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Abstract

Identifying overlapping communities in networks is a challenging task. In this
work we present a novel approach to community detection that utilizes the
Bayesian non-negative matrix factorization (NMF) model to extract overlapping
modules from a network. The scheme has the advantage of computational effi-
ciency, soft community membership and an intuitive foundation. We present the
performance of the method against a variety of benchmark problems and compare
and contrast it to several other algorithms for community detection.

1 Introduction

Community structure, or modular organization, is a significant property of real-world networks as
it is often considered to account for the functional characteristics of the system under study [16].
Although the notion of “community” appears intuitive [19, 22] (for example people form cliques in
social networks and web pages of similar content have links to one another) there is no disciplined,
context-independent definition of what communities are [22]; we adopt here the loose definition that
these modules are subgraphs with more links connecting the nodes inside than outside them [19,22].
The task of identifying such subgraphs in a given network can be challenging [16], both in terms of
recognition and computational feasibility.

In this work we propose a novel approach to community detection based on computationally efficient
Bayesian Non-negative Matrix Factorization (NMF) [23]. The advantages of this methodology are
i) soft partitioning solutions; each node is associated with a membership distribution over commu-
nities, describing its degree of participation to each module ii) excellent computational performance
and scalability iii) the method does not suffer from the drawbacks of modularity optimization meth-
ods, such as the resolution limit iv) excellent module identification capabilities.

In the following section we present the theoretical foundations of our approach along with an illus-
trative example to provide intuition behind the method. Following the model formulation section,
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we test our algorithm on a variety of artificial and real-world benchmark problems and present our
experimental results.

2 Theoretical Background

Consider the generative model of Fig. 1. The observed variable vij denotes the non-negative count
of interactions that took place between two individuals i, j in a weighted undirected network with
adjacency matrix V ∈ RN×N

+ .

K N

hkj

wik

βk

a

b

vij

Figure 1: Graphical model showing the generation of count processes V from the latent structure
W and H, the components of which have scale hyperparameters βk. The hyper-hyperparameters a,
b are fixed.

We assume that the pair-wise interactions described in V are influenced by two unobserved non-
negative matrices W ∈ RN×K

+ and H ∈ RK×N
+ so that V̂ = WH. We hence model each inter-

action vij as drawn from a Poisson distribution with rate v̂ij =
∑K

k=1 wikhkj . The inner rank K
denotes the unknown number of communities and each element k ∈ {1, ...,K} in row i of W and
column j of H represents the contribution of a single latent community to v̂ij . In other words, the
expected number of times v̂ij two individuals i, j interact is a result of their mutual participation
into the same communities.

In the typical community detection setting, the value of K is initially unknown. We address this
issue by placing automatic relevance determination [13] priors βk on the latent variables wik, hkj ,
as presented in [23]. The effect of these priors is to “switch off” irrelevant columns of W and rows
of H that do not contribute to explaining the observed interactions V.

Based on the graphical model of Fig. 1, we express the joint distribution over all variables as:

p(V,W,H,β) = p(V|W,H)p(W|β)p(H|β)p(β) (1)

and hence the model posterior over model parameters given the observations is:

p(W,H,β|V) =
p(V|W,H)p(W|β)p(H|β)p(β)

p(V)
(2)

Noting that p(V) is a constant w.r.t. the inference over the model’s free parameters, we aim to
maximize the model posterior given the observations. This is equivalent to minimizing the negative
log posterior, which we may regard as an energy (or error) function U . We hence define

U = − log p(V|W,H)− log p(W|β)− log p(H|β)− log p(β) (3)

where the first term is the log-likelihood of our data, derived from the probability p(V|W,H) =

p(V|V̂) of observing every interaction vij given a Poisson rate v̂ij . The negative log likelihood is
hence:
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− log p(V|V̂) = −
N∑
i=1

N∑
j=1

log p(vij |v̂ij)

=

N∑
i=1

N∑
j=1

(
vij log

vij
v̂ij

+ v̂ij − vij +
1

2
log(2πvij)

)
+ const. (4)

