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Abstract 

A variety of genome-scale functional data is available for many microbial 
species, but determining the biological functionality and metabolic potential 
of a sequenced organism remains a significant challenge.  Biological 
network integration and mining algorithms provide a means of assembling 
this body of data, understanding it from a systems level, and applying it to 
the study of uncharacterized species and communities. We compare 
supervised and unsupervised Bayesian approaches to biological network 
integration; this process provides maps of functional activity and 
genomewide interactomes in over 100 areas of cellular biology, using 
information from ~5,000 genome-scale experiments pertaining to 13 
microbial species. In combination with graph alignment, these network 
manipulation tools provide a means for analyzing the functional activity 
unique to particular pathogens, transferring putative functional annotations 
to uncharacterized organisms, and potentially inferring interactomes using 
weighted network integration for metagenomic communities.  

 

1 Introduction  

High-throughput sequencing has greatly reduced the cost and difficulty of obtaining 
microbial genomes, but determining the biological functionality and metabolic potential of a 
sequenced organism remains a significant challenge. This challenge is magnified in 
metagenomic and metatranscriptomic communities, which might sample only small 
fragments of genes from thousands of organisms. Existing computational tools for 
functionally annotating a newly sequenced genome or community rely heavily on sequence 
homology, are limited in throughput by requirements for manual curation and prior 
knowledge, and do not yet leverage the thousands of experimental results publicly available 
for a diversity of characterized organisms. 

Large scale functional genomic data integration has succeeded in predicting both functional 
annotations and interactomes in organisms ranging from yeast to human [1-4]. The strengths 
of such integrative methods include the ability to make data-driven predictions based on tens 
of thousands of experimental results, to operate in the space of biological networks (e .g. 
physical, genetic, regulatory, or functional interactomes) rather than genomic sequences, and 
to employ scalable machine learning to overcome sparse prior knowledge. Here, we present 
computational methodology for biological network integration, allowing A) the rapid, 
scalable integration of arbitrary experimental data modeled as biological networks and B) a 
system of functional mapping to derive high-level pathway activity and associations from 
genome-scale data. 



In order to take advantage of large collections of genomic data, they must be integrated, 
summarized, and presented in a biologically informative manner. We provide a means of 
mining thousands of whole-genome experimental interactomes by way of functional maps. 
Each map represents a body of data, probabilistically weighted and integrated, focused on a 
particular biological question. These questions can include, for example, the function of a 
gene, the relationship between two pathways, or the overall metabolic or functional activity 
present in a dataset or genome. Each functional map, based on an underlying predicted 
interaction network, summarizes an entire collection of genomic experimental results in a 
biologically meaningful way. 

While functional maps can readily predict functions for uncharacterized genes [5], it is 
important to take advantage of the scale of available data to understand entire pathways and 
processes. Cross-talk and co-regulation among pathways, processes, and metabolic functions 
can be mapped by analyzing the structure of underlying functional relationship networks. 
Similarly, associations between distinct but interacting biological processes (e.g. mitosis and 
DNA replication) can be quantified by examining functional relationships between groups of 
genes, allowing the identification of proteins key to interprocess regulation.  We demonstrate 
this functional mapping methodology using a compendium of 4,894 bacterial expression 
conditions spanning 13 species (see Table 1) and discuss its future application to the 
characterization of newly sequenced microbes and metagenomes.  

Table 1: Organisms and data compendia analyzed in this study 

Organism Dsets. Conds. Organism Dsets. Conds. 

