
Exact learning curves for Gaussian process regression
on community random graphs

Matthew J. Urry
Department of Mathematics

King’s College London
London, WC2R 2LS, U.K.

matthew.urry@kcl.ac.uk

Peter Sollich
Department of Mathematics

King’s College London
London, WC2R 2LS, U.K.

peter.sollich@kcl.ac.uk

Abstract

We study learning curves for Gaussian process regression which characterise per-
formance in terms of the Bayes error averaged over datasets of a given size. Whilst
learning curves are in general very difficult to calculate we show that for discrete
input domains, where similarity between input points is characterized in terms
nodes on a graph, accurate predictions can be obtained. These should in fact be-
come exact for large graphs drawn from appropriate random graph ensembles. We
focus on two types of ensemble. One is obtained by specifying (arbitrarily) the
degree distribution and leads to sparse graphs, where each node is connected only
to a finite number of others. The other is a community graph ensemble where we
assume communities joined by a similar sparse superstructure. The calculation
of the learning curves is based on translating the appropriate belief propagation
equations to the graph ensemble. We demonstrate the accuracy of the predictions
for Poisson (Erdos-Renyi) graphs and give some numerical results showing the
need for a community orientated derivation of the learning curve.

1 Introduction

Learning curves are a convenient way of characterising the performance that can be achieved with
machine learning algorithms: they give the generalisation error ε as a function of the number of
training examples N , averaged over all datasets of size N under appropriate assumptions about the
data-generating process. Such a characterization is particularly useful in the case of non-parametric
approaches such as Gaussian processes (GPs) [1], where in contrast to the parametric case [2] there
is no generic classification of possible learning curves.

Here we study GP regression, where a real-valued output function f(x) is to be learned. Qualita-
tively, GP learning curves are relatively well understood for the scenario where the inputs x come
from a continuous space, typically Rn [3, 4, 5, 6, 7, 8, 9]. However, except in the limit of largeN , or
for very specific situations like one-dimensional inputs [3], the learning curves cannot be calculated
exactly. Here we show that this is possible for discrete input spaces where similarity between input
points can be represented as a graph whose edges connect similar points, inspired by work at last
year’s NIPS that developed simple approximations for this scenario [10].

In section 2 we give a brief overview of GP regression and summarize the approximation for the
learning curves used in previous work [11, 10, 4]. Section 3 then explains our method: following a
similar approach in [12] for random matrix spectra, we write down the belief propagation equations
for a given graph in the form normally used in the cavity method [13] of statistical mechanics, and
then translate them to sparse graphs drawn from a random graph ensemble. Section 4 generalises
this derivation to community random graphs of the type seen in [14, 15]. Because for sparse random
graphs typical loop lengths grow with the graph size, the belief propagation equations and hence our
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learning curve predictions should become exact for large sparse graphs; the same will hold for the
community graphs given that we account exactly for the short loops inside each community.

Section 5 compares the cavity predictions with simulation results for Poisson (Erdos-Renyi) graphs.
The new predictions are indeed very accurate, and substantially more so than previous approxi-
mations. Section 5 then provides numerical results to demonstrate the need for the more general
community random graph predictions given in section 4. We compare the generalisation error of a
community ensemble to two related sparse graph ensembles that are obtained by fixing appropriate
degree distributions. Finally, section 6 summarises our results and discusses open questions and
directions for future work.

2 GP regression and approximate learning curves

A GP is a Gaussian prior over functions f with a fixed covariance function (kernel) C and mean
function (assumed to be 0)1. In the simplest case the likelihood is also Gaussian, i.e. we assume
that the outputs yµ in a set of examples D = {(i1, y1, . . . , (iN , yN )} are obtained by corrupting the
clean function values fiµ with i.i.d. Gaussian noise of variance σ2. Then the posterior distribution
over functions is, from Bayes’ theorem P (f |D) ∝ P (f)P (D|f):

P (f |D) ∝ exp(−1
2
fTC−1f − 1

2σ2

N∑
µ=1

(yµ − fiµ)2) (1)

We consider GPs in discrete spaces, where each input is a node of a graph and can therefore be given
a discrete label i as anticipated above; fi is the associated function value. If the graph has V nodes,
the covariance function is then just a V × V matrix.

