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Abstract

Reconstructing the topology of a gene regulatory network is one of the key tasks
in systems biology. Here we present a methodical comparison of the performance
of a novel method (RegnANN) for gene network inference based on multilayer
perceptrons with other three reference algorithms (ARACNE, CLR, KELLER).
In order to account for the variability induced by both the network intrinsic struc-
ture (e.g.: its topology) and the available data, our analysis considers Barabasi
and Erdds-Rényi synthetic networks together with two different methods for data
generation. The extensive evaluation on both synthetic data and a selection of
gene modules of Escherichia coli indicates that RegnANN shows MCC scores
that compare very favorably with all the other inference methods tested. On the
synthetic test-bed, RegnANN outperforms all the other methods in a number of
setups. On the other hand, results on biological data are less consistent, indicating
that other factors may influence the accuracy scores of the network reconstruction
task.

1 Introduction

Since the first examples dating back to early seventies [1], the challenge of reconstructing the links
among genes in a regulatory network starting from their expression signals has been tackled by sev-
eral laboratories worldwide. These initial efforts have originated a number of related publications
which has been exponentially growing in the last few years. The inference methods generally em-
ployed are of very different nature, ranging from deterministic, e.g.: systems of differential equations
[2] and Grobner bases [3], to stochastic approaches, e.g.: Boolean [4] or Bayesian [5] algorithms.
Such approaches may also start from different types of gene expression data: time-course or steady
states. Furthemore, also the detail and the complexity of the considered network can vary as the
links may carry information about the direction of the relation (directed graph) and a weight may be
associated to the strenght of each link (weighted directed graph) [6, 7]. Generally, the reconstruction
accuracy is far from being optimal in many situations with the presence of several pitfalls, related to
both the methods and the available data [§].

In this paper we introduce a novel inference method called Reverse Engineering Gene Networks
with Artificial Neural Networks (RegnANN). This approach is based on an ensemble of multilayer
perceptrons trained using steady state data. Its perfomance is compared with those of top-scoring
methods such as KELLER [9], ARACNE [10] and CLR [11]. To improve the general efficiency of
RegnANN we implement the algorithm using GPGPU [12].
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In evaluating the performance of the four different network inference methods, first we settle in
a controlled situation with synthetic data and then we focus on a biological setup by analysing
transcriptional subnetworks of Escherichia coli. In order to simplify our comparative evaluation, we
will only consider the underlying topology, thus neglecting both weight and direction of the links
among the genes. In doing so, we confine the analysis of the reconstructed network in terms of the
binary existence or not-existence of an edge. The general performance of the network inference
task is evaluated in terms of Matthews Correlation Coefficient — MCC [13]. MCC is becoming the
measure of choice in many application fields of machine learning and bioinformatics: it is one of
the best methods for summarizing into a single value the confusion matrix of a binary classification
task. Recently it has also been used for comparing network topologies [14].

2 RegnANN: network inference using ANN

To infer gene regulatory networks we adopt an ensemble of feed-forward multilayer perceptrons
[15] trained using the back-propagation algorithm. Each member of the ensemble is essentially a
multi-variable regressor (one to many) trained using an input expression matrix to learn the rela-
tionships (correlations) among a target gene and all the other genes in the network. We proceed in
determining the interactions among genes separately and then we join the information to form the
overall network. From each row of the gene expression matrix' we build a set of input and output
patterns used to train a selected multilayer perceptron. Each input pattern corresponds to the expres-
sion value for the selected gene of interest. The output pattern is the row-vector of expression values
for all the other genes for the given row in the gene expression matrix (Figure 1). By cycling through
all the rows in the matrix, each regressor in the ensemble is trained to learn the correlations among
one gene and all the others. Repeating the same procedure for all the columns in the expression
matrix, the ensemble of multi-variable regressors is trained to learn the correlations among all the
genes.
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Figure 1: The ad hoc procedure proposed to build the training input/output patterns starting from
a gene expression matrix. Each input pattern corresponds to the expression value for the selected
gene of interest. The corresponding output pattern is the vector of expression values for all the other
genes for the given row in the gene expression matrix.

The procedure of determining separately the interactions among genes is very similar to the one pre-
sented in [9], where the authors propose to estimate the neighborhood of each gene (the correlations

'In this work we consider gene expression matrices of dimension M x N: N genes whose expression levels
are recorded M times.



among one gene and all the others) independently and then joining these neighborhoods to form the
overall network, thus reducing the problem to a set of identical atomic optimizations (Section 2.1).

