasets Examined

To analyse data from a wide variety of networks, we used network datasets from the SNAP
project![15]. These networks provide examples from many different domains, including web2.0,
co-citation and product recommendation networks. We also examined several Facebook university
social network datasets[19]. The Facebook networks vary in size — we chose to run our experiments
on the smaller datasets, due to the computational cost of calculating all maximal cliques. To broaden
our analysis, we generated several random snowball samples from a full Twitter network dataset[12].
We also used mobile telecoms data provided by an industrial partner’, comprising of the voice call
and SMS interactions of a mobile telecoms operator. Like Twitter, this is a large network; we gen-
erated 3 random snowball samples of this data to produce tractable network datasets. Finally, we
consider the CYC Protein-Protein interaction (PPI) network.

2.2 Partition by modularity maximisation

Many of the most popular CFAs are based on the modularity maximization approach of
Newman[17].The modularity function measures community quality as a count of internal edges,
less the expected number in a random graph with the same node degrees. Modularity maximization
algorithms, such as the fast method by Blondel et al.[2] which we evaluate here, optimise the number
of partitions as well as the associated partitioning. While traditional intuition holds that even trian-
gles, or ’strong ties’, should not cross community boundaries, we are interested in more significant
cliques — so we restrict our analysis to cliques of at least size 4. We also use a conservative definition
of when a clique is ‘split’ — we say a clique is “split at level «” if no partition contains more than
(100 x @)% of its nodes. We quantify the proportion of cliques that are split by the partitioning of
each network in two ways. First, we examine the proportion of cliques of at least size 4 that are split
at level o = 0.9; Table 1 shows the significant proportions of cliques split at this level. We would
have expected, from traditional intuition, that such structures would be contained in the center of the
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found communities — not spanning them, and not split by partitions that define found communities.
We provide an illustrative example of this effect in Figure 2.

Figure 2: Visualisation of one of the split 4-cliques from the Caltech Facebook dataset. Clique
edges are shown in red; modularity partitions are shown by color; each node of the 4-clique has
been assigned to a different community. Note the many paths of length 2 between the clique’s
nodes. This clique will not show up in the list of found structure.

We might be concerned that, as we are only considering the proportion of maximal cliques that have
been split, many of the maximal cliques will be small, such as 4-cliques, and that if a 4-clique is
split between partitions — while contrary to the traditional intuition of strong ties crossing commu-
nity boundaries — this might not be of particular concern. For an even more conservative set of
experiments, we consider only cliques of at least size 8, with & = 0.8. These parameters are arbi-
trary and we do not seek to justify them, other than to reiterate that we are considering conservative
structure, which would traditionally be expected only in the ’cores’ of found communities, not on
their boundaries — structure that a comprehensive CFA should return. Even with this conservative
definition, the partitions break significant amounts of structure on many networks — see Table 1.

Our results show these proportions of cliques split vary across datasets. There is also a large varia-
tion in the number of maximal cliques present. We might reason that this is due to some fundamental
difference in the nature of the networks being considered, and question whether such an analysis can
be meaningfully applied across a range of networks. After all, the Amazon network is a network of
frequently co-purchased products, and the web datasets are explicitly constructed lists of hyperlinks;
still other networks involve human communication or collaboration. These networks are, however,
frequently treated together as complex networks; we might, a priori, expect the same CFAs to per-
form well on them, and assume that a good CFA in one domain is automatically suitable for another.
However, as these results show, this modularity method seems to do poorly on at least some types
of network — at least if finding complete lists of structure is desired. Similar results also hold on
many networks if we consider just the proportion of n-cliques split, for a specific value of n, or if
we enforce a Jaccard coefficient distance between cliques we analyse.

2.3 Relationship of modularity of partitions to proportion of cliques split

To investigate if the proportion of split cliques is in some way an artefact of low inherent modularity
within the networks, we create a scatter-plot of the modularity achieved, against the proportion of
maximal cliques split. From Figure 3(a) no obvious relationship appears. Several of the network
partitions have high modularity and still display significant clique splitting; if there is a fundamental
characteristic that renders particular networks unsuitable for modularity based partitioning, modu-
larity does not capture it.