A number of possible forms for covariance functions on graphs have been proposed. We will focus
on the relatively flexible random walk covariance function [16],

C =
1
κ

((1− a−1)I + a−1D−1/2AD−1/2)p a ≥ 2, p ≥ 0 (2)

Here A is the adjacency matrix of the graph, with Aij = 1 if nodes i and j are connected by an
edge, and 0 otherwise; D = diag{d1, . . . , dV } is a diagonal matrix containing the degrees of the
nodes in the graph (di =

∑
j Aij).The constant κ will be chosen throughout to normalise C so that

1
V

∑
i Cii = 1, which corresponds to setting the average prior variance of the function values to

unity.

Our main concern in this paper are GP learning curves in discrete input spaces. The learning curve
describes how the average generalisation error (mean square error) ε decreases with the number of
examples N . Qualitatively, it gives the rate at which one would expect a GP to learn a function in
the average case. The generalisation error on an ensemble of graphs is given by

ε = 〈 1
V

∑
i

(f̄i − fi)2〉f |D,D,graphs (3)

where f is the uncorrupted (clean) teacher or target function, and f̄ is the posterior mean function
of the GP which gives the function values we predict on the basis of the data D. It is worth noting
that the generalisation error for a graph ensemble contains an additional average over this ensem-
ble. As is standard in the study of learning curves we have assumed a matched scenario where the
posterior P (f |D) for our predictions is also the posterior over the underlying target functions. The
generalisation error is then the Bayes error, and is given by the average posterior variance.

Sollich [4] and later Opper [7] with a more general replica approach showed that for continuous
input spaces a reasonable approximation to the learning curve could be expressed as the solution of
the following self-consistent equation:

ε = g

(
N

ε+ σ2

)
, g(h) =

V∑
α=1

(λ−1
α + h)−1 (4)

1We focus on the zero prior mean case throughout. All results translate fairly straightforwardly to the
non-zero mean case, but this complicates the algebra without leading to substantially new insights.
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Here the λα are appropriately defined eigenvalues of the covariance function. The motivation for
our study is work presented at NIPS2009 [10], which demonstrated that this approximation can
also be used in discrete domains, but is not always accurate. Studying random walk and diffusion
kernels [16] on random regular graphs, the authors showed that although the eigenvalue-based ap-
proximation is reasonable for both the large and the small N limits, it fails to accurately predict the
learning curve in the important transition region between these two extremes, drastically so for low
noise variances σ2. We will show that this shortcoming can be overcome by taking advantage of the
sparse structure of the underlying graph using the cavity method.

3 Accurate predictions with the cavity method

The cavity method was developed in statistical physics [13] but is closely related to belief propaga-
tion. We begin with equation (3). Because we only need the posterior variance in the matched case
considered here, we can shift f so that f̄ = 0; fi is then the deviation of the function value at node
i from the posterior mean. In this notation, the Bayes error is

ε = 〈 1
V

∑
i

∫
dff2

i P (f |D)〉D,graphs (5)

where P (f |D) now contains in the exponent only the terms from (1) that are quadratic in f .

To set up the cavity method, we begin by defining a generating or partition function Z, for a fixed
graph, as

Z =
∫
df exp(−1

2
fTC−1f − 1

2σ2

∑
µ

f2
iµ −

λ

2

∑
i

f2
i ) (6)

An auxiliary parameter λ has been added here to allow us to represent the Bayes error as
ε = − limλ→0(2/V ) ∂

∂λ 〈logZ〉D,graphs. The dependence on the datasetD appears in Z only through
the sum over µ. It will be more useful to write this as a sum over all nodes: if ni counts the
number of examples seen at node i, then

∑
µ f

2
iµ

=
∑
i nif

2
i . Even with this replacement, the

partition function in equation (6) is not yet suitable for an application of the cavity method since
the inverse covariance function cannot be written explicitly and generates interaction terms fifj
between nodes that can be far away from each other along the graph. To eliminate the inverse of
the covariance function we therefore perform a Fourier transform on the first term in the exponent,
exp(− 1

