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Abstract

We present a unified approach to modelling dyadic relational data, namely that
seen in social, biological and technological networks, without restriction to the
binary format. The approach involves three principles: considering the marginal
specification of any edge as the fundamental unit, embedding as much depen-
dence as possible in latent structural forms, and using distributional forms that
favour high-throughput computational methods for their solution. We show that
this approach allows for an extremely flexible and generalizable way of describing
the structural properties of relational systems; namely, we offer alternate expla-
nations for two approaches popular in the networks literature, the “small-world”
and “scale-free” mechanisms, and demonstrate the ability of marginal hierarchical
modelling to expand beyond them.

1 Introduction

Many stochastic models for networks assume conditional dyadic independence: given a set of un-
derlying characteristics, the variability of each undirected edge, or of each complementary pair of
directed arcs, is unaffected by the effect of other remaining ties. The presentation of conditional
dyadic independence cuts off more complicated dependence patterns between dyads at the overt
level, but with the exchange that these trends can be more cleanly explained at a level below that of
observation.

As motivated, this paper contains a unifying framework for many of these previous approaches that
allows for considerable extension. In the binary case, ties are represented as an observed outcome
of an underlying continuous process, based primarily on the Gaussian framework but adaptable to
other contexts, and the investigator can bring to bear tools developed in computational statistics,
dynamic programming, and other connecting literatures in order to efficiently and correctly model
these sorts of relational data. This is not the first time the approach has been proposed – similar
models have been well-implemented in the work of Peter Hoff and his colleagues [8; 9; 6; 12] –
but, to the author’s knowledge, it is the first large-scale attempt to unify the modelling framework
for various dyadic relational data types with a wider class of models, largely focused on the GLM
framework, and the generalization of computational methods for their analysis.

As the outcomes Y can be considered entries in an N -by-N matrix, it is standard to group these
terms in four entries: grand mean value, row effects, column effects and row-column interactions.
For this reason, we begin with a redefinition of the p1 model from the marginal point of view,
capturing the four components: mean density, sender properties, receiver properties and reciprocity

1



between the arcs. Three properties are then brought into the current framework: latent spaces, latent
characteristics and the behaviour of assortative mixing on degree.

2 Marginal Specification and Extension of p1

The original p1 model [10] was specified on a series of
(
n
2

)
dyads with quadrinomial probability

specifications for each. In the marginal case, there are 2
(
n
2

)
arcs to be specified, namely of the form

Yij ∼ Be(pij), or in general probit notation, Yij ∼ Be(Φ(µij)). The first simplifying step in p1

is to simplify this probability into terms representing the grand mean, sender and receiver. This
becomes

Yij ∼ Be(Φ(µ+ αi + βj))

so that the terms µ + αi + βj represent the same types of quantities as before – the increased
likelihood of ties in general, ties from sender i and ties to receiver j – even though their numerical
interpretations are slightly different, in terms of their effect on the differing likelihoods.

This formula can be represented in terms of a latent normal variable Zij , so that the previous ex-
pression is equivalent to

Yij ∼ I(Zij > 0); Zij ∼ N(µ+ αi + βj , 1).

Once this step is made, the conversion from two independent normals to one bivariate normal is
immediate, and the dyad (Yij , Yji) is now expressed as the realization of a latent bivariate normal:

[
Yij
Yji

]
|
[
Zij
Zji

]
=

[
I(Zij > 0)
I(Zji > 0)

]
; (1)[

Zij
Zji

]
|α, β, ρ ∼ N2

([
µ+ αi + βj
µ+ αj + βi

]
,

[
1 ρ
ρ 1

])
. (2)

To compare to the canonical p1, the sender and receiver effects can be restricted to have zero sum,∑
i αi =

∑
i βi = 0. Each node’s sender and receiver effects may also come from a common

family, as expressed in [20],

[
αi
βi

]
∼ N2

([
0
0

]
,

[
σ2
α ραβσασβ

ραβσασβ σ2
β

])
(3)

with appropriate prior distributions on these variances and the correlation term ραβ .