Table 1: Proportion of maximal cliques split by the Blondel et al. CFA, per network. We show the
proportion of maximal cliques, of size 4 or greater, that have more than 10% of their nodes assigned
to different partitions. ’Large cliques split’ is the proportion of maximal cliques, of size 8 or greater,
that that have more than 20% of their nodes assigned to different partitions

Network  Vertices Partitions  Cliques Cliques split  Large cliques split

amazon0302 262111 173 117054 0.01 0.00
ca-AstroPh 18771 331 27997 0.60 0.32
ca-CondMat 23133 626 8824 0.42 0.15
ca-HepTh 9875 483 2636 0.23 0.00
cit-HepTh 27769 172 419942 0.30 0.06
email-Enron 36692 1363 205712 0.61 0.47
email-EuAll 265009 15743 93267 0.82 0.67
FB-caltech 769 10 31745 0.68 0.27
FB-princeton 6596 21 1286678 0.44 0.22
FB-georgetown 9414 26 1440853 0.41 0.22
ppi-Collins 1622 212 4310 0.16 0.08
Mobilel 10001 182 1550 0.97 0.00
Mobile2 10001 124 3538 0.90 0.00
Mobile3 10001 86 951 0.88 NA
soc-Epinionsl 75879 1607 1596598 0.38 0.11
soc-Slashdot0811 77360 771 441941 0.13 0.01
Twitterl 2001 8 23570 0.99 0.66
Twitter2 2001 4 554489 0.15 0.01
Twitter3 2001 7 130399 0.06 0.00
web-NotreDame 325729 693 130965 0.04 0.00
web-Stanford 281903 1013 774555 0.04 0.01
wiki-Vote 7115 30 436629 0.65 0.37

2.4 Partitioning using Normalized Edge Cut

Another method that has previously been used for the purpose of community finding, from a dif-
ferent family of algorithms, is the multilevel kernel k-means partitioning method implemented in
Graclus[6], that minimises a normalized mincut objective. We examined this method on the same
datasets. Unlike the modularity method, which discovers the number of partitions into which to
break a graph, Graclus requires this to be specified. We would expect a smaller number of partitions
would result in a smaller proportion of the maximal cliques being broken, and this effect is visible.
However, even when asked to produce a relatively small number of partitions — relative to the net-
work sizes — mincut partitioning results in large proportions of the cliques greater than size 4 being
split on many datasets, as shown in Table 2.

3 Fundamental partitionability of datasets

Some datasets have a higher proportion of cliques split by partitions than others. This is largely
uncorrelated with the mere number of cliques in the dataset, or the number of cliques per node, or per
edge, or a number of other simple graph measures, such as clustering co-efficient. After investigating
several popular CFAs, we ask whether any partition exists which would not split cliques. Perhaps
there were potential partitions that would confine cliques to the cores of the communities found, but
these methods were not finding them? To answer this, we consider the network formed by discarding
all edges from the network that are not part of at least 4 or 5 cliques. The connected components
in this subgraph are the sets of nodes that cannot be placed into separate partitions without splitting
any cliques. We calculate the size of the largest connected component of each network, and present
this as the proportion of nodes in the network, in Table 2. On some networks, such as Facebook,
Twitter, or collaboration networks, any partitioning scheme that is constrained to not split cliques
of size five or greater, has to leave the majority of nodes in a single partition. This is an important
structural difference between these datasets, and an important result for certain diffusion models of
complex contagion[4] which can only spread over strong ties, as it shows strong ties do connect



Table 2: Proportion of cliques split by Graclus[6], and AMETIS[10], per network. Values shown for
4, 16 and 64 Partitions, with ufactor 50, and 16 Partitions with ufactor500. Also shown, connected
component proportions for subgraphs of edges in at least 4-Cliques, and edges in at least 5-Cliques.