2fTC−1f) ∝
∫
dh exp(− 1

2hTCh + i
∑
i hifi). The integral over f then factorizes over

the fi, and one finds

Z ∝
∫
dh exp(−1

2
hTCh− 1

2
hT diag{( ni

σ2
+ λ)−1}h) (7)

Substituting the explicit form of the covariance function (2) into equation (7) we have

Z ∝
∫
dh exp(−1

2
hT

p∑
q=0

cq(D−1/2AD−1/2)qh− 1
2
hT diag{( ni

σ2
+ λ)−1}h) (8)

where we have written the power in equation (2) as a binomial sum and defined cq =
p!/[q!(p− q)!]a−q(1− a−1)p−q/κ.

For p > 1, equation (8) still has interactions with more than the immediate neighbours. To solve
this we introduce additional variables hq , defined recursively via hq = (D−1/2AD−1/2)hq−1

for q ≥ 1 and h0 = h. These definitions are enforced via Dirac delta-functions, each i and q ≥ 1
giving a factor δ(hqi −d

−1/2
i

∑
j Aijd

−1/2
j hq−1

j ) ∝
∫
dĥqi exp[iĥqi (h

q
i −d

−1/2
i

∑
j Aijd

−1/2
j hq−1

j )].
Substituting this into equation (8) gives the key advantage that now the adjacency matrix appears
only linearly in the exponent, so that we have interactions only across edges of the graph. Rescaling
the hqi to d1/2

i hqi and similarly for the ĥqi , and explicitly separating off the local terms from the
interactions finally yields

Z ∝
∫ p∏

q=0

dhq
p∏
q=1

dĥq
∏
i

exp(−1
2

p∑
q=0

cqdih
0
ih
q
i −

1
2

di(h0
i )

2

ni/σ2 + λ
+ i
∑
q=1

diĥ
q
ih
q
i )

×
∏
(ij)

exp(−i
∑
q=1

(ĥqih
q−1
j + ĥqjh

q−1
i ))

(9)
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We now have the partition function of a (complex-valued) Gaussian graphical model. By differenti-
ating logZ with respect to λ, keeping track of λ-dependent prefactors not written above, one finds
that the Bayes error is,

ε = lim
λ→0

1
V

∑
i

1
ni/σ2 + λ

(
1− di〈(h0

i )
2〉

ni/σ2 + λ

)
(10)

and so we need the marginal distributions of the h0
i . This is where the cavity method enters: for a

large random graph the structure is locally treelike, so that if node i were eliminated the correspond-
ing subgraphs (locally trees) rooted at the neighbours j ∈ N (i) of iwould become independent [12].
The resulting cavity marginals P (i)

j (hj , ĥj |D) can then be calculated iteratively within these sub-
graphs, giving the cavity update equations

P
(i)
j (hj , ĥj |D) ∝ exp(−1

2

p∑
q=0

cqdjh
0
jh
q
j −

1
2

dj(h0
j )

2

nj/σ2 + λ
+ i

p∑
q=1

dj ĥ
q
jh
q
j)∫ ∏

k∈N (j)\i

dhkdĥk exp(−i
p∑
q=1

(ĥqjh
q−1
k + ĥqkh

q−1
j ))P (j)

k (hk, ĥk|D)

(11)

One sees that these equations are solved self-consistently by complex-valued Gaussian distributions
with mean zero and covariance matrices V

(i)
j . By performing the Gaussian integrals in the cavity

update equations (11) explicitly, these equations then take the rather simple form

V
(i)
j = (Oj −

∑
k∈N (j)\i

XV
(j)
k X)−1 (12)

where we have defined the (2p+ 1)× (2p+ 1) matrices

Oi = di



c0+ 1
ni/σ2+λ

1
2c1 . . . 1

2cp 0 . . . 0
1
2c1 −i

...
. . .

1
2cp −i
0 −i
...

. . . 0p,p
0 −i


, X =



i

0p+1,p+1
. . .

i
0 . . . 0

i 0
. . .

