
Learning curves for Gaussian process regression on
random graphs: effects of graph structure

Matthew J Urry, Peter Sollich
King’s College London, Department of Mathematics

London WC2R 2LS, U.K.
{matthew.urry,peter.sollich}@kcl.ac.uk

Abstract

We investigate how well Gaussian process regression can learn functions defined
on graphs, using large random graphs as a paradigmatic examples. We focus
on learning curves of the Bayes error versus training set size for three types of
random graphs, random regular, Poisson and Barabasi-Albert. We begin by devel-
oping a theory for the random regular graphs using eigenvalues of the covariance
matrix, a prediction found useful in the Euclidean case. We find this prediction is
good in two regimes but underestimates the error between them. We then apply
this prediction to Poisson and Barabasi-Albert graphs using numerically computed
eigenvalues, where we find some unusual results and give explanations for these
results.

1 Motivation and Outline

Gaussian processes (GPs) have become a standard part of the machine learning toolbox [1]. Learning
curves are a convenient way of characterizing their capabilities: they give the generalization error
ε as a function of the number of training examples n, averaged over all datasets of size n under
appropriate assumptions about the process generating the data. We focus here on the case of GP
regression, where a real-valued output function f(x) is to be learned. The general behaviour of GP
learning curves is then relatively well understood for the scenario where the inputs x come from a
continuous space, typically Rn [2, 3, 4, 5, 6, 7, 8, 9, 10]. For large n, the learning curves decay as a
power law ε ∝ n−α with an exponent α ≤ 1 that depends on the dimensionality n of the space as
well as the smoothness properties of the function f(x) encoded by the covariance function.

There are however many interesting application domains that involve discrete input spaces, where
x could be a string, an amino acid sequence (with f(x) some measure of secondary structure or
biological function), a research paper (with f(x) related to impact), a web page (with f(x) giving a
score used to rank pages), etc. In many such situations, similarity between different inputs – which
will govern our prior beliefs about how closely related the corresponding function values are – can
be represented by edges in a graph. One would then like to know how well GP regression can work
in such problem domains; see also [11] for a related online regression algorithm. We study this
problem here theoretically by focussing on the paradigmatic example of random graphs.

We focus initially on random regular graph ensembles and then extend this to some preliminary
work with Poisson and Barabasi-Albert random graph ensembles. We begin in Sec. 2 with a brief
overview of kernels on graphs. We then look at learning curves for the random walk kernel, and
use a simple approximation based on the graph eigenvalues using (for the regular graph case) only
the known spectrum of a large tree as input. This is shown to work well qualitatively, and predicts
accurately the asymptotics for large numbers of training examples. We subsequently apply the
simple approximation to Barabasi-Albert and Poisson ensembles using numerically calculated graph

1



eigenvalues. We find some unusual results and discuss why these occur. Finally in Sec. 4 we
summarise the results and discuss further open questions.

2 Kernels on graphs

We assume that we are trying to learn a function defined on the vertices (nodes) of a graph. Vertices
are labelled by i = 1 . . . V , instead of the generic input label x we used in the introduction, and
the associated function values are denoted fi ∈ R. By taking the prior P (f) over these functions
f = (f1, . . . , fV ) as a (zero mean) Gaussian process we are saying that P (f) ∝ exp(− 1

2fTC−1f).
The covariance function or kernel C is then, in our graph setting, just a positive definite V × V
matrix.

The graph structure is characterized by a V ×V adjacency matrix, with Aij = 1 if nodes i and j are
connected by an edge, and 0 otherwise. All links are assumed to be undirected, so that Aij = Aji,
and there are no self-loops (Aii = 0). The degree of each node is then defined as di =

∑V
j=1Aij .

The covariance kernels we discuss in this paper are the natural generalizations of the squared-
exponential kernel in Euclidean space [12]. They can be expressed in terms of the normalized
graph Laplacian, defined as L = 1 −D−1/2AD−1/2, where D is a diagonal matrix with entries
d1, . . . , dV and 1 is the V ×V identity matrix. An advantage of L over the unnormalized Laplacian
D−A, which was used in the earlier paper [13], is that the eigenvalues of L (again a V ×V matrix)
lie in the interval [0, 2] (see e.g. [14]).