Bacillus anthracis 1 8 Helicobacter pylori 26 809 

Bordetella bronchiseptica 9 63 Mycobacterium tuberculosis 31 641 

Campylobacter jejuni 352 681 Pseudomonas aeruginosa 34 324 

Clostridium botulinum 1 11 Staphylococcus aureus 151 828 

Enterococcus faecalis 3 31 Vibrio cholerae 14 275 

Escherichia coli 81 1061 Yersinia enterocolitica 11 104 

Francisella tularensis 8 58    

 

2 Results  

 

2 .1  Sca la b le  b io lo g ica l  ne tw o rk in teg ra t io n  a ccura te ly  pred ic t s  

mi cro bia l  in t era c to me s  

For each of the 13 organisms discussed above, we generated two predicted functional 
interactomes integrating all available experimental datasets. A supervised interactome was 
predicted using Bayesian data integration, in which each dataset's discretized coexpression 
values were used to train a naive classifier using curated relationships from the KEGG 
catalog [6]. Additionally, an unsupervised interactome was predicted by averaging over all 
datasets' normalized coexpression networks; this is detailed in the following section.  

As evaluated in Figure 1A, the ability of the resulting supervised interaction networks to 
accurately recapitulate KEGG coannotations correlates approximately with the number of 
available expression conditions. In some outliers, the number of effective datasets is limited 
due to losses during automated extraction from ArrayExpress (e.g. only ~15 of the S. aureus 
datasets contribute usefully to the integrated network).  Similarly, in species with limited 
expression data, the majority of mispredicted interactions are false negatives with no 
available data to drive predictions (e.g. some ~8,000 gene pairs in B. anthracis). However, in 
species with sufficient data, many high-confidence false positives can easily be characterized 
as underannotations in KEGG; the top E. coli predictions, for example, include a variety of 
interactions between RNA polymerase, elongation factors, protein translocases, and the 
ribosome that represent true biological interactions not captured by KEGG pathways. 
Network analysis can easily extract these dense subgraphs within each species for future 
curation [4]. 

 



 

Figure 1: Accuracy of predicted microbial functional interactomes as evaluated against the 
KEGG [6] catalog. A) Supervised Bayesian integration of experimental datasets. B) 

Unsupervised biological network integration. 

 

2 .2  Unsu perv i sed  i n teg ra t io n  pro duce s  func t io n a l  in t era c to me s  in  the  

a bsence  o f  a  cura ted  go ld  s ta nda rd  

Completely unsupervised biological network integration also predicts most species' 
functional interactomes with remarkable accuracy, as shown in Figure 1B. As discussed 
below, unsupervised network integration introduces much greater variability into the 
predicted interactome, but the rank order of confident predictions is largely preserved. This 
accuracy is robust to removal of large confounding biological pathways such as translation 
and the ribosome ([7], data not shown). AUCs decrease by an average of 0.017 in the 
unsupervised evaluations, the major benefit to supervised network integration arising in 
cases where noisy datasets are effectively downweighted by the Bayesian classifier (e.g. 
several H. pylori datasets have individual AUCs below 0.5 due to data processing, 
microarray platform age, and low numbers of conditions). 

While overall AUCs are consistently improved by supervised network integration, 
unsupervised network analysis provides several organisms with a boost in the low recall, 
high precision region of predictive biological interest. One such example is Y. enterocolitica, 
in which the three expression datasets usable after processing all provide individually 
accurate functional predictions (data not shown). Many of the predictions with the greatest 
magnitude of change between the two integration algorithms are uncharacterized, but several 
include transporters (e.g. ysaV, ysaN, yst1M, yst1F, yst1C, and others), metabolic enzymes, 
chemotactic proteins, and flagellar components with clear relationships overly 
downweighted by the supervised integration process. Organisms in which this is the case 
generally have too little experimental data for completely accurate supervised learning to 
take place; for example, no comparable examples are produced for E. coli or P. aeruginosa. 

 

2 .3  Funct io na l  ma pping  c ha ra c ter izes  spec ie s - s pec i f i c  meta bo l i c  a nd  

funct io na l  po tent ia l  

Functional mapping is a network mining tool that further summarizes compendia of 
genomewide interactomes (e.g. from many biological contexts [4] or, in this case, species) as 
a set of annotated process- and pathway-level associations. As detailed in Methods, 
functional mapping relies on the aggregate analysis of edges within or spanning gene sets of 
interest, which can be drawn from prior knowledge (e.g. KEGG pathways) or extracted using 
unsupervised clustering. While the functional activity scores shown here are based on score 
ratios for simplicity, an algorithm for deriving bootstrap p-values is discussed below. An  



 

 

Figure 2: Functional activity predicted by the A) supervised and B) unsupervised network 
integrations.  Cell color indicates the cohesiveness of each biological process within each 
species' network on a logarithmic scale; dynamic range is four standard deviations around 
mean, and processes with insufficient data or low detectable activity have been omitted. 