Here we build N (one for each of the N genes in the network) multilayer perceptrons with one
input node, one layer of hidden nodes and one layer of N — 1 output nodes. The input node takes
the expression value of the selected gene rescaled in [—1,1]. The number of hidden nodes is set
empirically to the square root of the number of inputs by the number of outputs, resulting in /N — 1.
The activation function is the hyperbolic tangent, which provides output values in the range [—1, 1],
thus making the output values interpretable in terms of positive correlation (+41), anti-correlation
(—1) and not-correlated (0). The other parameters used to learn each multi-layer perceptron are as
follows: learning rate equal to 0.01; momentum equal to 0.1, learning epochs equal to 1000; bias
equal to 0. These values are evaluated empirically during preliminary tests on synthetic data.

Finally, the topology of gene regulatory networks is obtained by applying a second procedure. The
correlation of each gene with all the others is extracted by passing a purposely made test pattern
to the regressor: considering separately each multilayer perceptron in the ensemble, a value of 1
is passed to its input neuron, consequently recording its output values. In this way, the correlation
between the corresponding gene with all the others is obtained as a vector of values in [—1, 1]. By
cycling through all the members of the regression system, we obtain the adjacency matrix of the
sought gene network. It is important to note that this procedure does not allow discovering of gene
self correlation (regulation) patterns, but only correlation patterns among different genes. Moreover,
the algorithm here proposed cannot estimate future values, because it is not a predictor, as in the
case of GRNN [16]: instead it models static correlations between genes. As in [9], it is possible
to extend the regression system to take into account dynamic rewiring of the topology, but this is
beyond the scope of the present work.

To improve the general efficiency of the algorithm and thus allow a systematic comparison of its
performance with the other gene network reverse engineering methods tested (Subsection 2.1), we
implemented the ANN based regression system using the GPGPU programming paradigm [12, 17].

2.1 Alternative inference methods

As reference methods we select three alternative algorithms widely used in literature: ARACNE,
CLR and KELLER.

KELLER: it is a kernel-reweighted logistic regression method [9] introduced for reverse engi-
neering the dynamic interactions between genes based on the time series of their expression values.
It estimates the neighborhood of each gene separately and then joins the neighborhoods to form the
overall network. The approach aims at reducing the network inference problem to a set of identi-
cal atomic optimizations. KELLER makes use of the /;-regularized logistic regression algorithm
and operates modeling the distribution of interactions between genes as a binary pair-wise Markov
Random Field. Although KELLER has been developed to uncover dynamic rewiring of gene tran-
scription networks (e.g.: dynamic changes in their topology), here we consider constant network
topology for a given gene expression matrix. In this work we make use of the reference implemen-
tation of the algorithm provided in [9].

ARACNE: itis a general method able to address a wide range of network deconvolution problems
— from transcriptional [10] to metabolic networks [18] — that was originally designed to scale up to
the complexity of regulatory networks in mammalian cells. The method makes use of an informa-
tion theoretic approach to eliminate the majority of indirect interactions inferred by co-expression
methods. ARACNE removes the vast majority of indirect candidate interactions using a well-known
information theoretic property: the data processing inequality [19]. In this work we use the refer-
ence implementation of the algorithm provided in [20] with default value for the data processing
inequality tolerance parameter.

CLR: it is an extension of the relevance networks class of algorithms [11], which predicts regu-
lations between transcription factors and genes making use of the mutual information score. CLR
proposes an adaptive background correction step that is added to the estimation of mutual informa-
tion. For each gene, the statistical likelihood of the mutual information score is computed within its
network context. Then, for each transcription factor-target gene pair, the mutual information score



is compared to the context likelihood of both the transcription factor and the target gene, and turned
into a z-score. We adopt the reference implementation of the algorithm provided in [20].

2.2 Experimental protocol

We are interested in comparing the performance of the selected reverse engineering methods in
inferring the underlying topology of regulatory networks. As proposed in [9], we focus on the
estimation of the interaction structures between genes, rather than the strength of these interactions.
The inferred adjacency matrix is symmetric and discretized with values in {0, 1} by thresholding.