From the graph Laplacian, the covariance kernels we consider here are constructed as follows. The
p-step random walk kernel is (for a ≥ 2)

C ∝ (1− a−1L)p =
[(

1− a−1
)
1 + a−1D−1/2AD−1/2

]p
(1)

while the diffusion kernel is given by

C ∝ exp
(
− 1

2σ
2L
)
∝ exp

(
1
2σ

2D−1/2AD−1/2
)

(2)

We will always normalize these so that (1/V )
∑
i Cii = 1, which corresponds to setting the average

(over vertices) prior variance of the function to be learned to unity.

These covariance kernels are linked to random walks: they are essentially (see for example [15])
just random walk transition matrices, averaged over a distribution of the number of steps taken, s.
For the random walk kernel this distribution is s ∼ Binomial(p, 1/a), while for the diffusion kernel
it is s ∼ Poisson(σ2/2). This shows in particular that the diffusion kernel is a limiting case of the
random walk kernel, where p, a→∞ with p/a = σ2/2 kept constant. As p/a or σ2 become large,
it is clear that both kernels will approach the limit where they are essentially constant across the
graph, corresponding to maximal correlation between function values on different vertices. How
this fully correlated limit is approached is, however, not trivial; see [15] for more details.

3 Learning curves

We focus on the analysis of learning curves for GP regression on random graphs. We assume that
the target function f∗ is drawn from a GP prior with a p-step random walk covariance kernel C.
Training examples are input-output pairs (iµ, f∗iµ + ξµ) where ξµ is i.i.d. Gaussian noise of variance
σ2; the distribution of training inputs iµ is taken to be uniform across vertices. Inference from a data
set D of n such examples µ = 1, . . . , n takes place using the prior defined by C and a Gaussian
likelihood with noise variance σ2. We thus assume an inference model that is matched to the data
generating process. This is obviously an over-simplification but is appropriate for the present first
exploration of learning curves on random graphs. We emphasize that as n is increased we see more
and more function values from the same graph, which is fixed by the problem domain; the graph
does not grow.

The generalization error ε is the squared difference between the estimated function f̂i and the target
f∗i , averaged across the (uniform) input distribution, the posterior distribution of f∗ given D, the

2



distribution of datasets D, and finally – in our non-Euclidean setting – the random graph ensemble.
Given the assumption of a matched inference model, this is just the average Bayes error, or the
average posterior variance, which can be expressed explicitly as [1]

ε(n) = V −1
∑
i

〈
Cii − k(i)TKk−1(i)

〉
D,graphs

(3)

where the average is over data sets and over graphs, K is an n × n matrix with elements
Kµµ′ = Ciµ,iµ′ + σ2δµµ′ and k(i) is a vector with entries kµ(i) = Ci,iµ . The resulting learn-
ing curve depends, in addition to n, on the graph structure as determined by V and the expected
degree sequence, and the kernel and noise level as specified by p, a and σ2.

Exact prediction of learning curves by analytical calculation is very difficult due to the complicated
way in which the random selection of training inputs enters the matrix K and vector k in (3).
However, by first expressing these quantities in terms of kernel eigenvalues (see below) and then
approximating the average over datasets, one can derive the approximation [3, 6]

ε = g

(
n

ε+ σ2

)
, g(h) =

V∑
α=1

(λ−1
α + h)−1 (4)

This equation for ε has to be solved self-consistently because ε also appears on the r.h.s. In the
Euclidean case the resulting predictions approximate the true learning curves quite reliably. The
derivation of (4) for inputs on a fixed graph is unchanged from [3], provided the kernel eigenval-
ues λα appearing in the function g(h) are defined appropriately, by the eigenfunction condition
〈Cijφj〉 = λφi; here the average is over the input distribution, i.e. 〈. . .〉 = V −1

∑
j . . . From the

definition (1) of the p-step kernel, we see that then λα = κV −1(1 − λLα/a)p in terms of the cor-
responding eigenvalue of the graph Laplacian L. The constant κ has to be chosen to enforce our
normalization convention

∑
α λα = 〈Cjj〉 = 1.

To explore the above predictions in more detail, we start with random regular graphs and fix d = 3,
the degree at each node of the graph, to avoid having too many parameters to vary, although similar
results are obtained for larger d.

