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1 Introduction

Link prediction in social networks as well as in biological networks [8, 12] have recently attracted
considerable interest among machine learning community. In the area of social networks appli-
cations, many link predictors have been defined within the framework of probabilistic graphical
models, building posterior probabilities [13, 15] while in the area of biological networks, a large
number of methods have been built on kernel tools. In this paper, we address the link prediction
issue within a recently introduced new learning framework called Output Kernel Regression and
extend it to the case of a transductive setting. The approach was built to complete protein-protein
interaction (PPI) networks but is in fact general and could be applied to other applicative domains.

In brief words, inference of protein-protein interaction networks is motivated by the cost and the
difficulty to experimentally detect physical interactions between two proteins. It mainly relies on
the idea that some known features of the proteins could help to suggest new physical interactions.
In parallel to the community of link prediction in social networks, network inference approaches
have been developed either based on a supervised framework or on matrix completion. Most of the
supervised approaches aim at building a classifier whose input is a pair of proteins and output is a
binary value that indicates the existence of an interaction between these proteins. In [2], a pairwise
SVM based on tensor kernel is proposed to solve this task while [17] and [5, 7, 6] make predictions
by thresholding a metric or a kernel that they learn from data. Finally, local approaches developed in
[3] consider classifiers associated with one protein. From another point of view, PPI prediction can
be seen as a matrix completion problem that fits into an unsupervised setting with some constraints
[10, 16] or directly into a semi-supervised framework [9, 18].

In this work, we combine the advantages of both approaches by building a new family of input
and output kernels-based regressors that can be used for supervised link prediction as well as for
matrix completion. Instead of learning a pairwise classifier, we convert the supervised classification
problem into a kernel learning problem and finally, address the task by learning a function whose
output lies in an output feature space linked to the network at hand. In the rest of this paper, we
first introduce the framework of Output Kernel Regression for link prediction. Then we propose
a new family of models that can be used for supervised as well as semi-supervised learning as
soon as it minimizes an appropriate defined penalized least square cost function. Solutions of the
optimization problem are closed-form expressions when a /s-norm regularization is applied. Then
we show experimental results obtained both in the supervised and the semi-supervised cases with an
evaluation of the task as a transductive problem.



2 Link prediction with output kernel regression

Let us define O the set of objects we are interested in and f : O x O — {0, 1}, a classifier that pre-
dicts if two objects (individuals, proteins, documents) interact with each other. For a given learning
set Oy = {01, -+ , 0}, we assume that the following information is available:

e A set of input feature vectors x; = z(01),- - ,%¢ = x(0¢) encoding some properties of
the objects of Oy.

e An output Gram matrix Ky, that codes for the proximity of objects in terms of nodes in
the known graph of interaction. The coefficients are supposed to be defined from a positive
definite output kernel function ky : O x O — R with Vi, j < ¢, Ky, (i,7) = ky (04, 0;5).
Given ky, there exists an Hilbert space ) and a feature map y : © — ), such that V(o, 0’)
in O, we have ky (0,0") = (y(0),y(0'))y .

However, we should emphasize that we do not know the kernel function ky, we only know its values
on Op x Oy. Typically, we use in this work the diffusion kernel matrix Ky, = exp(—/Ly,) where
Ly, = D, — Wy, with W, the adjacency matrix given for the ¢ nodes and D, the corresponding
degree matrix.

We propose to define a classifier by approximating the output kernel ky and thresholding it:

fo(0,0') = sgn(ky (0,0') — 6). (1)

To approximate ky , we build a function whose output is based on the dot product in Y of the images
of 0 and o’ by a single input function h:

fo(0,0") = sgn((h(0), h(0"))y — 0). (2)

Learning f reduces to learn h, a function whose output lies in a Hilbert space. Therefore, the idea is
to use the kernel trick in the output space.

We will refer to this new learning task as Output Kernel Regression. It was first introduced in
previous works [5, 7, 6] that presented the extension of tree-based methods to an output feature
space.

In the following, we propose a new model family that uses the kernel trick both in the input and
output spaces and enjoys closed-form solutions. We also extend the link prediction task to a semi-
supervised setting.

3 Regularized input and output kernel regression

The training set is now symmetrically defined by an input Gram matrix Kx, as well as an output
Gram matrix Ky,. Ky, encodes for the properties of the objects of the training set Oy. As in
the output case, the coefficients of the Gram matrix are supposed to be defined from a positive
definite input kernel function kx : O x O — R, with Vi, j < ¢, Kx, (3, j) = kx(0;,0;). Given kx,
there exists an Hilbert space X and a feature map = : O — X, such that ¥(o,0’) in O, we have
kx(0,0") = (x(0),x(0")) x. Contrary to the output case, the function kx is given.

