Fast and Optimal Algorithms
for Weighted Graph Prediction

Nicolo Cesa-Bianchi Claudio Gentile
Universita di Milano, Italy Universita dell’Insubria, Italy
cesa- bi anchi @Isi.unim .it cl audi o. gentil e@ninsubria.it

Fabio Vitale Giovanni Zappella
Universita di Milano, Italy Universita di Milano, Italy
fabio.vitale@mnim.it gi ovanni . zappel | a@tudenti.unim.it
Abstract

We show that the mistake bound for predicting the nodes oflaitrary weighted

graph is characterized (up to logarithmic factors) by theghied cutsize of a ran-
dom spanning tree of the graph. The cutsize is induced byrtkieawn adversarial
labeling of the graph nodes. In deriving our charactergtive obtain a simple
randomized algorithm achieving the optimal mistake boundhoy graph. Our
algorithm draws a random spanning tree of the original gt then predicts
the nodes of this tree in constant amortized time and linpaces Preliminary
experiments on real-world datasets show that our methqubdiorms both global
(Perceptron) and local (majority voting) methods.

1 Introduction

A widespread approach to the solution of classification f@mis is representing the data through a
weighted graph in which edge weights quantify the simijabbétween data points. This technique
for coding input data has been applied to several domaityding Web spam detection [12],
classification of genomic data [17], recognition of facel ghd text categorization [8]. In most
applications, edge weights are computed through a com@&cmodelling process and convey
crucially important information for classifying nodes.

This paper focuses on the online version of the graph cleadin problem: the entire graph is
known in advance and, at each step, the algorithm is reqtaneckdict the label of a new arbitrarily
chosen node. In the special case of unweighted graphs (wezdges have unit weight) a key
parameter for controlling the number of prediction mistaiethe size of the cut induced by the
unknown adversarial labeling of the graph. Although in tineveighted case previous studies use
the cutsize to prove several interesting upper bounds [2,112], no general lower bounds on the
number of prediction mistakes are known, leaving fully ople@ question of characterizing the
complexity of learning a labeled graph. In a recent papetté]expected number of mistakes is
bounded by the cutsize of a random spanning tree of the geagbhantity stricly smaller than the
cutsize of the whole graph. In this paper we show that thistityacaptures the hardness of the
graph learning problem, even in the general weighted caBer@ithe expectation suitably depends
on the edge weights). Given any weighted graph, we proveathaprediction algorithm must err on
a number of nodes which is at least as big as the weightedzeut$ithe graph’s random spanning
tree. Moreover, if the ratio of the largest to the smallesgiveis polynomial in the number of nodes,
we exhibit a simple algorithm achieving (to within logaritic factors) the optimal mistake bound.

Following [4], our algorithm first extracts a random spamiree of the original graph, and then
predicts all nodes of this tree using a generalized variatiteomethod proposed in [11]. Our tree
prediction procedure is extremely efficient: it only re@siconstantamortized time per prediction
and spacdinear in the number of noded\ote that computational efficiency is a central issue in
practical applications where the involved datasets candpg harge. Indeed, learning algorithms

whose time complexity scales, say, more than quadratieatty the number of data points should
be considered impractical.

A significant contribution of this work is the experimentabtiation of our method, as compared
to methods recently proposed in the literature on graphigiied. In particular, we compare our
algorithm to the Perceptron algorithm with Laplacian kéfd@, 12], and to simple majority vote
predictors. The experiments have been carried out on twaumeslize biological datasets from [6].
The two tree-based algorithms (ours and the Perceptrord baen tested using spanning trees
generated in various ways. Though preliminary in nature gaperimental comparison shows that,
in terms of the online mistake count, our algorithiwaysoutperforms the tested competitors while
using the least amount of time and memory resources.