Fortunately, for large V the spectrum of the Laplacian of a random regular graph can be approxi-
mated by that of the corresponding large regular tree, which has spectral density [14]

ρ(λL) =

√
4(d−1)
d2 − (λL − 1)2

2πdλL(2− λL)
(5)

in the range λL ∈ [λL−, λ
L
+], λL± = 1 + 2d−1(d − 1)1/2, where the term under the square root is

positive. (There are also two isolated eigenvalues λL = 0, 2 but these have weight 1/V each and so
can be ignored for large V ). Rewriting (4) as ε = V −1

∑
α[(V λα)−1 + (n/V )(ε + σ2)−1]−1 and

then replacing the average over kernel eigenvalues by an integral over the spectral density leads to
the following prediction for the learning curve:

ε =
∫
dλLρ(λL)[κ−1(1− λL/a)−p + ν/(ε+ σ2)]−1 (6)

with κ determined from κ
∫
dλLρ(λL)(1 − λL/a)p = 1. A general consequence of the form of

this result is that the learning curve depends on n and V only through the ratio ν = n/V , i.e. the
number of training examples per vertex. The approximation (6) also predicts that the learning curve
will have two regimes, one for small ν where ε� σ2 and the generalization error will be essentially
independent of σ2; and another for large ν where ε� σ2 so that ε can be neglected on the r.h.s. and
one has a fully explicit expression for ε.

We compare the above prediction in Fig. 1(left) to the results of numerical simulations of the learn-
ing curves, averaged over datasets and random regular graphs. The two regimes predicted by the
approximation are clearly visible; the approximation works well inside each regime but less well in
the crossover between the two. One striking observation is that the approximation seems to predict
the asymptotic large-n behaviour exactly; this is not what is seen in the Euclidean case, where gen-
erally only the power-law of the n-dependence but not its prefactor come out accurately. To see why,
we exploit that for large n (where ε � σ2) the approximation (3) effectively neglects fluctuations

3



Figure 1: (Left) Learning curves for GP regression on random regular graphs with degree d = 3,
V = 500 (small filled circles) and V = 1000 (empty circles) vertices. Plotting generalization error
versus ν = n/V superimposes the results for both values of V , as expected from the approximation
(6). The lines are the quantitative predictions of this approximation. Noise level as shown, kernel
parameters a = 2, p = 10. (Right) As on the left but with V = 500 only and for larger a = 4.
(Bottom) Same a = 2 as top left, but now with larger p = 20.

in the training input “density” of a randomly drawn set of training inputs [3, 6]. This is justified
in the graph case for large ν = n/V , because the number of training inputs each vertex receives,
Binomial(N, 1/V ), has negligible relative fluctuations away from its mean ν. In the Euclidean case
there is no similar result, because all training inputs are different with probability one even for large
n.

Fig. 1(right) illustrates that for larger a the difference in the crossover region between the true (nu-
merically simulated) learning curves and our approximation becomes larger. This is because the
average number of steps p/a of the random walk kernel then decreases: we get closer to the limit
of uncorrelated function values (a → ∞, Cij = δij). In that limit and for low σ2 and large V the
true learning curve is ε = exp(−ν), reflecting the probability of a training input set not containing
a particular vertex, while the approximation can be shown to predict ε = max{1 − ν, 0}, i.e. a
decay of the error to zero at ν = 1. Plotting these two curves (not displayed here) indeed shows the
same “shape” of disagreement as in Fig. 1(right), with the approximation underestimating the true
generalization error.

Increasing p has the effect of making the kernel longer ranged, giving an effect opposite to that of
increasing a. In line with this, larger values of p improve the accuracy of the approximation (6): see
Fig. 1(bottom).

One may ask about the shape of the learning curves for large number of training examples (per
vertex) ν. The roughly straight lines on the right of the log-log plots discussed so far suggest that
ε ∝ 1/ν in this regime. This is correct in the mathematical limit ν → ∞ because the graph kernel
has a nonzero minimal eigenvalue λ− = κV −1(1−λL+/a)p: for ν � σ2/(V λ−), the square bracket

4



in (6) can then be approximated by ν/(ε+ σ2) and one gets (because also ε� σ2 in the asymptotic
regime) ε ≈ σ2/ν.