 

example of functional mapping results characterizing biological pathway activity for these 
13 microbial species within selected KEGG pathways is shown in Figure 2. 

Functional maps derived from the supervised interactomes (Figure 2A) emphasize mainly 
easily detectable biological processes from well-characterized species. The ribosome and 
translational processes such as tRNA synthesis are known to have strong expressio n signals 
in microorganisms [7], and organisms well-annotated in the KEGG catalog have by far the 
strongest detectable activity. One outlier is the strong signal detected for anaerobic benzoate 
degradation in V. cholerae, driven by consistent activity in the sdh and frd operons across 
nearly all available data. While these are significant components of the tricarboxylic acid 
cycle and are strongly conserved in many microbes [8-9], there is no literature evidence to 
suggest that they might play a unique role in cholera, and this unusual activity could be 
followed up experimentally. 

The unsupervised interactomes show a much more heterogeneous pattern of functional 
activity (Figure 2B), due mainly to the substantially higher variability introduced by giving 
equal weight to all datasets during the integration process. However, while this clearly 
introduces additional noise (note several pathways with below-baseline cohesiveness in 
some organisms, denoted by blue cells), it also emphasizes several areas of biological 
interest potentially hidden by the emphasis on characterized organisms in the supervised 
interactomes. These include a link between the TCA cycle/pentose phosphate metabolism  
and V. cholerae's anaerobic growth (linked to carbon fixation by orthology to photosynthetic 
microbes), fructose metabolism in B. anthracis (a spore surface component [10]), and a 
collection of RNA helicases in C. botulinum (which are differentially active relative to C. 
sporogenes [11]). Unsupervised biological network integration thus provides a means of 
exposing accurate, novel biology from large functional data compendia, even in the absence 
of prior knowledge regarding species of interest.  

 

  

(a) (b)

Supervised

Integration

Unsupervised

Integration



 

Figure 3: Example of the variation observed in predicted interactomes between species and 
network integration algorithms. In all subgraphs save E, a normalized edge weight threshold 
of 0.25 was used. A) The subgraph over 11 virulence-linked genes from [14] in the 
supervised Mycobacterium tuberculosis network. B) The same 11 genes in the unsupervised 
M. tuberculosis network. C) The subgraph over the six orthologs of these genes in the 
Escherichia coli supervised network (the sixth ortholog is omitted from this connected 
component). D) The subgraph over these six orthologs in the unsupervised E. coli network. 
E) The full network neighborhood surrounding these six orthologs in the supervised E. coli 
network as determined by the HEFalMp network query algorithm [4]. 

 

2 . 4  Netw o rk co mpa r i so ns  h ig h l ig ht  func t io na l  s pec ia l i za t io n   

By aligning predicted interactomes using sequence-based orthology [12] or graph alignment 
[13], network-based functional information can be transferred between species in a richer  
context than by sequence similarity alone. For example, Figure 3 demonstrates the subgraphs 
surrounding 11 genes linked to virulence in M. tuberculosis [14] in a variety of interactome 
contexts. In the supervised tuberculosis interactome (Figure 3A), most data is 
downweighted, and these genes are only loosely functionally related. However, they do 
demonstrate strong coexpression in many datasets, as evidenced by their high connectivity in 
the unsupervised interactome (Figure 3B); this represents a case in which a clustering 
analysis could easily have uncovered this important biological feature based on network 
integration. KEGG provides only six known orthologs to these proteins in E. coli, but they 
are in turn tightly clustered in both E. coli interactomes (Figures 3C and D). Using the 
HEFalMp graph search algorithm to visualize the entire network neighborhood around these 
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orthologs (Figure 3E) reveals two distinct clusters, the ybh and related operons (an 
uncharacterized ATP-binding cassette transporter) and the flagellar operons flg and fli. These 
are linked by a collection of amino acid transporters and modifiers, providing a rapid, 
computational derivation of the experimental hypothesis originally offered in [14] that the 
virulence cluster likely deals with small molecule, drug, and host metabolite transport.  