2 Preliminaries and basic notation

LetG = (V, E, W) be an undirected, connected, and weighted graphwithdes and positive edge
weightsw; ; > 0 for (¢, j) € E. Alabeling ofG is any assignmenj = (y1,...,yn) € {—1,+1}"

of binary labels to its nodes. We u$€',y) to denote the resulting labeled weighted graph. The
online learning protocol for predicting=, y) is defined as follows. The learner is giveéhwhile y

is kept hidden. The nodes 6f are presented to the learner one by one, according to an wnkno
and arbitrary permutation, . .., 4, of V. At each time step = 1,...,n nodei, is presented and
the learner must predict its labgl,. Theny;, is revealed and the learner knows whether a mistake
occurred. The learner’s goal is to minimize the total nundigarediction mistakes.

It is reasonable to expect that prediction performance Ishdegrade with the increase of "ran-
domness” in the labeling. For this reason, our analysis ablyprediction algorithms bounds from
above the number of prediction mistakes in terms of appat@notions of graph labetgularity.

A standard notion of label regularity is the cutsize of a ladegraph, defined as follows. é-edge
of a labeled grapliG, y) is any edgds, j) such thaty; # y;. Similarly, an edg€s, j) is ¢-free if

yi = y;. Let E? C E be the set of-edges inG, y). Thecutsizedq(y) of (G, y) is the number
of ¢-edges inb(y), i.e., P (y) = | E?| (independent of the edge weights). Theightedcutsize

o (y) of (G,y) is ¢ (y) = Xo; jyepo Wij-

Fix (G,y). Let rf'; be the effective resistance (see, e.g., [15]) between noded j of G. For
(i,7) € E, letalsop; j = w; jr}", = wi ;/(wi; 4+ 1/7";) be the probability thati, j) belongs to a
random spanning treg [15]. HereﬁV,‘; denotes the effective resistance betweand;j when edge
(z,7) is eliminated —if(4, j) is a bridge, whose elimination disconne€tswe seﬂ/?}f‘? = 0. Then

we have
Wi, j
E®r(y) = Z Pij = Z m (1)
5 2,7

(i.5)eE? (i,5)eE?

Sincez(m)eEpi_,j is equal ton — 1, irrespective of the edge weighting, the ragéTE Or(y) €

[0, 1] provides anedge density-independemteasure of the cutsize ii. and allows one even to
compare labelings on different graphs. It is also importanhote thatE ®1(y) can be much
smaller than®!¥ (y) when there are strongly connected regionssicontributing prominently to
the weighted cutsize. To see this, consider the followirenado: If (i, j) € E¢ andw; ; is large,
then(i, j) gives a big contribution t® (y). However, this might not happen x®7(y). In fact,

if ¢ andj are strongly connected (i.e., if there are many disjoinhpabnnecting them), the?j“fj is
very small, thus the terms; ; /(w; ; + 1/?%) in (1) are small too. Therefore, the effect of the large

weightw; ; may often be compensated by the small probability of inelgdi, j) in the random
spanning tree.

3 Alower bound for any weighted graph

We start by proving a general lower bound, showing that aediption algorithm must err at least
E &1 (y) times on any weighted graph.

Theorem 1 LetG = (V, E, W) be a weighted undirected graph witmodes and weights, ; > 0
for (i,5) € E. Then for all K < n there exists a randomized labelingof G such that for all
(deterministic or randomized) algorithms the expected number of prediction mistakes madé by
is at leastK /2, whileE & (y) < K.