A Gibbs sampling scheme, as inspired by [1], is relatively easy to put together. Of special note is
the algebra needed to demonstrate the direct draws for the sender, receiver and grand mean effects.
Consider the draw for one sender component αi; the log-likelihood for a single bivariate normal
containing the term, as divided into conditional and marginal pieces, is given as:

log(p(Zij |α, β, µ, ρ)p(Zji|Zij , α, β, µ, ρ))

= C − 1
2 (Zij − αi − βj − µ)2 − 1

2(1−ρ2) (Zji − αj − βi − µ− ρ(Zij − αi − βj − µ))2

= 1
2 ((Zij − βj − µ)− αi)2 + ρ

2(1−ρ2)

(
αi − (Zij − βj − 1−ρ

ρ µ− Zji−αj−βi

ρ )
)2

,

which is in quadratic form for αi, conditional on the remaining terms. The addition of either a
prior distribution common to all α, or a hierarchical pooling model such as Equation 3, make the
conditional draw for the parameter as natural as from a standard distribution.
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3 Covariate Inclusion for Senders, Receivers, Edges

As introduced, node effects are modelled as indicators for the presence of a particular individual;
for example, the sender effect αi may also be considered as

∑
k αkδki, to signify the presence of

an effective covariate: the indicator that the node being considered corresponds to sender i. From
here, it is a simple addition to generalize to other covariates, whether or not they are uniform for all
senders, receivers or edges.

The inclusion for covariates on senders, receivers and edges is straightforward:

[
Zij
Zji

]
|
[
µ, α, β, ρ,X,
W,U, γ, ν, θ

]
∼ N2

([
µ+ (αi +Xiγi) + (βj +Wjνj) + Uijθ
µ+ (αj +Xjγj) + (βi +Wiνi) + Ujiθ

]
,

[
1 ρ
ρ 1

])
;

the steps added to the Gibbs sampler are identical in form to the node effects due to their quadratic
form representations.

4 Differential Reciprocity Adjustments

[5] propose an extension of the p1 model around the notion of differential reciprocity; that is,
the tendency for one arc in a dyad to mirror the connection of the other may vary based on the
information on the participating nodes. Under the original specification, the reciprocity term was
considered as an odds ratio; in the GLM framework, it is considered to be a correlation.

For full specification, consider the Fisher transform q = 1
2 log 1+ρ

1−ρ , so that the transformed quantity
q is without bound. Then, the transformed correlation may take the formqij = µq + τi + τj + Vijψ,
so that µq represents the baseline reciprocity, and τi and τj represent the deviations due to each of
the two nodes in the dyad, subject to a zero-sum or pooling constraint,

∑
i

τi = 0 or τi ∼ N(0, σ2
τ ).

Covariates Vij can be included for the edge, multiplied by the coefficient vector ψ to produce the
observed effect on reciprocity.

By using the inverse transform, ρij = ρji = e2qij−1
e2qij +1

, the parameters are restored to the original
(−1, 1) range to act as correlations between each edge in the dyad.

5 Latent Spaces and Parameters

Latent spaces and parameters have been introduced mainly in undirected contexts, but there is little
reason why they cannot be integrated into the current approach. Consider first the marginal distribu-
tion of a single arc. If there is assumed to be a k−dimensional latent space where increased distance
represents a decreased likelihood of connection, where di is a k−dimensional vector in the latent
space, and the general marginal expression for an arc is Zij ∼ N(µij , 1), then the mean of the latent
strength can be expressed as

µij |ω,d = ω|di − dj |,

so that ω < 0 guarantees that greater distance decreases connections. Sampling this model can prove
to be troublesome, because there is a nonidentifiability of scale between ω and the position di.