Network | Graclus 4 16 64 | hMETIS 4 16 64 16 uf500 | 4-Clique 5-Clique
amazon0302 0.01 0.02 0.04 0.00 0.00 0.00 0.00 0.11 0.00
ca-AstroPh 043 053 0.77 027 049 0.65 0.34 0.83 0.71
ca-CondMat 028 0.40 0.50 0.17 030 0.39 0.30 0.71 0.52
ca-HepTh 0.16 0.28 043 0.10 0.19 0.29 0.19 0.42 0.13
cit-HepTh 0.13 035 0.55 0.15 031 047 0.30 0.75 0.62
email-Enron 0.38 0.74 0.92 0.10 0.54 0.67 0.38 0.55 0.39
email-EuAll 0.53 0.86 098 0.20 0.58 0.76 0.42 0.04 0.02
FB-caltech 0.62 0.86 1.00 0.56 0.89 0.99 0.57 0.89 0.84
FB-princeton 0.33 0.69 0.89 032 0.58 0.89 0.36 0.92 0.89
FB-georgetown 0.30 0.58 0.80 032 050 0.74 0.40 0.93 0.90
ppi-Collins 0.00 0.16 0.93 0.00 0.79 0.95 0.01 0.59 0.36
Mobilel 0.75 0.88 0.99 047 0.81 093 0.80 0.17 0.07
Mobile2 0.66 0.93 097 047 0.77 0.92 0.64 0.20 0.09
Mobile3 0.83 093 0.96 048 0.82 0.95 0.77 0.06 0.01
soc-Epinions1 046 0.88 0.81 024 051 0.63 - 0.18 0.12
soc-Slashdot0811 028 049 094 0.08 0.13 0.37 0.09 0.10 0.04
Twitterl 0.88 0.99 1.00 0.82 097 1.00 0.83 0.78 0.57
Twitter2 022 099 1.00 0.05 0.88 1.00 0.56 0.70 0.57
Twitter3 0.74 098 1.00 0.04 0.65 0.99 0.05 0.74 0.33
web-NotreDame 0.01 0.03 0.11 0.00 0.05 0.18 0.04 0.07 0.03
web-Stanford 0.03 0.04 0.39 0.00 0.09 046 0.02 0.49 0.40
wiki-Vote 048 0.96 1.00 0.51 0.88 0.99 0.51 0.43 0.35

communities. Further, on some of the larger datasets such as Slashdot dataset, with 77,360 nodes,
we find that over 30 per cent of those nodes (ie, 23980 nodes) are in a connected component of the
subgraph containing only edges that are in triangles. This is further evidence against the strict idea
that strong ties cannot cross community boundaries.

3.1 Partitions that directly minimise clique splits

Having established the limits of partitions that break no single 4-clique, we consider partitioning to
directly optimise the number of cliques preserved, while producing balanced partitions. Partitioning
a network while splitting as few cliques as possible is a hypergraph partitioning problem, where
nodes in a clique together are connected by a hyperedge. This simple observation enables us to use
a balanced mincut hypergraph partitioning algorithm, such as implemented by FAMETIS[10] to parti-
tion the graph, while directly minimising clique splitting. AMETIS requires an important parameter
to determine partition balance. Too high a value results in trivial partitions, with the vast majority
of nodes in a single partition; too low might force AMETIS to make more aggressive hyperedge
cuts than is reasonable. We initially set this ufactor at 50 (meaning the largest partition may have
50% larger weight than the average), to allow some unbalance. We examine cuts into 4, 16, and
64 partitions — generally fewer partitions than the modularity maximisation approach finds on these
graphs. We also present results for 16 partitions with ufactor 500, allowing very large variation in
partition size. The results are shown in Table 2. Partitions directly minimising clique split indeed
result in reduced proportions of the cliques split, compared to balanced mincut of Graclus. As the
number of partitions, and balance between partitions, constrain ZMETIS more than the modularity
maximisation method, the results are not directly comparable. However, as this method is directly
minimising clique cut, it should approach a lower bound attainable by any partitioning CFA, for
the given number of partitions — and, with generous balance parameters, indeed does better than
modularity maximisation. Even so, several datasets — notably the collaboration networks, the Wiki
voting data, the Facebook and telecoms data — still results in substantial proportions of unrecov-



ered structures, further demonstrating the fundamental global unpartitionability of some empirical
networks.

3.2 Partitionability of datasets with ground truth

Ground truth community datasets are hard to find for most empirical networks of interest. With
protein-protein interaction networks, ground truths are available, as protein complexes that corre-
spond to dense clusters of edges. CFAs, notably k-clique percolation[18] which does not constrain
itself to a partition, and has investigated the overlap in PPI networks, have had success recovering
these ground truth communities. We consider the interaction data found in the Combined-AP/MS
network [5] using the protein complexes from the CYC dataset of known complexes®, as ground
truths, to examine how partitionable the ground truth communities are as quantified by our metric.
Discarding ground truth communities smaller than triangles, we are left with 126 communities of
heterogeneous size. To quantify the severity of this overlap, we treat partitioning the ground truth
communities as a hypergraph partitioning problem, where each complex is a hyperedge. We use
hMETIS to produce a partition of the hypergraph into 126 parts, knowing the large imbalance ufac-
tor to be specified ahead of time, and obtaining a min hyperedge cut of 12; approximately 10% of
the ground truth communities are split by AMETIS such that at least some of their nodes have been
assigned to another partition. This shows that even with full knowledge of the communities that we
seek to recover, a partitioning must break some ground truth communities; as such, certain naturally
occurring networks are not ideally suited for partitioning.