Proof. The adversary uses the weightifyinduced byl and defined by, ; = wl-_,jrf_";. Note
that p; ; is the probability that edgéi, j) belongs to a random spanning tréeof G. Hence
d(jyepbij =n—1 and®’(y) = E®r(y) for any given labelingy of G. Let P, = > Dij

be the sum over the induced weights of all edges incident tkemo We call P; the weight of
nodei. LetS C V be the set ofK nodesi in G having the smallest weigh;. The adversary
assigns a random label to each nade S. This guarantees that, no matter what, the algorithm
A will make on averagd{/2 mistakes on the nodes ifi. The labels of the remaining nodes
in '\ S are set either ali+1 or all —1, depending on which one of the two choices yields the
smaller®Z(y). We now show that the weighted cutsi@d (y) of this labelingy is less than
K, independent ofhe labels of the nodes ifi. Since the nodes ii¥’ \ S have all the same la-
bel, the¢-edges induced by this labeling can only connect either taaes inS or one node in

S and one node i/ \ S. Henced} (y) = " (y) + ¢S (y), where®,"™ (y) is the
cutsize contribution withinS, and @Z’m(y) is the one from edges betweéhandV \ S. Let
P& = 3 ep ijesPig and P§™ = 37, i p.ics jev\s Pij - From the very definition of
P& and ég’mt(y) we have@é’mt(y) < Pi". Moreover, from the way the labels of nodes in
V' \ S are selected, it follows thak;“**(y) < Pg"t/2. Finally, >, s P; = 2P + Pg*t holds,
since each edge connecting nodesSiis counted twice in the surh o P;. Putting everything
together we obtain

, K 2K 2K (n —1)
int exrt __ . . P S
2Pg" + Pg —g sz—n g P = ” E bij = "
€S eV (i,7)eE

the inequality following from the definition of. Hence

in exr in Pewt Kn_l
Bar(y) = $f(y) = 85" (y) + 85) < Pt 5 < KO LK

4 The Weighted Tree Algorithm for weighted trees

In this section, we describe the Weighted Tree Algorithat4£) for predicting the labels of a
weighted tree. In Section 6 we show how to applyA to solve the more general weighted graph
prediction problem.wTA first turns the tree into a line graph (i.e., a list), then rarfast nearest
neighbor method to predict the labels of each node in the Mi@ugh this technique is similar to
that one used in [11], the fact that the tree is weighted m#ieeanalysis significantly more difficult.

Given a labeled weighted tré&", y), the algorithm initially creates a weighted line graphcon-
taining some duplicates of the nodesTin Then, each duplicate node (together with its incident
edges) is replaced by a single edge with a suitably choseghtvélihis results in the final weighted
line graphL which is then used for prediction. In order to credtdrom 7', wTA performs the
following tree linearizatiorsteps:

1. An arbitrary node of T'is chosen, and a ling’ containing onlyr is created.

2. Starting fromr, a depth-first visit ofl" is performed. Each time an edge}) is traversed
(evenin abacktracking step), the edge is appendé&tuath its weightw; ;, andj becomes
the current terminal node df’. Note that backtracking steps can creaté irat most one
duplicate of each edge ifi, while nodes ifil” may be duplicated several timesin.

3. L' is traversed once, starting from terminal During this traversal, duplicate nodes are
eliminated as soon as they are encountered. This works las/fol Letj be a duplicate
node, andj’, j) and(y, j”') be the two incident edges. The two edges are replaced by a
new edgej’, ;) having weightw;: j» = min{w; ;,w; ;- }.* Let L be the resulting line.

The analysis of Section 5 shows that this choicepf;» guarantees that the weighted cutsize.of
is smaller than twice the weighted cutsizelofOncel is created fronT’, the algorithm predicts the
label of each nodg using a nearest-neighbor rule operating/owith aresistance distancmetric.

!By iterating this elimination procedure, it might happeattimore than two adjacent nodes get eliminated.
In this case, the two surviving terminal nodes are conneictdd by the lightest edge among the eliminated
ones inL'.

Thatis, the prediction o is the label of ;+, beings* = argmin, _, d(is, ;) the previously revealed
node closest téy, andd(i, j) = S°* 1/wa, v, , iS the sum of the resistors (i.e., reciprocals of edge

s=1

weights) along the (unique) path= v; — v; — - -+ — w11 = j connecting nodéto nodej.