 

3 Conclusions 

Here, we present network integration and analysis tools allowing the supervised (i.e. based 
on prior biological knowledge) and unsupervised integrations of over 700 experimental 
datasets from 13 microbial species. This methodology is completely automated, relying on 
the extraction of expression data from repositories such as ArrayExpress, its conversion into 
normalized coexpression networks, and the integration of these networks into species -
specific functional interactomes either by unsupervised averaging or by supervised Bayesian 
learning. Finally, biological activity in the resulting interactome compendium was fur ther 
summarized using functional mapping, revealing significant pathway coregulation and 
interspecies variability. 

The key methodologies driving this analysis are efficient large scale network alignment and 
subgraph comparisons. The former allows arbitrary experimental data to be modeled as 
biological networks - possibly with a large proportion of missing nodes (genes) or edges - 
and weighted either uniformly or using learned probability ratios in a Bayesian framework. 
The latter allows compendia of functional networks, which would otherwise be unwieldy for 
direct biological analysis, to be further summarized as association and cohesiveness 
measures between and within pathways and processes of interest.  The combination of these 
features with sequence-based interspecies orthology or direct graph alignment algorithms 
provides an immediate means for biological hypothesis generation, for example regarding 
the factors driving virulence or host interactions in differentially pathogenic strains of a 
single species or the functionality of uncharacterized genes in newly sequenced organisms. 

Finally, one of the most important areas for future applications of this work is in the analysis 
of metagenomic communities. As high-throughput sequencing is increasingly used to collect 
short DNA sequences directly from uncultured environmental samples, the need to 
functionally characterize community activity and individual microbial community members 
will grow dramatically [15]. By combining sequence similarity, graph alignment, local 
subgraph analysis, and large scale functional data integration, the tools presented here for 
weighted biological network integration can be used to transfer functional maps and partial 
interactomes from laboratory-based experimental results to environmental metagenomes and 
metatranscriptomes. When used in the analysis of the human microflora or of pathogen 
populations with variable genetic repertoires, this has the potential to provide rapid 
computational hypothesis generation for the characterization of microbial community roles 
in human disease. 

 

4 Methods  

We provide genomewide functional interactomes predicted for 13 bacterial species using 
efficient Bayesian integration of 722 genomic datasets modeled as whole-genome interaction 
networks [16]. Functional associations between biological processes from KEGG [6] were 
derived by further integration and analysis of these networks in a context -sensitive manner. 

 

4 .1  Da ta  co l l ec t io n  a nd  go ld  s ta nda rd  g enera t io n  

We integrated 722 expression datasets spanning 13 microbes drawn from the ArrayExpress 
database [17].  Each experimental result was modeled as an interaction network and initially 
processed as described in [16]. Each dataset D was converted from expression values to gene 
pair similarity scores using Pearson correlation normalized using Fisher's z -transform and 
subsequently z-scored: 
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After z-scoring, each expression dataset was quantized using the binnings ( -∞, -1.5), [-1.5, -
0.5), [-0.5, 0.5), [0.5, 1.5), [1.5, 2.5), [2.5, 3.5), [3.5, ∞); these represent steps of one 
standard deviation in z-score space. 

Unsupervised network integration was performed by averaging the resulting interactomes 
within each species S: 
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To perform supervised network integration, we generate a gold standard of known 
functionally related and unrelated gene pairs. Biological processes of interest were selected 
from KEGG [6] and an answer set was derived from these processes as described in [16]. 
Gene pairs coannotated to any term were considered to be related. A gene pair was unrelated 
in the gold standard if A) the two genes were both annotated to some term in the positive 
term set, B) the genes were not coannotated to any of these terms, and C) the terms to which 
the genes were annotated did not overlap with hypergeometric p-value less than 0.05. All 
other gene pairs were omitted from the standard (i.e. they were neither related nor unrelated 
for training and evaluation purposes). 