However, once p becomes reasonably large, V λ− can be shown [15] to be extremely (exponentially
in p) small; for the parameter values in Fig. 1(bottom) it is around 4 × 10−30. The “terminal”
asymptotic regime ε ≈ σ2/ν is then essentially unreachable. A more detailed analysis of (6) for
large p and large (but not exponentially large) ν [15] yields ε ∝ (cσ2/ν) ln3/2(ν/(cσ2)). This
shows that there are logarithmic corrections to the naive σ2/ν scaling that would apply in the true
terminal regime. More intriguing is the scaling of the coefficient c ∝ p−3/2 with p, which implies
that to reach a specified (low) generalization error one needs a number of training examples per
vertex of order ν ∝ cσ2 ∝ p−3/2σ2. Of course, at any fixed V , loops eventually become important
as p increases; the consequences for the learning curves are discussed in [15].

We next investigate how well the Gaussian processes learn with Poisson random graphs. The Poisson
ensemble of random graphs consists of all graphs on a set of V vertices in which each edge is chosen
independently to be present with some probability q; see [16] and [17] for in depth discussions. The
average number of edges connected to a given node is then c = q(V − 1). We use c = 3 so
that the expected degree at any one node is 3, to tie in with the parameters used above for random
regular graphs. Again results are similar for other values of c > 1. Note that for this value of c a
Poisson graph of 500 nodes will have a giant component consisting of approximately 470 nodes and
the remaining nodes will be in disconnected tree components [17], of which most are single node
components [16]. Learning on a Poisson graph with disconnected components can then be seen as
learning on each component separately with the number of samples drawn from Binomial(n, Vc/V ),
where Vc is the number of nodes in the disconnected components.

Surprisingly we find that learning – shown in Fig. 2(top left) – on Poisson graphs is significantly
slower than on random regular graphs. This is not an immediately obvious result since initially for
c = 3 most learning takes place on the giant component. The giant component is treelike and loops
can be shown on average to be of length O(log V ) [18] so learning curves should be similar to the
random regular case. We can see in Fig. 2 (bottom left) that the average covariance of two nodes
drops significantly faster than that of the random regular graph as the graph distance (shortest path)
between these two nodes increases. This result is even more striking when we superimpose the
learning curves for random regular, Poisson and the giant component of the Poisson graph on top of
each other (Fig. 2 (bottom right)). The small number of disconnected components greatly affect the
rate at which the Gaussian process learns the entire graph.

This unlikely result can be explained by the normalization of the covariance kernel. The single dis-
connected components have a large variance since the random walk defining the kernel can never es-
cape from such a component. The disconnected components contribute large values to 1/V

∑
i Cii

meaning the smaller variances and covariances on the giant component become dwarfed by these
few large variances. Eliminating the disconnected components and only learning on the giant com-
ponent then gives back more conventional behaviour, with learning similar but not as fast as on ran-
dom regular graphs (see Fig. 2 (bottom right)). The same effect appears in the distance-dependence
of the kernel (Fig. 2 (bottom left)): when using the entire Poisson graph, this is dominated by the
short-ranged contributions from the disconnected components, while without them one finds a shape
comparable to the one for random regular graphs.

We show in Fig. 2 also the theoretical predictions for the learning curves, using numerically cal-
culated graph eigenvalues. The presence of the disconnected components is seen to change the
predictions only weakly compared to the random regular graph case. This is surprising since dis-
connected components contribute an extra 0 eigenvalue to the normalized Laplacian [14] and in
turn, using the method discussed in Sec. 3 to convert to kernel eigenvalues, large eigenvalues to
the kernel. (One might guess that the fraction of eigenvalues in this category remains small enough
not to make much difference to the theory). The fact the theory fails to account sufficiently for the
presence of the disconnected contributions causes the large deviations from the true learning curves.