5 Analysis

In this section we derive an upper bound on the number of késtenade by TA on any weighted
treeT = (V, E, W) interms of the number af-edges, the weighted cutsize, and the sum of resistors
of ¢-free edgesRY = > .jer\pe 1/wi ;. The following lemma establishes some simple but
important relationships between the tfBand its linearized versioh. Theorem 3 below exploits
this lemma to bound the total number of mistakes on any tree.

From the construction in Section 4 we see that when we tramstdinto L the pairs of edge§g’, j)
and(j, ;") of L’ which are incident to a repeated noflget replaced irl. (together withj) by a
single edgd;’, ;) —step 3 in Section 4. We call these edgpsariousedges. Assume thgj’, ;")

is spurious inL. Wheny;: # y;» we have created a spuriogsedge by eliminating &-edge and a
¢-free edge fronL’. Wheny,;, = y;» # y;, we have created a spuriogdree edge by eliminating
two ¢-edges fronl.’. Let RV be the sum of resistors of all spuriogigree edges created during the
elimination of pairs ofp-edges inL’.

Lemma 2 Let (T,y) be a labeled tree(L,y) be a linearized version of it, and’ be the line
graph with duplicates (as described in Section 4). Thendheviing holds: R} < RW + R}V <
2R} + Ry, @) (y) < @ (y) < 207 (y), and P, (y) < @1/ (y) < 287(y).

Proof. Note that each edge @f occurs inL’ at least once and at most twice. This pro®é§(y) <
20 (y) and®/(y) < 2®r(y). Note further that. contains some non-spurious edges frbm
plus a number of spurious edges. Each spuripfree edgej’, j”/) can be created (by eliminating
a nodej) when either (i)y;; = y;» = y;, which implies thatw; ;» corresponds to the weight of
a ¢-free edge eliminated i’ together with nodg, and thusw, ;- is not included inRk{"’; or (ii)
Y = y;» # yj, which implies thatw; ;- is included inR}". This proves the first inequality. To
prove the remaining inequalities, first note that a spuriedge(j’, ;) cannot be ap-edge inL
unless eithefj, j') or (4,j") is ag-edge inL’. Moreover, if(j', ;') is a¢-edge inL, then its weight
is not larger than the weight of the associateddge inL’ —Step 3 in Section 4. 0

Theorem 3 If wTA is run on a weighted and labeled tré&’, y), then the total numbem of

mistakes satisfies
RY O (y)
—0(® 141 1+%))).
" () (8 (dr(y)

The mistake bound in Theorem 3 shows, in the logarithmiofacthat the algorithm takes advan-
tage of labelings such that the weightsgeBdges are small (thus makidg? (y) small) and the
weights of¢-free edges are high (thus makidt}' small). This somehow matches the intuition
behindwTA’s nearest-neighbor rule according to which nodes that lxsedo each other are ex-
pected to have the same label. In particular, observe teatsly the above quantities are combined
makes the bound independent of rescaling of the edge weigbtsn, this has to be expected, since
WTA’s prediction is scale insensitive. On the other hand, it myagear less natural that the mistake
bound also depends linearly on the cutsize(y), independent of the edge weigh#ss a matter of
fact, this linear dependence on the unweighted cutsizeatd®eliminated (this is a consequence
of Theorem 1 in Section 3).

The following lemma (proof omitted due to space limitatippsoves a mistake bound for any
weighted line graph. It also shows that, for aky > 0, one can drop from the bound the con-
tribution of any set ofK’ resistors inRkL at the cost of adding(extra mistakes.

Lemma 4 If wTA is run on a weighted line grapbL, y), then the total numbem of mistakes

satisfies
W FW

Whereézv is the sum of of the resistors of any set formed by allut-free edges of..