Following [23] and similar models for probabilistic PCA [24] and ICA [4, 20, 21] we place inde-
pendent half-normal priors over the columns of W and rows of H with zero mean and precision
(inverse variance) parameters β ∈ RK = [β1, ..., βK ]. The negative log priors are then given by:

− log p(W|β) = −
N∑
i=1

K∑
k=1

logHN (0, β−1
k ) =

N∑
i=1

K∑
k=1

(
1

2
βkw

2
ik

)
− N

2
log βk + const. (5)

− log p(H|β) = −
K∑

k=1

N∑
j=1

logHN (0, β−1
k ) =

K∑
k=1

N∑
j=1

(
1

2
βkh

2
kj

)
− N

2
log βk + const. (6)

Each βk controls the importance of community k in explaining the observed interactions; large val-
ues of βk denote that the elements of column k of W and row k of H lie close to zero and therefore
represent irrelevant communities. By assuming the βk are independent 1 we place a standard Gamma
distribution over them [1]. The negative log hyper-priors are thus:

− log p(β) = −
K∑

k=1

log G(βk|a, b) =
K∑

k=1

(βkb− (a− 1) log βk) + const. (7)

The objective function U of Eq. (3) can be expressed as the sum of Eq. (4), (5), (6) and (7). To opti-
mize for W,V and β we follow [2, 11, 12, 23] by adopting the fast fixed-point algorithm presented
in [23] with algorithmic complexity O(NK), which involves consecutive updates of W,H,β until
a convergence measure has been satisfied2. The pseudocode is presented in Algorithm 1.

Algorithm 1 Community Detection using NMF

Require: adjacency matrix V ∈ RN×N
+ , initial K0, fixed Gamma hyperparameters a, b.

1: for i = 1 to niter do
2: H←

(
H

WT1+BH

)
WT

(
V

WH

)
3: W←

(
W

1HT+WB

) (
V

WH

)
HT

4: βk ← N+a−1
1
2 (

∑
i w

2
ik+

∑
j h2

kj)+b

5: end for
6: K?← # of non-zero columns of W or rows of H
7: return W? ∈ RN×K∗

+ ,H? ∈ RK∗×N
+

In the case of undirected graphs, W? = HT
? (as V is symmetric) and represents the N × K?

incidence matrix of a bipartite graph of N nodes and K? communities. Each element w?
ik (or h?ki)

denotes the degree of participation of individual i into community k while each normalized row of
W? (or column of H?) expresses a soft-membership distribution over communities given a certain
node. Therefore this bipartite graph describes the overlapping mesoscopic structure of our network,
where nodes are allocated to multiple groups with varying participation score.

1This corresponds to the belief that the existence of one community is not dependent upon others. Clearly,
there will be situations in which this can be extended to allow for a full inter-dependency between communi-
ties. We do not consider this here, however. Allowing dependency is similar to the notion of structure priors
discussed in [18].

2A maximum number of iterations, or a tolerance on the cost function.
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In the next section, we present an illustrative example of this community extraction scheme, followed
by experimental results from various artificial and real-world networks.

3 Applications

We start by presenting an illustration of our community detection scheme and form of results, using
the simple toy graph of Fig. 2(a) that has N = 16 nodes and M = 25 links of various weights.
We applied NMF based community detection and extracted K? = 4 overlapping groups as shown
in Fig. 2(b). We can see that these communities share the boundary nodes, which lie on high flow
paths in the network and are usually difficult to classify in one module or another [22] by traditional
hard-partitioning methods.
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(a) A simple undirected network of N = 16 nodes and M = 25
links.
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(b) Decomposed into K? = 4 overlapping com-
munities.

Figure 2: We use the weighted undirected network of 2(a) to illustrate our community detection
scheme. Our algorithm extracted four overlapping modules, as shown in 2(b).

Allocating nodes to multiple modules as in Fig. 2(b), is only one part of the solution. We also
capture the degree of participation of individuals to each community by using the incidence matrix
W? described in the previous section. Fig. 3(a) shows W? ∈ R16×4

+ where different colors indicate
various levels of participation of nodes to communities. We can see that the matrix is not in a clear
block diagonal form, as an individual can have some form of membership into multiple groups.