... 0p,p
i 0


Finally we need to translate these equations to an ensemble of large sparse graphs. Each ensemble
is characterised by the distribution p(d) of the degrees di, with every graph having the desired
degree distribution being assigned the same probability. Instead of individual cavity covariance
matrices V

(i)
j , we need to consider their probability distribution W (V ) across all edges of the

graph. Picking at random an edge (i, j) of a graph, the probability that node j will have degree
dj is then p(dj)dj/d̄, because such a node has dj “chances” of being picked. (The normalisation
factor is the average degree d̄.) Using again the locally treelike structure, the incoming (to node j)
cavity covariances V

(j)
k will be i.i.d. samples from W (V ). Thus a fixed point of the cavity update

equations corresponds to a fixed point of an update equation for W (V ):

W (V ) =

〈∑
d

p(d)d
d̄

∫ d−1∏
k=1

dVkW (Vk) δ(V − (O −
d−1∑
k=1

XVkX)−1)

〉
n

(13)

Because the node label is now arbitrary, we have abbreviated V
(i)
j to V , dj to d, Oj to O and V

(j)
k

to Vk. The average is over the distribution over the number of examples n ≡ nj at node j in the
dataset D. Assuming for simplicity that examples are drawn with uniform input probability across
all nodes, this distribution is simply n ∼ Poisson(ν) in the limit of largeN and V at fixed ν = N/V .

In general equation (13) – which can also be formally derived using the replica approach [17] –
cannot be solved analytically, but we can solve it numerically using a standard population dynamics
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method [18]. Once we have W (V ), the Bayes error can be found from the graph ensemble version
of equation (10), which is obtained by inserting the explicit expression for 〈(h0

i )
2〉 in terms of the

cavity marginals of the neighbouring nodes, and replacing the average over nodes with an average
over p(d):

ε = lim
λ→0

〈∑
d

p(d)
n/σ2 + λ

(
1− d

n/σ2 + λ

∫ d∏
k=1

dVkW (Vk) (O −
d∑
k=1

XVkX)−1
00

)〉
n

(14)

The number of examples at the node is again to be averaged over n ∼ Poisson(ν). The subscript
“00” indicates the top left element of the matrix, which determines the variance of h0.

To be able to use equation (14), it needs to be rewritten in a form that remains explicitly non-singular
for n = 0. We split off the n-dependence of the matrix inverse by writing O −

∑d
k=1 XVkX =

M + [d/(n/σ2 +λ)]e0e
T
0 , where eT0 = (1, 0, . . . , 0). The matrix inverse appearing above can then

be expressed using the Woodbury formula as

M−1 − M−1e0e
T
0 M−1

(n/σ2 + λ)/d+ eT0 M−1e0

(15)

To extract the (0,0)-element (top left) as required we multiply by eT0 · · · e0. After some simplifica-
tion the λ→ 0 limit can then be taken, with the result

ε =

〈∑
d

p(d)
∫ d∏

k=1

dVkW (Vk)
1

n/σ2 + d(M−1)00

〉
n

(16)

This has a simple interpretation: the cavity marginals of the neighbours provide an effective Gaus-
sian prior for each node, whose inverse variance is d(M−1)00.

The self-consistency equation (13) for W (V ) and the expression (16) for the resulting Bayes error
are our main results so far. They allow us to predict learning curves as a function of the number of
examples per node, ν, for arbitrary degree distributions p(d) of our random graph ensemble provid-
ing the graphs are sparse and for arbitrary noise level σ2 and covariance function hyperparameters
p and a.

4 Generalising to community structures

The graphs considered in section 3 do not lend themselves to representing community structure.
Fixing the degree distribution alone means that all nodes have interchangeable roles, and cannot
account for the large number of intra-community connections compared to the smaller number of
inter-community connections. More importantly, communities tend to contain many short loops, and
these are neglected in the calculation of the single node cavity marginals considered in the previous
section.