4

Proof of Theorem 3 [sketch]. Recall thatR}!" is the sum of resistors on all spuriotisree edges
obtained by eliminating pairs ef-edges inL’. Hence, we can injectively associate with each such
edge two distinc-edges inl.’, and therefore the total number of spurious edges givingitorion

to R} is bounded byb ./ (y)/2, which in turn can be bounded iy (y) via Lemma 2. Applying

Lemma 4 (settin®?’¥ to RY — R}V) along with Lemma 2 concludes the proof. O

6 The Weighted Tree Algorithm on weighted graphs

In order to solve the more general problem of predicting #tels of a weighted grapH, one can
first generate a spanning tréeof G and then rurwTA directly onZ'. In this case it is possible to
rephrase Theorem 3 in terms of properties;ofNote that for each spanning tréeof G, %V (y) <

oY (y) and®r(y) < s (y). Specific choices of the spanning tr&econtrol in different ways
the quantities in the mistake bound of Theorem 3. For exanapteinimum spanning tree tends to
reduce the value akY, betting on the fact that-edges are light. Adapting the proof of Theorem 3,
we can prove the following result.

Theorem 5 If WTA is run on a random spanning tré of a labeled weighted grap, y) with n
nodes, then the total numbers of mistakes statisfies

Emg =0 (E[wy)} <1+log <1+n%>>>

-
wherew,), = ming jyep\po wi; and wh, = max(; jeps wi ;. In particular, if the ratio

max

max(; ;) (k,0)cE Wi,; | wk,¢ is bounded by a polynomial im, thenE m¢ = O(E[®r(y)]logn).

)5
Note that having< ¢-free edges with exponentially small (ir) weights does not necessarily lead
to a vacuous bound in Theorem 5 whg&his small enough. Indeed, one can use Lemma 4 also
to replace the factow;l‘fn by the (K + 1)-th smallesty-free weight at the cost of adding juit
more mistakes. On the other hand(ithas exponentially largé-edge weights, then the bound can
indeed become vacuous. This is not surprising, thougheshecalgorithm'’s inductive bias is to bet
on graphs having small weighted cutsize.

7 Computational complexity

A direct implementation ofvTA operating on a tre& with n nodes would require running time
O(nlogn) over then prediction trials, and linear memory space. We now sketethtodmplement
WTA in O(n) time, i.e., inconstan@amortized time per trial.

Once the given tre@ is linearized into am-node lineL, we initially traversel from left to right.
Call jj the left-most terminal node af. During this traversal, the resistance distad¢g,) is
incrementally computed for each node L. This makes it possible to calculate in constant time
d(i,) for any pair of nodes, sincé(i, j) = |d(jo,t) — d(jo,j)| Vi,j € L. On top of lineL a
complete binary tre@” is constructed having/'s2 ! leaves? Thek-th leftmost leaf (in the usual
tree representation) @ is thek-th node inL (numbering the nodes df from left to right). The
algorithm maintains this data-structure in such a way théitrae ¢: (i) the subsequence of leaves
whose labels are revealed at timare connected through a (bidirectional) 118t and (ii) all the
ancestors T’ of the leaves o3 are marked. See Figure 1 for an example.

WhenwTA is required to predict the labe},, the algorithm looks for the two closest leavésand

1" oppositely located irl. with respect tai;. The above data-structure supports this operation as
follows. wTA starts fromi; and goes upwards i’ until the first marked ancestor &fig) of i; is
reached. During this upward traversal, the algorithm madgh internal node df’ on the path
connectingi; to andi;). Then,wTA starts from an@;) and goes downwards in order to find the
leafi’ € B closest ta;. Notice how the algorithm uses node marks for finding its wewmt For
instance, in Figure 1 the algorithm goes left since(anavas reached from below through the right
child node, and then keeps right all the way down'tdNodei” (if present) is then identified via the
links in B. The two distanced(i;, ') andd(i., ") are compared, and the closest nodé, twithin

B is then determined. FinallyTA updates the links oB by insertingi; between’ andi”.