Let us introduce models of the form: hjys(0) = Mx(0) € Y. If we take a model very close to SVM
and Maximum Margin Robot [14], we get:

¢
ha(0) = Zaiy(oi)kX(OiaO) = (Yelo X{)z(0)
i=1
where I, = diag(a), Xy = [z(01), - ,z(0¢)] is a matrix of dimension dim(X) x ¢ and
Y, = [y(01), -+ ,y(or)] a matrix of dimension dim()) x £.!

If we extend this model using an arbitrary £ x ¢ matrix Ay, we get the following definition:

ha,(0) = (YZAgX[T) z(0).

'In what follows, the same convention will apply to matrices X, and Y5,.



Finally if as in [4], we take a general matrix, whose dimension is dim(}))) x dim(X), we have a very
general model:

ha(o) = Az(o) .

To estimate the parameters of these models, we can minimize a square loss function while controlling
the complexity of the model hj;:

L
min »  [|har(0;) — y(0i)[|* + M| M][7 .
=1

4 Semi-supervised regularized output kernel regression

Noticing that in some link prediction problem such as protein-protein network inference, we know
the whole set of nodes (proteins) of interest and this set is finite (|O| = n), we propose a transductive
learning task. It consists in using the input information concerning the unlabeled data during the
training phase. In that context, we assume that if we know K x as input information, we only know
a subgraph of interactions for a subset O, of O,, with £ < n. The goal is to complete the missing
values of Ky, , the Gram matrix that should be defined for all the proteins of the whole training
set. Although the task is transductive, we solve it using semi-supervised output kernel regression
and build a regressor that will only be used to complete the data at hand. To take advantage of the
known inputs of the unlabeled data, we consider cost functions that include a smoothness constraint
on the regressor to build. Many works have emphasized the efficiency of such a constraint based on
Laplacian operators [1, 11]. In this new setting, the cost function we consider for minimization is
now:

4
min Y _ [har(0:) = y(0i)|* + M| M||% + Ao trace(har Lx, hiy)
i=1

where Lx, is the diffusion kernel associated to the graph Laplacian D, — Kx,_, with
Lx, =exp(—p(D, — Kx,)), Dy, the diagonal degree matrix given by d;; = Z;L:l kx(0i,05),
and where A; and A9 are positive regularization parameters. The third term codes for a smoothness
constraint that can be applied to outputs of & for both labeled and unlabeled data.

4.1 Solutions in the supervised and semi-supervised cases

As in (kernel) ridge regression, minimizing each of the cost functions presented above leads to
closed-form solutions that are briefly presented in table 1 for the supervised case (A2 = 0) and the
semi-supervised case (A2 > 0).

h Sup. a= (KYZ'(KXZKXZ +/\1KX€))_1diag(KYZKXZ)
Semi-sup. 4= (Ky, (Kx,Kx, + \Kx, +2)\2Kx,, Lx,Kx,,)) 'diag(Ky,Kx,)
h Sup. Ae = (Kxe + )\1[[)_1
Ap .
Semi_sup. Ay = KX[(KX[KX[ + )\1KX[ + QAQKX[W’LX"KX”[)*l
b | Sup-[4] A=Yi(Kx, + ML) ' xF
Semi-sup. A=Y Vi(Kx, VEVe+ M1, +2XaKx, Lx,)) ' X

Table 1: Solutions for the models ha, ha, and ha in the supervised and semi-supervised settings. M.M’
denotes the element-wise product between matrices M and M'; I,, and I, are respectively identity matrices of
size n and ¢; V; denotes a £ X n matrix that contains an identity matrix of size £ on the left hand side and a zero
matrix of size £ X (n — £) on the right hand side.



5 Experiments

We illustrate our method on a PPI network of the yeast Saccharomyces Cerevisiae composed of
984 proteins linked by 2438 interactions. To reconstruct the PPI network, we deal with usual input
features that are gene expression data, phylogenetic profiles, protein localization and protein interac-
tion data derived from yeast two-hybrid (see for instance [3, 5, 7, 10, 17] and references therein for a
more complete description of data). Gene expression data correspond to time series and are handled
through a RBF kernel matrix. Phylogenetic profiles are binary vectors of size 145, each value coding
for the presence or the absence of an orthologous protein in a given organism. Similarly, localization
data give vectors of 23 binary values coding for the presence or absence of the protein in a given
intracellular location. The linear kernel is used for both datasets. The yeast two-hybrid network is
transformed into a diffusion kernel of parameter 5 = 1. We also use an integrated kernel which is
the sum of the four kernels.

Supervised setting. We compared our method in the supervised setting following the protocol
used in [3]. We first evaluated the method through a 5-fold cross-validation procedure, and tuned the
hyperparameters using the training folds. Table 2 reports the tests in [3] that exhibit the best areas
under the ROC and the FDR curves (respectively denoted AUC and AUF). We added the results
for the Regularized Output Kernel Regression (ROKR) method. Table 2 reports the results for the
models of ROKR that exhibit the best AUC and AUF values : A and A, (which are the same in the
supervised setting).? In terms of AUC, the ROKR gives the best result using the integrated dataset
while it does not perform as well as the others using only the protein localization, the phylogenetic
profiles or the protein yeast two-hybrid data. It achieves an equivalent result compared with the
Pkernel method for the gene expression data. Regarding the AUF, the ROKR obtains similar results
than the others using the protein localization and the phylogenetic profiles data but achieves quite
good performances for the gene expression, the protein yeast two-hybrid and the integrated datasets.