To resolve this we consider graphs generated from ensembles similar to those studied in [14, 15].
We assume graphs are generated by a sparse superstructure asuper with a fixed arbitrary degree dis-
tribution. This superstructure then governs which communities are connected to each other. Which
nodes from the two communities are involved in such interconnections will be encoded by a distri-
bution µ(Ainter) and local connections within communities by a distribution ρ(Aintra). We consider
communities of fixed size M so that the A-matrices here are M ×M . Thus given a superstructure
{aij} randomly generated from a degree distribution p(d) the graph is sampled from the distribution,

P (A|{aij}) =
∏
i<j

(
d̄

V
δaij ,1µ(Aij

inter) + (1− d̄

V
)δaij ,0δ(Ainter)

)∏
i

ρ(Aintra) (17)

In order to calculate predictions of the generalisation error εg using the method in section 3 we must
treat hi in equation (9) as a vector hi of the Fourier transformed function values of all the nodes
contained in a community i. We can then use the sparsity of the superstructure and get accurate
marginals for a whole community. Proceeding as before but with (2p+ 1)M × (2p+ 1)M variance
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matrices for each community we obtain the update equations,

W (V ) =

〈∑
d

p(d)d
d̄

∫ d−1∏
i=1

dV iW (V i)
∑

A1
inter...A

d
inter

µ(A1
inter) . . . µ(Ad

inter)
∑
Aintra

ρ(Aintra)

δ(V − (O −
d−1∑
k=1

XkV kXk)−1)

〉
n1,...,nM

(18)

where we have defined M ×M matrices D = diagk=1...M{
∑
l((Aintra)kl +

∑d
i=1((Ainter)i)kl)}

and S = diagi=1...M{ 1
ni/σ2+λ}, and (2p+ 1)M × (2p+ 1)M matrices

Xi =



iAi
inter

0(p+1)M,(p+1)M

. . .
iAi

inter
0 . . . 0

i(Ai
inter)

T 0
. . .

... 0pM,pM

i(Ai
inter)

T 0



O =



c0D+DS 1
2c1D . . . 1

2cpD iAintra 0 . . . 0
1
2c1D −iD

. . .
...

. . . iAintra
1
2cpD −iD
iAintra −iD

0
. . . . . . 0pM,pM

...
0 iAintra −iD


Solving for W (V ) as before with population dynamics we can then use the cavity marginals to
produce the required full marginals for the generalisation error,

ε = lim
λ→0

1
M

M∑
m=1

〈∑
d

p(d)DS

I −DS

∫ d∏
k=1

dV kW (V k)
∑

A1
inter...A

d
inter

µ(A1
inter) . . . µ(Ad

inter)
∑
Aintra

ρ(Aintra)(O −
d∑
k=1

XkV kXk)−1
00

)〉
n1...nM


mm

(19)

Again this has an apparent singularity when any of the nm = 0 in a community, which can be
removed by using the Woodbury formula as in section 3. We emphasise once more that our cavity
marginals pass variances for a whole community. This results in the additional average over nodes
inside the community seen in equation (19).

5 Results

We will begin by comparing the performance of our new cavity prediction (equation (16)) against the
eigenvalue approximation (equation (4)) from [4, 7] for a Poisson random graph, p(d) = cde−c/d!,
for c = 3 with 500 nodes.

As can be seen in figure 1 (left) the cavity approach is accurate along the entire learning curve, to the
point where the prediction is visually almost indistinguishable from the numerical simulation results.
Importantly, the cavity approach predicts even the midsection of the learning curve for intermediate
values of ν, where the eigenvalue prediction clearly fails. The deviations between cavity theory
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Figure 1: (left) A comparison of the cavity prediction (solid line with triangles) against the eigen-
value approximation (dashed line) for the learning curves for Poisson graphs of average degree
c = 3, and against simulation results for graphs with V = 500 nodes (solid line with circles). Ran-
dom walk kernel with p = 10, a = 2; noise level as shown. (right) Numerical learning curves of
a community graph (red) with Poisson superstructure (with c = 3), all connections present within
communities of sizeM = 4 and a single randomly chosen edge making the connection between any
two communities linked in the superstructure (V = 125). These are compared to results for sparse
graphs with the same connectivity as the community superstructure and V = 125 nodes (blue), and
Poisson connectivity c = 3 for V = 125 rescaled so absolute number of examples is compared
(green).