The binarization of the inferred network obtained with RegnANN is achieved using by using a
threshold value of 0.5. In the case of KELLER, the reference implementation [9] returns a symmetric
and discrete (with values in {0, 1}) adjacency matrix — binarization is obtained by rounding values
bigger than 1073 to 1. Results obtained with ARACNE are discretized as in the case of KELLER.
Usually, the cutoff value for the mutual information is estimated for each data-set separately using a
significance measure (e.g.: the F-score [21]) or building a Precision-Recall curve and selecting the
desired threshold value [10]. Here, the threshold value is kept constant to avoid the introduction of
a selection bias in the outcome of the ARACNE algorithm. The same procedure is applied to CLR
(threshold value of 1072).

Gene expression profiles (synthetic or biological data) are linearly rescaled in [-1,1], before topology
inference.

The accuracy (in terms of MCC) of each inference methods is firstly evaluated on synthetic data
(Section 3) by varying the topology of the network, the amount of data available and the method
adopted to synthesize the data. Once the topology of the network is (randomly) generated, the
desired amount of data is synthesized, the network inference methods are applied and the MCC
score calculated. To account for intrinsic instability of each inference method, data generation and
network inference is repeated 10 times for a given network topology. Thus, the MCC score is
estimated as the mean of the 10 independent runs. The error of the measurement is expressed as
twice the standard deviation. Finally, to generalize away from the generated network topology, the
entire procedure is repeated 10 times and the final MCC scores is calculated as the mean accuracy
for each run. Similarly the error is estimated as the mean of the error for each run.

Finally, the performance of the four network inference algorithms is tested on 7 selected gene net-
work modules of Escherichia coli [22]. While ARACNE, CLR and KELLER are deterministic
algorithms?, RegnANN may produce different results depending on the random initialization of the
weights in the ensemble of multi-layer perceptrons. Thus, in order to smooth out possible local
minima, we adopted a majority voting schema: for each network module, the RegnANN algorithm
is applied 10 times and the inferred adjacency matrices accumulated. The final topology is obtained
selecting those links that appeared with a frequency higher than 7 (out of 10). The entire procedure
is repeated 10 times and the final prediction is estimated as the mean and the associated error as
twice the standard deviation of the 10 independent runs.

3 Data

Synthetic data: we benchmark the reverse engineering algorithms here considered using both syn-
thetic and biological data. Synthetic data are obtained considering two different network topologies:
Barabasi-Albert [23] and Erdos-Rényi [24]. Furthermore, we apply two different gene expression
synthesis methods: the first one considers only linear correlation among selected genes (SLC), the
second one is based on a gene network/expression simulator recently proposed to assess reverse
engineering algorithms (GES [25]).

Escherichia coli data: the task for the biological experiments is the inference of a few transcrip-
tional subnetworks of the model organism Escherichia coli starting from a set of steady state gene
expression data. The data are obtained from different sources and they consist of three different ele-
ments, namely the whole Escherichia coli transcriptional network, the set of the transcriptional sub-

2Given a particular input, the algorithm will always produce the same output, always passing through the
same sequence of states.



networks and the gene expression profiles to infer the subnetworks from. The Escherichia coli tran-
scriptional network is extracted from the RegulonDB? database, version 6.4 (2010) and it consists of
3557 experimentally confirmed regulations between 1442 genes, amongst which 172 transcription
factors. The 117 subnetworks are defined in [26]: in our experiments we use 7 of these subnetworks,
including a number of genes ranging from 7 to 104. The expression data have been originally used
in [11] and consist of 445 Escherichia coli Affymetrix Antisense2 microarray expression profiles for
4345 genes, collected under different experimental conditions such as PH changes, growth phases,
antibiotics, heat shock, varying oxygen concentrations and numerous genetic perturbations. MASS
preprocessing is chosen among the available options (MASS, RMA, gcRMA, DChip).

4 Results

Hereafter we present a selection of the outcomes of the experimental evaluation on both synthetic
and biological data.

Synthetic data:

Figure 2 shows a comparison of the results obtained on synthetic networks of size 100 nodes ap-
plying the four different algorithms. Results are obtained varying the topology of the network, the
data synthesis method adopted and the amount of data available: the data ratio — the ratio of the
number of expression profiles to the number of nodes. Gene expression values are linearly rescaled
in [-1,1].