This can be standardized with two steps: fixing ω = −1, and fixing one dyad in the latent space:
d1 = ~0, and d2 = (1, 0, ..., 0). If desired, further constraints can be placed on all of the first k nodes.
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The issue becomes one of multimodality. The act of compressing n nodes into a k−dimensional
space will ensure that there will be an exceedingly large number of local modes in the system, since
given the other nodes, each node will have at least one locally preferred location, even if the other
nodes are not themselves optimally placed. One solution to this problem is to incorporate a simulated
annealing ladder into the maximization routine, so that the local nodes are free to sort themselves on
a rough scale in the early iterations of the procedure, increasing the likelihood of finding a preferred
global configuration.

Once this is done, it is a simple matter to add these latent positions into the Gibbs sampler through a
Metropolis step: propose a random step in the latent space, then accept the new position if a uniform
random variable is below the ratio of the new posterior probability over the original.

The construction of latent parameters has a similar issue. For a k−dimensional parameter space, the
latent strength is expressed as

µij |z, C = z′iCzj ,

where zi is a length-k vector and C is a k-by-k matrix of magnitudes. This can be interpreted as the
inner product between character vectors zi and zj with respect to the Euclidean space transformed
by C, but with one important addition: the diagonal elements of C can be negative, implying that
the coordinate is heterophilic, as opposed to a positive value implying homophily on the latent
characteristic.

6 Assortative Mixing on Popularity and Gregariousness, Rather than
Degree

An observation that has been observed in real networks is the notion of assortative mixing: individ-
uals with similar numbers of ties are more likely to associate with each other than would otherwise
be expected by their own gregariousness or popularity, even though it is reasonable to expect indi-
viduals with a large number of ties to connect to each other with great likelihood. If this is the case,
it is likely that additional forces are at work.1

Newman [15] measures assortative mixing within a network as a descriptive statistic: a coefficient
of the correlation between the joint degree distribution of two connected nodes and the degree of
nodes in the marginal sense, then normalized with respect to the maximum value. Consider the
measure of “remaining degree” of one node (di − 1), and the joint distribution of two connected
nodes ((di−1), (dj−1)). The assortativity is defined as the correlation between the joint remaining
degree probability of a pair of nodes and their marginal remaining degree probabilities, with respect
to each edge in the system; that is, nodes with higher degree have a higher tendency to contribute to
the mixing statistic. As this is a statistical description, the inclusion of this behaviour in a generative
model requires a corresponding parameter.

Consider the p1-type model

µij = µ+ αi + βj + εij

as a starting point, where α and β have mean 0 and the error term εij ∼ N(0, 1). To alter the level
of assortative mixing, the parameter χ is introduced and an additional term is included, directly
proportional to the popularity and gregariousness of the individuals:

µij = µ+ αi + βj + χαiβj + εij .

1In particular, the fact that nodes have the appearance of organizing according to their network structure represents an
endogeneity in the modelling step that static generative models may have difficulty in handling.
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Y|T = f(T 1, T 2, ...): Parameter Symbol
T kij = global mean µ

+ sender covariate term(i) αi +Xiγi
+ receiver covariate term(j) βj +Wjνj
+ sender/receiver mixing term(ij) χ(αi +Xiγi)(βj +Wjνj)
+ arc covariate term(ij) Uijθ + εij
+ latent geometric term(ij) −|di − dj |
+ latent property term(ij) z′iCzj

Definitions µ, α, β, γ, ν, χ, θ, ω Effects (fixed, random, mixed)
Xi,Wj , Uij Covariates

di (Latent) position
zi Latent characteristic vector
C Latent characteristic factor matrix
εij Noise or Overdispersion

Table 1: The framework for all GLM network estimation, with broad definitions of each term
involved. Each of the terms in the general functional framework can be composed in terms of these
effect groupings. The function f(T 1, T 2, ...) may be deterministic or stochastic.

As the sender and receiver terms are naturally centered at zero, there are four regimes to consider:
when each of these terms is greater or less than zero respectively. Positive values of χ raise the tie
strength when αi and βj have the same sign, and lower for opposite signs, the key characteristic
of assortative mixing; likewise, negative values for χ lower the tie strength for opposite-signed
gregariousness and popularity in the individuals for this particular arc.