and the eigenvalue predictions are largest in this central part because at this point fluctuations in the
number examples seen at each node have the greatest effect. Indeed, for much smaller ν, the dataset
does not contain any examples from many of the nodes, i.e. n = 0 is dominant and fluctuations
towards larger n have low probability. For large ν, the dataset typically contains many examples for
each node and Poisson fluctuations around the average value n = ν are small. The fluctuation effects
for intermediate ν are suppressed when the noise level σ2 is large, because then the generalisation
error in the range of intermediate ν is still fairly close to its initial value (ν = 0). But for the
smaller noise levels fluctuations in the number of examples for each node can have a large effect,
and correspondingly the eigenvalue prediction becomes very poor for intermediate ν.

Finally figure 1 (right) shows a numerical learning curve for a community graph ensemble with a
Poisson random graph superstructure with c = 3, linking communities of size M = 4. Communi-
ties are taken as fully connected internally, with inter-community connections in the superstructure
taken as single edges connecting two randomly chosen nodes from each of the communities. Figure
1 (right) compares the community learning curve against two baselines without community struc-
ture, i.e. sparse graphs. We compare with a Poisson random graph of just the superstructure, where
effectively each community is replaced by a single node and a rescaled version of the superstructure
random graph comparing absolute number of examples. As can be seen learning on community en-
sembles is drastically different from models enforcing only degree distributions. Community learn-
ing curves begin by approximately following the superstructure learning curve then tend towards the
rescaled superstructure curves as examples increase. We believe this is because for smaller numbers
of examples the community learning curve is dominated by examples on nodes that are uncorrelated
with each other, community structure therefore helps very little. For higher numbers of examples
the GP is increasingly able to infer from one nodes example the value of other nodes within the
highly connected community. In essence an example seen in the community allows the GP to infer
the entire community, this is equivalent to the information gained about a single node by seeing an
example of that node in the superstructure graph and thus the community learning curve tends to
the rescaled version as examples increase. It is worth noting that covariance parameters have been
kept constant in this comparison, this will result in non-trivial changes in the range and locality of
covariance matrix superstructure. Learning curves will have less local, further reaching kernels.
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One would expect predictions using the learning curves in section 4 to generate far more accurate
results than predictions for the other two graph ensembles, and we will be able to confirm this by
the time of the workshop.

6 Conclusions and further work

In this paper we have studied the learning curves of GP regression on large random graphs. In a
significant advance on the work of [10], we showed that the approximations for learning curves
proposed by Sollich [4] and Opper [7] for continuous input spaces can be greatly improved upon in
the graph case, by using the cavity method. We argued that the resulting predictions should in fact
become exact in the limit of large random graphs.

Section 3 derived the learning curve approximation using the cavity method for arbitrary degree
distributions. In section 4 we generalised our new prediction to community graph ensembles where
we assume a sparse superstructure connecting communities consisting of a fixed number of nodes
each. By grouping nodes into their communities and applying the cavity method in section 3 to these
grouped nodes we were able to derive analogous update equations (equation (18)) and generalisation
error predictions (equation (19)).

Finally in section 5 we compared our generalised error predictions for an arbitrary fixed degree
distribution to an older eigenvalue prediction seen in Sollich et. al. [10] and showed a vast im-
provement in predicting these learning curves in particular in the challenging midsection of these
curves. Further we showed in figure 1 (right) that community graph ensembles cannot be modelled
by the degree distribution ensembles in section 3 and require the more general generalisation error
predictions given in section 4.

We would like to extend the community derived learning curves in section 4 to more general com-
munity sizes. Introducing a distribution of community sizes and correspondingly a conditional dis-
tribution of intra and inter connections one would be able to derive learning curve predictions for a
more general class of community graph ensembles. It also would be interesting to introduce degree-
degree correlations as seen in [15] this would enable more control over the structure of the sparse
graphs considered in this paper.

We think it would be interesting to expand our approach to model mismatch, where we assume
the data-generating process is a GP with hyperparameters that differ from those of the GP being
used for inference. It should further be useful to study the case of mismatched graphs, rather than
hyperparameters. Finally, it would be worth extending the study of graph mismatch to the case of
evolving graphs and functions.
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