In our framework, community allocation is not a Boolean decision but a belief ; each node is assigned
a membership distributed over communities, as seen in Fig. 3(b). We can see that mediator nodes
of high “betweenness”, such as i = 6, have a more entropic distribution (similar to the concept
of “bridgeness” [14]) while for nodes such as i = 4 or i = 14 we have much more confident
allocations.
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(a) Color map of the incidence matrix W? ∈ R16×4
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(b) Probability of membership distributions for various
nodes in our toy network.

Figure 3: Fig. 3(a) shows the node allocations proposed by our algorithm. Colors close to red
indicate strong participation of node i (vertical axis) to community k (horizonal axis). Fig. 3(b)
shows example (normalized) rows of W? that correspond to the membership distribution of different
nodes.

Having such soft-membership distributions not only allows us to describe our confidence in assign-
ing node i to community k, but also to quantify the degree of “fuzziness” in the network. In Fig.
3(b) nodes such as i = 6 that lie on community boundaries have a membership distribution that is
closer to uniform. We hence expect our method to indicate networks with less degrees of modular
organization. We apply the NMF method to realizations of the very popular Newman-Girvan (NG)
random graph [8]. This benchmark tests the module identification capabilities of a method against
an artificial graph of N = 128 nodes, observed solution of C = 4 communities (with n = 32
nodes each), average degree of 〈k〉 = 16 and an ever-increasing inter-community degree 〈kout〉 that
controls the module cohesiveness of the network.
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(a) Normalized Mutual Information, value
range 0-1
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Figure 4: Fig. 4(a) compares the NMF approach against Extremal Optimization (EO), Spectral
Partitioning (Spectral) and Hierarchical Clustering (Hierarchical) in partitioning Newman-Girvan
artificial graphs. Each point is the mean of 100 graph realizations. Fig. 4(b) shows the increase in
uncertainty in assigning nodes to communities, as we increase the fuzziness of modular organization
in NG graphs. Each point is the mean of 100 graph realizations.
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In Fig. 4(a) we plot our module identification performance based on the Normalized Mutual Infor-
mation (NMI) criterion [5] while in 4(b) we monitor our allocation confidence based on the mean
entropy (in bits) of each node membership distribution. We can see that as we make the network
fuzzier by increasing 〈kout〉, our method “responds” by increasing the degree of node participation
to multiple communities. An attractive aspect of this test is that the increase in entropy (see Fig.
4(b)) does not affect the module identification performance (we see from Fig. 4(a) that NMI re-
mains close to unity) and is stable for the vast majority of 〈kout〉 values. We also provide in Fig.
4(a) the NMI performance of some popular hard-partitioning methods (Extremal Optimization [6],
Spectral Partitioning [15], Hierarchical Clustering 3 [22]) for comparison.

We extend the above test to the more complicated case of Lancichinetti-Fortunato random graphs
(LFR) that have been proposed more recently [10]. In this setting, community cohesion is controlled
by mixing parameters µk and µw, that denote the expected fraction of intercommunity degrees and
weights per node. Other configuration parameters include, among others, the total number of nodes
N , the average degree 〈k〉 or the exponents of the degree γ1 and community size γ2 distributions.
We tested our method for a (decaying) range of values for µk, µw (where we set µk = µw), in
weighted graphs of N = 1000 nodes and various values of 〈k〉, as seen in Fig. 5(a). In the same
spirit with the NG graph case, in Fig. 5(b) we monitor the mean entropy of membership distributions
per node (in bits) to quantify the confidence of our node allocations to communities. In Fig. 5(a)
we can see that our model has an excellent module identification performance and starts to fail only
when the mixing coefficients µ have values greater than 0.5, denoting no community organization
in the graph. On the other hand, the increasing fuzziness of the network (based on µ) is captured in
the mean entropy of the membership distributions; as the community structure is less cohesive, we
are less confident into allocating each node to a group.
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Figure 5: Results of the NMF method on realizations of the LFR random graphs for N = 1000
and different values for the average degree 〈k〉 and community cohesion µ parameters. Each point
represents the mean and standard deviation over 100 graph realizations.