6.1 Additional Extensions

The present form allows for a great deal of expansion to other phenomena and other forms of data:

• Robust analyses with the multivariate t distribution, in place of the Gaussian. This imple-
mentation is a trivial addition to most Gibbs sampling algorithms through data augmenta-
tion.

• Normal-family outcomes are immediately derivable.

• Partial correlations as network ties can be implemented as inverse Fisher-transformed nor-
mal outcomes.

• Count data and ordinal data can have modified forms for the outcome.

These implementations are presented in other works.

6.2 The General Case

The cases presented have common roots: each expression required for the stochastic generation of
the relational structure can be decomposed into grand mean, sender, receiver and interaction terms.
These terms are summarized in Table 1.

As dyadic data, the pair (Yij , Yji) are taken together as a unit and may share many characteristics.
They may be independent given their characteristics, or dependent under a chosen framework like
a Generalized Estimating Equations method, the aforementioned bivariate probit, or a more general
latent copula formulation [11; 16; 17; 7].
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Figure 1: A series of networks formed by the Watts-Strogatz small-world algorithm. Left three: an
“ordered” lattice, in which every node is connected to its two nearest neighbours; a small number of
rewirings is permitted, maintaining the close connection of neighbours but decreasing the geodesic
path lengths; continued rewiring of connections at random. Right two: The median path length
and clustering statistics for small-world graphs generated by the Watts-Strogatz and GLM methods.
Each display the region between the curves where the graphs have small-world properties.

7 Reformulations of Classic Examples, with Extensions

Several popular approaches from outside the statistical literature are built around generative schemes
that propose to explain how real networks came to be in existence. However, it is all too easy to
confuse the map with the territory – in this case, the mistake of accepting a proposed generative
model for the network both as the best (and possibly only) story, and as predictive of future growth
and of similar networks – when alternate explanations are available. It is for these reasons that we
demonstrates the applicability of a workhorse GLM approach to model the same circumstances as
described by small-world and preferential-attachment mechanisms.

7.1 Watts-Strogatz “Small-World” Networks

While studying the mechanisms of coupled harmonic oscillations in biological networks, [19] iden-
tified a structural class of networks now known as “small world” networks, as inspired by the work
of social psychologist Stanley Milgram in the 1960s [14], which itself was also the source of the
expression “six degrees of separation”. While the initial work of Watts and Strogatz focused on
structural aspects, in later work the notion was generalized as being an interpolation between an
“orderly” ring lattice and a “chaotic” Erdős-Rényi random graph, so that a ring lattice had a fraction
of its ties rewired.

This can be easily described from the GLM approach. Begin with n nodes equally positioned around
a circle with circumference n. Let sij be the distance between nodes i and j along the circle.2 Let
Yij be drawn from a Bernoulli {0, 1} random variable with probability of success as the sum of two
pieces.

First, there is the propensity to connect to an immediate neighbour. In the complete “order” case,
an individual connects with probability one to the closest connections, those within a distance of
bkc = b (n−1)d

2 c, and with proportional probability if just outside this range. That is, if k = 2.5,
then the nearest two nodes on each side would be connected, and those a distance three away would
connect with one-half probability, and with probability zero for any nodes farther away. All together,
this represents a success probability

oij = δ(sij ≤ bkc) + (k − bkc)δ(0 < sij − bkc ≤ 1).

2Other distance functions may possibly be substituted here to produce different network topologies; the ring structure is
presented to maintain consistency with the original model.
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Second, there is the piece more indicative of chaotic behaviour. In the standard small-world model,
this takes the form of an Erdős-Rényi probability, so that the probability of connection is proportional
only to the density, defined as

cij = d.

The small-world GLM is then composed by weighing the order and chaos probabilities according to
the factor p, so that

Yij ∼ Be((1− p)oij + pcij).