We finally point out that learning on the Poisson ensemble of random graphs appears more “noisy”
than before once the error on the GP becomes smaller than about 10−2. This again is a result
of the disconnected components on the graph. Since the latter only consist of a few nodes each,
learning on these nodes is essentially over apart from noise once a single example has been seen.
The ensuing reduction in overall error is of order 10−2 and so becomes appreciable when the overall

5



Figure 2: TOP: (Left) Learning curves for GP regression on Poisson graphs with c = 3 and V = 500.
The lines are the learning curve predictions using numerically found eigenvalues of the kernel. Noise
level as shown, kernel parameters a = 2, p = 10. (Right) As on the left but for Barabasi-Albert
graphs with m = 3. BOTTOM: (Left) Average covariance value for each shell of random regular,
Poisson, Poisson giant component and Barabasi-Albert graphs. (Right): Comparison of numerical
learning curves for Random Regular, Poisson, Poisson giant component and Barabasi-Albert graphs.
a = 2, p = 10

generalization error reaches this order of magnitude. Random sampling over data sets then causes
large fluctuations depending on how many disconnected components have been learned. These are
visible in our data because due to computational constraints we sample only a few sets. Because
we sample anew for each different value of n, this results in the jumps observed in Fig. 2 (top left)
between consecutive sample sizes.

We next consider scale-free power-law distribution random graphs, focusing on the Barabasi-Albert
ensemble: for an overview see [18][17]. This ensemble consists of graphs created using the prefer-
ential attachment scheme. The graphs are constructed by incrementally adding nodes and connecting
m edges between the newly added node and the already existing graph. The new node “prefers” to
add edges to nodes in the graph that have high degrees already. Constructing graphs in this way
leads to a power-law distribution in the degree sequence.

Learning on this ensemble can be seen in Fig. 2 (top right) it should be different from the previous
ensembles since the treelike approximation is no longer valid. We will frequently have loops of size
3 in these graphs. As shown in Fig. 2 (bottom left) the covariance function is far shorter ranged than
the random regular and the giant component of the Poisson ensemble. One way to explain this is to
think of the graph arranged into shells so that a node belongs to the shell numbered by its distance
from the node to be learnt. The presence of loops then means that in the random walk kernel, random
walk steps can be taken while remaining in the same shell, i.e. without increasing the distance from
the starting node.

6



Naively, looking at the kernel shapes in Fig. 2 (bottom left), one would expect Barabasi-Albert
graphs to exhibit learning behaviour similar to Poisson graphs and significantly slower than for the
random regular case. However, as can be seen in Fig. 2 (bottom right), the learning curves are in fact
similar to those for the random regular case. The reason is that Barabasi-Albert graphs typically have
a very small diameter [19], of the order of 3, and so inferences from a single node can still be made
across most of the graph even though the kernel is shorter ranged. The learning curve prediction in
this case is seen to show similar accuracy to that for the random regular case and exhibits the two
regimes as seen before; note that because numerically calculated graph eigenvalues are used, loops
are implicitly accounted for in the theory.

4 Summary and Outlook

We have analysed GP regression for functions defined on graphs, focussing on the learning curves.
We compared simulation results with a simple theoretical prediction that uses only the eigenvalue
of the covariance kernel (or equivalently those of the graph Laplacian) as input, and found that for
random regular graphs, where every node has the same degree d, this provides qualitatively accurate
results. In the asymptotic regime of large training sets, the approximation even becomes exact. The
largest deviations between the predictions and the true learning curves occur in the crossover region
where the generalization error becomes of the order of the noise variance.

To establish how generic the results for random regular graphs are, we then studied similarly the case
of Poisson random graphs. Here nodes do not have fixed degree; instead each edge is “switched on”
with some probability. Such graphs then typically contain a number of small disconnected compo-
nents. We argued that it is the presence of these that slows down GP learning on Poisson graphs,
and causes substantial sample-to-sample fluctuations in the learning curves around the crossover
region. The learning curve theory using numerically calculated eigenvalues of the covariance func-
tion turned out to give predictions similar to the random regular tree case. It therefore does not
capture accurately the effect of the disconnected components, and significantly underestimates the
generalization error. Eliminating the small disconnected components and focusing only on the giant
component gave learning curves similar to those of the random regular case, and correspondingly
better agreement with the theory.

Finally we looked at power-law degree distributions, specifically Barabasi-Albert graphs, and found
that learning in this case was faster than for entire Poisson graphs, approximately the same as for
learning on the giant Poisson component, and slower than for random regular graphs. This is due a
balance of two effects: the covariance function against graph distance is shorter-ranged, causing the
slowdown compared to random regular graphs; on the other hand, the diameter of Barabasi-Albert
graphs is very small, making learning faster than on entire Poisson graphs.