3.3 Random and synthetic models of community
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Figure 3: (a) Scatter plot of modularity of the partition vs the proportion of maximal cliques split,
for each network. (b) Number of communities-per-node vs proportion of maximal cliques split, by
the hypergraph partitioning method, on LFR benchmark data. Each data point is the mean of 5 LFR
instances; deviation is negligible.

Broad categories of random community assignment model will produce networks where partitioning
will fail to recover full communities. In any random model of community assignment, where the
communities are assigned completely independently, without an explicit constraint of disjointness,
the probability of there existing a partition of the graph that does not split communities is negligible,
so long as the average number of communities-per-node in the graph as a whole is greater than 1.0.

Given the following parameters: N, the total number of nodes in the network; s, the number of nodes
in each individual community; and ¢, the number of communities in the network, given a single com-
munity, the probability of it being preserved by a random partition is 1/(25~1). This is conservative,
as the probability will be slightly smaller for balanced partitions. For multiple communities, given

3 Available at http://wodaklab.org/cyc2008/



that they be assigned independently of each other, we can see it is 1/((2571)¢); or 27¢(*=1), Now,
there are 2V ~! distinct possible partitions, and fewer balanced partitions. Therefore, if ¢ x (s — 1)
is greater than N, the chance that there exists a partition respecting all the communities is negligible.
This is, to a very close approximation, the same as an average number of communities-per-node of
1.0. Hence, for a random model of community assignment, unless there are explicit constraints that
force communities to be disjoint, a partition will almost certainly split some communities.

One source of regarded synthetic benchmark community data is the 'LFR’ benchmark[13]. We ran
our experiments on "LFR’ graphs to test our method on synthetic data. We generated realisations of
a 10,000 node network, altering the number of communities each node was assigned to — from one to
five, also increasing the corresponding number of edges, similar to benchmarks detailed in previous
work[14]. The results detailing the proportion of cliques split are shown in Figure 3(b). From these
results, all methods succeed in partitioning the single community per node networks, but break
significant structure on the two or greater community-per-node networks. Even though the synthetic
network model isn’t directly embedding cliques — just increasing edge density within communities
— partitioning fails to find all structure, by our defined metrics, on synthetic networks where nodes
are overlapping. Further, large components exist in the graph of edges in cliques in these generated
networks. Not only are the individual nodes and communities overlapping as designed by the model;
it is a property of the network as a whole that no partition exists which does not split cliques.

4 Conclusion and further work

We have investigated a wide range of empirical networks, characterising them according to the pro-
portion of cliques that are split by various partitioning methods. Our results show that the early
intuition on how communities are embedded in graphs does not hold across all networks and do-
mains. On many complex networks cliques do not exist solely in community cores, connected only
by narrow bridges and weak ties — instead they frequently overlap across the community boundaries
produced by partitioning algorithms. If we accept cliques as conservative lower bounds for com-
munity structure, then, on many networks, partitioning CFAs are fundamentally limited in the com-
pleteness of the communities they can find, as shown by our results on graphs of edges in cliques,
and hypergraph partitioning. Thus, caution is warranted when using partitioning community finding
algorithms where there is a requirement that all significant structures be found. In agreement with
recent research on pervasive overlap, conceptualising networks as overlapping meshes of strong ties,
but with slightly denser community regions, and using an overlapping CFA may be more appropri-
ate.

This analysis should be extended to individual overlapping community finding algorithms which do
not have an in-built partitioning constraint, and examine the lists of structures that they return for
completeness. We would like to investigate partitioning the hypergraph of cliques in more detail,
exploring different partition parameters. Ideally, we would develop local or sampling based metrics
that can attempt to characterise the partitionability of a larger network, as our approach is limited
by the need to generate complete lists of cliques — unfeasible on huge networks. Work on formal
models of community generation that might explain whether a network is suitable for partitioning,
and attempt to characterise the generative processes behind this global overlap would be beneficial.
That cliques frequently span communities also has implications for the type of diffusion processes
that can occur on networks. We will consider the implications of our results on how we think about
diffusion in networks.
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