 

4 .2  B a y es ia n  a na ly s i s  

One naive Bayesian classifier was learned per organism of interest; experiments with other 
network structures were shown to provide negligible performance improvements [16]. 
Briefly, a global classifier was learned in which the class to be predicted was gene pair 
functional relationships (as defined in the gold standard) and each dataset formed one node 
in the network. All Bayes network manipulation was performed using the Sleipnir C++ 
library for computational functional genomics [18]. Each naive Bayesian classifier directly 
implies a functional relationship network in which nodes represent genes and edge weights 
consist of the posterior probabilities of functional relationships between gene pairs.  This 
results in a supervised integrated functional interactome predicted for each species S as: 
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where wD(gi, gj) is discretized as described above. 

 

4 .3  Funct io na l  re la t io nsh i p  a nd  da ta se t  enr ich ment  pred ic t io n s  

As described above, for the purposes of this analysis, a biological process was defined as a 
set of related genes. The strength of a predicted functional relationship between two 
processes F and G was calculated as the average edge weight in the global interaction 
network within the edge set: 

},,,|),{(, GFggGgFgggE jijijiGF  

Similarly, the functional cohesiveness of a process was measured as the ratio of the average 
edge weight in the process to the average edge weight incident to the process:  
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where F is the function of interest, G is the genome, and wF(gi, gj) is the edge weight 
between genes gi and gj. 

For the purpose of predicting gene function based on "guilt by association" with known 
genes in some process, the connectivity of a gene to a process was assessed as follows. Each 
gene/process pair was assigned a functional association score equal to the ratio of its average 



probability of functional relationship to the process over the process's cohesiveness:  
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4 .3  Funct io na l  ma pping  a sso c ia t io ns  a nd  p -v a lu es  

As described in [4], these cohesiveness and association scores can also be converted from 
empirical ratios into p-values, although this methodology has been omitted from this 
analysis in the interest of brevity.  Briefly, we can define a functional association score made 
up of four parts. The score between two gene sets within a process is the average probability 
of all edges between them, essentially their association. Their background score in a process 
is the average probability of all edges incident to either set. The baseline score is the average 
probability of an edge in the integrated network. The score within a single gene set is the 
average edge probability assuming nodes are self-connected with baseline strength, and the 
score within two gene sets is their unweighted average. The between and baseline scores are 
divided by the background and within scores to calculate two gene sets' functional 
association, which is thus increased if they are more interconnected and decreased if they are 
more self-connected. Thus for any two gene sets G1 and G2 in species S, we define: 

21 ,21

21 ),(
||||

1
),(

GgGg

jiSS

ji

ggw
GG

GGbetween

 

i jjg Gg

jiS

Gg

jiSS ggw
G

ggw
Gn

GGbgrnd
21

),(
||

1
),(

||

11
),(

21

21

 

ji gg

jiSS ggw
n

baseline
,

),(
1

 

1,
2

1

1

),(

||

1
)(

Ggg S

jiS

S

ji
jibaseline

jiggw

G
Gwithin

 

)()(
2

1
),( 2121 GwithinGwithinGGwithin SSS

 

),(),(

),(
),(

2121

21
21

GGwithin

baseline

GGbgrnd

GGbetween
GGFA

S

S

S

S
S

 

This score is converted into a p-value by interpolating over a bootstrapped null distribution, 
which for any species/network is approximately normal with standard deviation asymptotic 
in the sizes of the two gene sets. Fitting these empirical curves with a ratio of linear 
polynomials allows computation of an approximate standard deviation for any pair of gene 
set sizes, which also allows the conversion of functional association scores into p-values 
using a normal distribution function. 
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