In future work we plan a more in depth study of the non-regular graphs presented in this paper and
extend this analysis to graphs from application domains. We would like to improve the random walk
kernel so that it can deal more competently with disconnected components. We would also like
to improve the learning curve theory so that the crossover regime is more accurately predicted, we
believe this will be possible using belief propagation which has already been shown to give accurate
approximations for eigenvalue spectra [20]. These tools can then be further extended to study e.g.
the effects of model mismatch in GP regression on random graphs, and how these are mitigated by
tuning appropriate hyper-parameters.

References
[1] C E Rasmussen and C K I Williams. Gaussian processes for regression. In D S Touretzky, M C Mozer,

and M E Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514–520, Cam-
bridge, MA, 1996. MIT Press.

[2] M Opper. Regression with Gaussian processes: Average case performance. In I K Kwok-Yee, M Wong,
I King, and Dit-Yun Yeung, editors, Theoretical Aspects of Neural Computation: A Multidisciplinary
Perspective, pages 17–23. Springer, 1997.

[3] P Sollich. Learning curves for Gaussian processes. In M S Kearns, S A Solla, and D A Cohn, editors,
Advances in Neural Information Processing Systems 11, pages 344–350, Cambridge, MA, 1999. MIT
Press.

7



[4] M Opper and F Vivarelli. General bounds on Bayes errors for regression with Gaussian processes. In
M Kearns, S A Solla, and D Cohn, editors, Advances in Neural Information Processing Systems 11, pages
302–308, Cambridge, MA, 1999. MIT Press.

[5] C K I Williams and F Vivarelli. Upper and lower bounds on the learning curve for Gaussian processes.
Mach. Learn., 40(1):77–102, 2000.

[6] D Malzahn and M Opper. Learning curves for Gaussian processes regression: A framework for good
approximations. In T K Leen, T G Dietterich, and V Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 273–279, Cambridge, MA, 2001. MIT Press.

[7] D Malzahn and M Opper. A variational approach to learning curves. In T G Dietterich, S Becker,
and Z Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 463–469,
Cambridge, MA, 2002. MIT Press.

[8] P Sollich and A Halees. Learning curves for Gaussian process regression: approximations and bounds.
Neural Comput., 14(6):1393–1428, 2002.

[9] P Sollich. Gaussian process regression with mismatched models. In T G Dietterich, S Becker, and
Z Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 519–526, Cam-
bridge, MA, 2002. MIT Press.

[10] P Sollich. Can Gaussian process regression be made robust against model mismatch? In Deterministic
and Statistical Methods in Machine Learning, volume 3635 of Lecture Notes in Artificial Intelligence,
pages 199–210. 2005.

[11] M Herbster, M Pontil, and L Wainer. Online learning over graphs. In ICML ’05: Proceedings of the 22nd
international conference on Machine learning, pages 305–312, New York, NY, USA, 2005. ACM.

[12] A J Smola and R Kondor. Kernels and regularization on graphs. In M Warmuth and B Schölkopf,
editors, Proc. Conference on Learning Theory (COLT), Lect. Notes Comp. Sci., pages 144–158. Springer,
Heidelberg, 2003.

[13] R I Kondor and J D Lafferty. Diffusion kernels on graphs and other discrete input spaces. In ICML
’02: Proceedings of the Nineteenth International Conference on Machine Learning, pages 315–322, San
Francisco, CA, USA, 2002. Morgan Kaufmann.

[14] F R K Chung. Spectral graph theory. Number 92 in Regional Conference Series in Mathematics. Ameri-
can Mathematical Society, 1997.

[15] P Sollich, C Cotti, and M J Urry. Kernels and learning curves for Gaussian process regression on random
graphs. In Neural Information Processsing Systems, 2009.

[16] B. Bollobas. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University
Press, 2nd edition, 2001.

[17] F. R. K. Chung and L. Lu. Complex graphs and networks. Number 107. American Mathematical Society,
2006.

[18] Reka Albert and Albert-Laszlo Barabasi. Statistical mechanics of complex networks. Reviews of Modern
Physics, 74:47, 2002.

[19] B. Bollobás and O. Riordan. The diameter of a scale-free random graph. Combinatorica, 24(1):5–34,
2004.

[20] T Rogers, I Perez Castillo, R Kuehn, and K Takeda. Cavity approach to the spectral density of sparse
symmetric random matrices. Phys. Rev. E, 78(3):031116, 2008.

8