This simultaneous model with a latent space is sufficient to explain small-world characteristics as
well as the original Watts-Strogatz model. However, the ability to expand this model beyond these
characteristics, not the least of which is the addition of nodal properties, is an advantage that the
GLM approach has over the original. These characteristics are on displayed at various levels of p
in Figure ??. As the degree of “chaos” increases with rising p, there is a region where the degree
of local clustering remains high, while the median distance between points decreases markedly, for
both the new GLM model and the original small-world model of [19].

7.2 Preferential Attachment Models

As many networks form through a process of aggregation, there is great interest in explaining a
network’s structure through a process of evolution. The mechanism proposed in [2], largely known
today by the term “preferential attachment”, follows this general mechanism:

1. Begin with a small collection of k connected nodes (a “seed” network) with some configu-
ration of ties between them. Make note of the degree of each node, di =

∑
j Yij .

2. Add a new node labelled k + 1 to the system, and create a link with one of the current k
nodes with respective probabilities pj = djP

i di
, proportional to the degree of each of the

nodes at this time.

3. Repeat step 2, updating the degree distribution with each step.

These methods represent the evolution of a system in which the active age of a node is partly respon-
sible for its propensity to have ties attached. But it is also reasonable to model this association as
a function of the intrinsic popularity of a node. For example, a system of nodes whose popularities
are heterogeneous can be generated as βj ∼ N(µ, σ2), so that µ is the mean popularity and σ2

the heterogeneity between nodes; the subsequently generated popularities are then the basis for the
generation of a directed graph. In keeping with previous examples and motivations, a probit link
with data augmentation is used to obtain the directed graph; a symmetrized version of this graph is
produced to get the undirected equivalent, so that Yij = max (I(Zij > 0), I(Zji > 0)).

The next section shows that generative systems with this level of heterogeneity can produce systems
that have the signature characteristics of the scale-free model, in common with the growth-plus-
preferential-attachment mechanism, yet also have additional interesting properties.

7.2.1 Example: A Simultaneous Heterogeneous Degree Network

To produce a network with similar “obvious” characteristics to a preferential attachment modelled
network with n total nodes, a large number N of networks are simulated under the preferential
attachment mechanism and recording the degree distribution for each, and taking the mean at each
position; that is, let
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Figure 2: Left: Fitting the expected degree of each node under a GLM model to the observed degrees
of networks constructed by preferential attachment. Right: A representative simulation of the GLM
model for scale-free-type networks. 1221 nodes with connections are shown, 906 of which are in
the largest component.

Dm =
1
N

∑
k

dk(m)

be the mean degree of the mth most popular node across all simulations.

Correspondingly, as node m should have Dm incoming connections, and the probability of any one
incoming connection is Φ(βm), there is an estimate for each individual βm = Φ−1(Dm/(n − 1)).
A curve is fit to the cumulative distribution curve (see Figure 2 Left), corresponding to the expected
fraction of edges per node for various ranges of beta using a simple least-squares criterion.

Three quantities are obtained in the fit: the mean shift, the standard deviation (scale), and the total
number of points that would make the completed curve – including the addition of nodes with degree
zero that would be unaccounted for with an algorithm that guarantees a fully connected graph.
Notably, to get a system with 1000 nodes in the largest component, a base population of 5000 is
required; if this is the generative mechanism for the system, then the preferential attachment model
will miss them. A simulation from the GLM model is plotted in Figure 2 to show the similarities
between it and the original model. The largest component in this simulation has 906 nodes; there
are an additional 315 nodes that are connected in some way to others, leaving 3879 isolated and
undisplayed nodes.

The dynamic properties of this class of system are considerably different from preferential attach-
ment, not the least of which is the likelihood that new nodes are not guaranteed to join the giant
component. This generative scheme can capture many of the same features of an observed network
for which preferential attachment is a plausible mechanism, while at the same time noting that the
use of a preferential attachment model would not indicate the presence of so many disconnected
nodes that are no less involved in the system under study.
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