Methods exp loc phy y2h int

em 80.6 £1.1 76.7 £ 3.8 71.0+1.3 57.2+£2.7 89.3+1.1

AUC Pkernel 838+14 | 792+26 | 748+1.8 67.5+1.8 87.2+0.8
local 78.1+1.1 771+29 | 75.5+24 | 7T78+1.2 | 87.6+1.8

ROKR (A/Ag) 83.3+£2.1 69.2 + 1.8 69.6 + 1.5 60.8+35 | 91.0+04

em 93.7+12 | 945+1.1 | 96.8+0.5 | 89.6+1.0 80.9+1.3

AUF Pkernel 924+1.0 95.1+£1.0 98.2+0.3 98.5 £ 0.5 88.6 £2.2
local 97.44+0.4 96.3 £ 0.9 97.9+0.3 92.4+1.6 74.5+3.4

ROKR (A/Ap) || 86.3+4.4 | 952408 974+04 | 871+29 | 728=+6.5

Table 2: Reconstruction of the PPI network from gene expression data (exp), protein localization (loc), phylo-
genetic profiles (phy), protein interaction data derived from yeast two-hybrid (y2h) and the integration of the
individual datasets (int). The AUC and the AUF are estimated with a 5-fold cross-validation procedure. The
first three lines have been obtained and presented in [3]. em stands for em projection method; Pkernel for tensor
product pairwise kernel with SVM; local for local models with SVM; and ROKR (A/A;) stands for the A or
A, models (which are the same in the supervised setting).

Semi-supervised setting. We then experimented the ROKR method in the semi-supervised setting
and compared the results with those obtained in the supervised setting for the different models. For
different values of ¢, that is the number of labeled proteins, we randomly sub-sampled a training
set of proteins and considered all the remaining proteins for the test set. The interactions assumed
to be known are those between two proteins from the training set. Therefore, a percentage value
of labeled proteins of 10% actually corresponds to a percentage of labeled interactions of 1%. We
ran each experiment ten times and tuned the hyperparameters similarly on the training set, using
only expression data as input feature. Table 3 summarizes the averaged values of AUC and AUF.
The models A and A, exhibit better AUC and AUF values than the model a. One can also observe
that the semi-supervised methods reach better performances when the number of labeled proteins is
small, which is usually the case in protein-protein interaction network inference problems. Although
the models A and A, share similar results, it is worth pointing out that the model A, has a lower

’Note that a comparison with frameworks such as the link propagation proposed in [9] would not be appro-
priate since they deal with a slightly different assumption. Indeed, in the link propagation framework, arbitrary
interactions may be considered labeled while the ROKR framework requires a subgraph of known interactions.



computational complexity than the model A since it requires the inversion of a matrix of size ¢ x ¢
while the model A needs the inversion of a matrix of size n x n.

ATC AUF
Methods 0% 20% 50% 0% 20% 50%
Sup. (@) 66674 | 722E30 | 51E13 || 968E21 | 948£13 | 943L05

Semi-sup. (a) 73.7£29 | 76,6 1.7 | 789+0.9 || 954£1.2 | 94.2+0.8 | 93.9+0.5
Sup. (4/A) 746+£3.2 | 81.3+£20 | 83.7£0.7 || 95.7£1.6 | 91.9+£1.5 | 90.9+1.3
Semi-sup. (4p) || 78.9+3.1 | 81.84+1.0 | 84.3£0.5 || 93.7+1.7 | 9224+1.3 | 909+ 1.4
Semi-sup. (A) 79.1+£2.7 | 821+£09 | 84.3+£05 || 93.7£1.5 | 922+1.3 | 91.3+14

Table 3: Reconstruction of the protein-protein interaction network from the gene expression data. The percent-
age values correspond to the proportions of labeled proteins. The AUC and the AUF are reported for the ROKR
method, in the supervised and the semi-supervised settings.

6 Conclusion

We presented a new method for link prediction based on output kernel regression. This recent frame-
work allows to convert the problem of learning a pairwise classifier into the task of learning a single
output kernel regressor. A new family of models, with both input and output kernels, are learnt by
minimizing least square loss penalized by a £ norm. Both in the supervised and the semi-supervised
case, we obtain closed-form solutions as for “classic” kernel ridge regression. Experimental results
on protein-protein interaction networks show that the new methods exhibit better performances. Fu-
ture work encompasses further comparison with other link prediction methods, application to other
fields and input kernel selection.
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