2For simplicity, this description assumesis a power of2. If this is not the case, we could add dummy
nodes tal. before building?”.

Figure 1: Constant amortized-time implementation of
WTA. The line L is made up ofn = 16 nodes (the
adjacent boxes at the bottom). Shaded boxes are the
revealed nodes, connected through a dark grey doubly-
linked list B. The depicted tre&” has both unmarked
(white) and marked (shaded) nodes. The arrows indi-
cate the traversal operations performedvsyan when
predicting the label of nodg: The upwards traversal
stops as soon as a marked ancestotighis found, and
then a downward traversal begins. Notice thvah first
descends to the left, and then keeps going right all the
way down. Once’ is determined, a single step within

B suffices to determing’.

1Py

g A AN
EEERETEENEEE
N S

In order to quantify the amortized time per trial, the keyeatvation is that each internal noéeof

T’ gets visited only twice duringpwardtraversals over the trials: The first visit takes place when

k gets marked for the first time, the second visittadccurs when a subsequent upwards visit also
marks the other (unmarked) child 6f Once both oft’s children are marked, we are guaranteed
that no further upwards visits fowill be performed. Since the preprocessing operationst3ke,

the above shows that the total running time oventhdals is linear inn, as anticipated.

8 Preliminary experiments

We now present the results of a preliminary experimentalgamson on two real-world weighted
graph datasets. Our goal is to compare the prediction acgofavTA to the one achieved by fast
algorithms for weighted graphs (and for which accuracyqrenfince guarantees are available in the
literature). We compare our algorithm to the following twalioe prediction methods, intended as
representatives of two different ways of facing the grapgdjtion problem, a global approach and
a local approach.

ThePerceptron algorithm with graph Laplacian kernel [10] (abbreviated aspa, Graph Percep-
tron Algorithm). This algorithm predicts the nodes of a weegl graptG = (V, E) after mapping

V' via the linear kernel based dr@; + 11", whereL¢ is the laplacian matrix ofy. As recently
shown in [12], computing the pseudoinveisg wheng is a tree takes quadratic time in the number
of nodesn. This can be exploited by generating a spanning Tred GG, and then invokingsPA on

T'. Both time and space are quadratiaifrather than linear, as favta). The mistake bound of
has the formny < ®¥V (y)DJY, whereD} is the spanning tree diametePA s a global approach
in the sense that the graph topology affects, via the indeapéacian, the prediction on all nodes.

The Online Majority Vote algorithm (abbreviated asmv). As the common underlying assump-
tion to graph prediction algorithms is that nearby nodedatreled similarly, a very intuitive and
fast algorithm for predicting the label of a nodeis via a weighted majority vote on all labels of
the adjacent nodes seen so far, iIS&N(>_, ;. (iv.iy) € B Yi; Wi i). The total time required, as well

as the memory space, &(|E|), since we need to read (at least once) the weights of all edges
oMvV-like algorithms are local approaches, in the sense thaligiien at one node is affected only
by adjacent nodes.

Itis fair to stress that many other algorithms have beengseg which are able to deal with weighted
graphs, including the label-consistent mincut approadBjaind the energy minimization methods
in [2, 20]. We do not carry out a direct experimental comparito them either because (seemingly)
they do not have good scaling properties or because theytdwxe online prediction performance
guarantees. We combinera and® GPA with spanning trees generated in different ways.

Random Spanning Tree(abbreviated arsT). Each spanning tree is taken with probability propor-
tional to the product of its edge weights (e.g., [15, Ch. 4]).

3Notice, however, that the worst-case time per triaDidog n). For instance, on the very first tridl’ has
to be traversed all the way up and down.
“Note thatomv-like algorithms do not operate on spanning trees.

Depth first spanning tree (DFST). The spanning tree is created with a randomized depthvfaist
in the following way: A root is randomly selected; then eadwly visited node is chosen with
probability proportional to the weights of the edges cotingahe current vertex with the adjacent
nodes that have not been visited yet. This spanning treergigmeis intended to approximate the
standardkST generation which in practice might be more time-consuming.