On the selected test-bed, the four algorithms show consistent MCC curves: RegnANN and KELLER
show better scores than the ones obtained with ARACNE and CLR. RegnANN often outperforms
KELLER in a number of setups, especially in the case of Erdos-Rényi topology when little amount
of data is available. In this case, data ratio 50% (Figure 2c and 2d), KELLER-SLC scores 0.37£0.04
and RegnANN-SLC scores 0.81 £ 0.08 while KELLER-GES scores 0.25 £ 0.02 and REGNANN-
GES scores 0.36 £ 0.04. On the contrary, CLR shows the worst MCC scores in all the condition
here considered.

Selected Escherichia coli subnetworks:

Table 1 summarizes the results obtained on a selection of Escherichia coli gene subnetworks [22]
for the four inference algorithms. Gene expression values are linearly rescaled in [—1, 1].

Table 1: MCC scores of the different network inference algorithms on the selected Escherichia coli
network modules. Column ID indicates the id of the network module as in [22], the density of the
module is the ratio of the number of links to the square of the number of nodes.

ID Density N.Nodes N.Links ARACNE CLR KELLER RegnANN Err

81  0.245 7 12 0.78 0.45 -0.12 0.4 0.1
6 0.189 13 32 0.13 0.29 0.02 0.3 0.1
12 0.180 10 18 043 042 0.63 0.32  0.00
75  0.133 16 34 0.10 0.24 0.10 023  0.08
88  0.100 19 36 0.00 0.17 -0.07 -0.05  0.02
96  0.001 104 18 0.08 0.02 0.00 0.00 0.01
94 0.000 81 2 0.09 0.02 0.15 0.026  0.001

Table 1 indicates great variability of the MCC scores across the different network modules for all
the inference methods tested. ARACNE scores range from .78 (module 81) to 0.00 (module 88).
CLR values range between 0.45 and 0.02 for module 81 and 96 respectively. KELLER scores range
between 0.63 and —0.12 (module 12 and module 81 respectively). Finally RegnANN scores range
between 0.32 £ 0.00 # (module 12) and —0.05 + 0.02 (module 88). It is interesting to note that the
MCC score varies unevenly for the different inference algorithms with respect to the module network

*http://regulondb.ccqg.unam.mx/
*In this case the error associated to the measure is 0: the very same result is obtained for all repetitions.
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Figure 2: MCC scores of ARACNE CLR RegnANN and KELLER on syntheric data. a) Results
obtained on Barabasi networks adopting GES for data generation. b) Barabasi networks and SLC
data generation. c) Results obtained on Erdos-Rényi networks adopting GES for data generation. d)
MCC scores on on Erdos-Rényi networks and SLC data generation.

density (the ratio of the number of links to the square of the number of nodes), e.g.: ARACNE scores
0.13 on module 6 (density D = 0.189) and scores 0.43 on module 12 (density D = 0.189). On the
same two modules, CLR scores 0.29 and 0.39 respectively while KELLER scores 0.02 and 0.63. On
the other hand, RegnANN are more homogeneous: it scores 0.3 = 0.1 and 0.32 £ 0.00 on module
6 and module 12 respectively. These results suggest that the correctness of the inferred network
depends on the topological properties of the modules (the very same expression values are used to
infer the different gene sub-networks), in accordance to findings in [21].



5 Conclusion

In this work we presented a novel method for network inference based on an ensemble of multi-
layer perceptrons configured as multi-variable regressor (RegnANN). We compared its performance
to the performance of three different network inference algorithms (ARACNE, CLR and KELLER)
on the task of reverse engineering the gene network topology, in terms of the associated MCC score.

Our extensive evaluation indicates that the newly introduced RegnANN shows performance scores
that compare very favorably with all the other inference methods tested, often outperforming each
single one on the selected synthetic test-bed. On the other hand, our results on the biologic data in-
dicates that the above differences in performance are not present. The results show that other factors
may influence the accuracy scores in network reconstruction. Thus, further analysis and experimen-
tation is required to fully test the general performance of the proposed methods, also considering
potential variability due to the unconstrained biological factors impacting the inference outcome
(e.g.: larger network or hidden regulators, noise in the data, effects due to data normalization proce-
dures).

An extended version of this paper comprising detailed description of all the methods here applied
and also extending the evaluation to possible variability sources in gene network inference can be
found on arXiv: M. Grimaldi, G. Jurman, R. Visintainer. Reverse Engineering Gene Networks with
ANN: Variability in Network Inference Algorithms, arXiv:1009.4824 [g-bio.MN].
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