We conclude this section by presenting the performance of our community detection method on a
variety of popular benchmark datasets and compare it against the Extremal Optimization (EO) [6]
and Louvain [3] methods. In contrast to the artificial graphs we used above, the absence of an
“observed solution” for these problems prevents us from using the Normalized Mutual Information
criterion for performance evaluation. Instead we use the extremely popular modularity Q [17],
which is a measure of how “statistically surprising” the intra-community link density is of a proposed
network partition. For the purposes of the experiment, we remove the overlapping aspect of the NMF
solutions by assigning a node to a single community; the one for which is has the maximum degree
of membership. Although this “greedy allocation” scheme omits the wealth of information provided
by our model solutions, it is necessary in order to perform modularity comparisons against hard-
partitioning methods such as EO and Louvain. For each dataset we ran all the methods 100 times
and monitored the values of modularity Q along with the number K? of extracted communities.

3using angular distance and complete-linkage clustering.
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Louvain has very stable behaviour across different runs so we have omitted the standard deviation
of modularity and community sizes for each dataset. For NMF initialization we used K0 = N with
hyperparameters a = 5 and b = 2, giving a vague prior. We note that the results of the method are
not sensitive, within reason, to changes in these values.

Table 1: Modularity results for NMF, EO and Louvain methods
Dataset NMF EO Louvain

Dolphins 0.47 ± 0.03 0.51 ± 0.01 0.52
Books US Politics 0.52 ± ε 0.48 ± 0.01 0.50

Les Miserables 0.53 ± 0.02 0.53 ± 0.01 0.57
College Football 0.60 ± ε 0.58 ± 0.01 0.60

Jazz Musicians 0.43 ± 0.01 0.42 ± 0.01 0.44
C. elegans metabolic 0.36 ± 0.01 0.40 ± 0.09 0.43

Network Science 0.83 ± 0.01 0.86 ± 0.01 0.95
Facebook Caltech 0.38 ± 0.01 0.37 ± 0.01 0.37

Table 2: Community sizes for NMF, EO and Louvain methods
Dataset NMF EO Louvain

Dolphins 6.67 ± 0.83 4 ± 0 5
Books US Politics 6.23 ± 0.62 4.04 ± 0.4 3

Les Miserables 9.97 ± 0.78 4.96 ± 1.72 6
College Football 8.86 ± 0.79 8 ± 0 10

Jazz Musicians 8.57 ± 8.89 4 ± 0 4
C. elegans metabolic 15.69 ± 1.14 7.96 ± 1.06 10

Network Science 342.53 ± 5.28 58.24 ± 12.36 418
Facebook Caltech 24.28 ± 1.72 6.84 ± 1.82 10

From Table 1 we can see that our approach performs competitively despite not being an algorithm
designed with the aim of maximizing modularity, unlike either EO or Louvain methods. Addition-
ally, it has the advantage of providing soft partitioning solutions for community membership and
has low computational overhead. Finally, although our method favors sparse solutions, it does not
suffer from the resolution limit [7] of modularity optimization methods such as EO, where smaller
groups are merged together [7, 19], leading a to smaller number of communities, as seen in Table 2.

4 Conclusion

This paper describes a novel approach to community detection that adopts a Bayesian non-negative
matrix factorization model to achieve soft partitioning of a network, assigning each node a soft-
membership distribution over all the extracted communities. This allows us not only to capture the
fuzziness of the network (via the entropy of the membership distribution) but also to improve net-
work cartography techniques [9] by identifying central and peripheral nodes in modules. Network
visualization tools can also be improved in this manner, as the degree of membership over different
communities can be utilized to position an individual in a cloud of nodes. The approach is com-
putationally efficient and offers performance comparable to state-of-the-art methods, even when
forced to make greedy allocations. Indeed the computational performance advantages over large
data sets allow the NMF approach to be run many times compared to a single run of less efficient
approaches. Clearly this allows for the selection of the best performing run, or a small ensemble of
high-modularity solutions.
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