Minimum Spanning Tree (MST), i.e., the spanning tree minimizing the sum of the resistdrall
edgesMmsT is the tree whose Laplacian best approximates the Lapla€i@according to the trace
norm criterion (see, e.g., [12]).

Shortest Path Spanning Treg(spsT). In [12], the shortest path tree is used for its small dianet
which is always at most twice the diameter@f A short diameter tree allows for a better control
over the (theoretical) performance ®PA. By varying the root node, we generatedhortest path
spanning tree, and then took the one having minimal dianagt@ng them.

We ran our experiments on two medium size biological dasag&) Krogan et al.’s dataset [14, 6]
(abbreviated aKrogan); (2) A second dataset (abbreviated@mmb) resulting from a combina-
tion [6] of three datasets from [7, 13, 18].

Both Krogan and Comb represent high-throughput proteaiteim interaction networks of budding
yeast taken from [6]. In particular, Krogan is a weightedadrbased on a large high-throughputand
reliable dataset reported in [14]; Comb is the combinatidhiee high-throughput yeast interaction
sets from [7, 18, 13]. We only consider the biggest connemtetponents of both datasets, obtaining
2,169 nodes and 6,102 edges for Krogan, and 2,871 nodes 40id €lges for Comb. In these
graphs, each node belongs to one or more classes, eachapassenting a protein function. We
selected the set of functional labels at depth one inAtveCatclassification scheme of the MIPS
database [16], resulting in 17 classes per dataset. Weyfipialarized the problems via a standard
one-vs-rest scheme, obtainihg+ 17 = 34 binary classification problems.

The experimental setup on the 34 binary classification groblis the following: (i) We first gener-
ated50 random permutations of the node indices for each datagetigicomputedsT andspsT
for each graph and made (for botérA and GPA) one run per permutation on each binary prob-
lem, averaging results over permutations; (iii) we gereetéad RST and50 DFST for each graph,
and operated as in (ii) with a further averaging over the oamuess in the tree generation; (iv) we
ran50 experiments (one per permutation) for each binary probléim @myv, again averaging over
permutations.

In order to analyze the labeling properties of each binaoplam, we calculated the percentageef
edges in the graphs, as well as in each type of spanning teelérusur experiments. These statistics
are reported in the table below. Figures R8T andDFST are averaged over random generation of
spanning trees. In particular, those concermig estimate the edge density-independent measure
E ®7(y)/(n — 1) mentioned in Section 2.

| | Original [RST | DFST | SPST| MST |
Percentage-edges Krogar] 17.62 18.73 | 18.57 | 19.33 | 18.08
Percentage-edges Comb | 19.14 | 31.58 | 31.66 | 20.25 | 19.58

This table shows that the average fractionpeédges inMST is always smaller than those of the
other spanning trees. Sine&sT is made up of edges with large weight, this suggests thaten th
considered datesets the heaviest edges are likely ¢eftee, as one is expecting.

Inthe next table we give the fraction of prediction mista&elkieved by the various algorithms on the
two datasets. The results fomv are omitted, since they tend to perform poorly on our biaiadi
graphs which are rather sparse. Hence, we selected théntesspanning tree performers fora,

and the best three spanning tree performersfox. For simplicity of presentation, the results are
averaged over the 17 binary classification problems, In boddthe best accuracy on each dataset.
Standard deviations are in braces (these are further aemgr the 17 classes).

[Dataset] WTA+MST [WTA+DFST | WTA+RST [GPAtMST | GPA+SPST | GPA*RST |

[Krogan | 18.69 (0.59) | 18.53 (0.65) | 18.90 @ 0.69) | 20.94 @ 0.48) | 19.82 @ 0.47) | 21.53 (& 0.55) |
[Comb | 10.82 (£ 0.56) | 19.82 (£ 0.62) | 19.94 (£ 0.60) | 20.90 (£ 0.40) | 21.52 (£ 0.41) | 22.11 & 0.49) |

The experiments show that our algorithm outperfogrs andomv on both datasets. In particular,
though we only reported aggregated results, the sameveefaiformance pattern among the various

algorithms repeats sistematically over all 17 binary peatd. In additionwTA runs significantly
faster than its competitors, and is also fairly easy to irmq@et. The combinatiowTA+MST tends

to perform best. This might be explained by the fact thatr tends to select light-edges of the
original graph. As a matter of fact, our results also showwmn can achieve good accuracy results
even when combined witbrsT, though the use of this kind of spanning tree does not pravide
same theoretical performance guaranteessas Hence, in practiceFSTmight be viewed as a fast
and practical way to generate spanning trees\fos.

9 Work in progress

The above experiments have only been performed on medizersgarse graphs, and should there-
fore be considered preliminary in nature. We are now runeixignsive experiments with further
datasets with both sparse and dense graphs. We expect ttelie edport them at the workshop. In
addition, we are also running experiments watsit by disregarding the edge weiglasgeneration
time and then re-assigning them at the end of the tree generaltiase. As shown in [19, 1], it is
possible to generate this kind of spanning tree in time limea for many and important classes of
unweighted graphs. The preliminary experiments we comdlsiiggest that'TA is able to achieve
very similar performances as the ones of standead Observe that the resulting algorithm has a
total time (including the generation of spanning tree) Wwhilinear in the numbem of nodes of
(most) graphs.

References

[1] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker and M.R. Tile. Many random walks are faster than
one. InProc. 20th SPAA2008.

[2] M. Belkin, I. Matveeva, and P. Niyogi. Regularizationdagemi-supervised learning on large graphs. In
Proc. 17th COLT2004.

[3] A. Blum and S. Chawla. Learning from labeled and unlabelata using graph mincuts. FProc. 18th
ICML, 2001.

[4] N. Cesa-Bianchi, C. Gentile, F. Vitale. Fast and optipradiction of a labeled tree. Proc. 22nd COLT
2009.

[5] H.Chang, and D.Y. Yeung. Graph laplacian kernels foeabglassification from a single examp®&vPR
(2), 2011-20186, 2006.

[6] G. Pandey, M. Steinbach, R. Gupta, T. Garg, and V. Kumasosiation analysis-based transformations
for protein interaction networks: a function predictiorseatudy. IrProc. 13th ACM SIGKDD2007.

[7] A.-C. Gavinet al. Functional organization of the yeast proteome by systenaaialysis of protein com-
plexes.Nature 415(6868):141-147, 2002.

[8] A.Goldberg, and X. Zhu. Seeing stars when there arenyratans: Graph-based semi-supervised learning
for sentiment categorization. HLT-NAACL 2006 Workshop oexigraphs: Graph-based algorithms for
Natural Language Processing, 2004.

[9] N. Goyal, L. Rademacher, and S. Vempala. Expanders vidaia spanning trees. lroc. 19th SODA
20009.

[10] M. Herbster and M. Pontil. Prediction on a graph with Berceptron. IINIPS 19 2007.

[11] M. Herbster, G. Lever, and M. Pontil. Online prediction large diameter graphs. MIPS 22 2009.

[12] M. Herbster, M. Pontil, and S. Rojas-Galeano. Fastiptioh on a tree. IlNIPS 22 2009.

[13] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, andS@kaki. A comprehensive two-hybrid analysis
to explore the yeast protein interactorP&NAS 98(8):4569-4574, 2001.

[14] N.J. Kroganet al. Global landscape of protein complexes in the yeast Sacohaes cerevisiae. In
Nature 440:637-643, 2006.

[15] R. Lyons and Y. Pere$robability on Trees and NetworkManuscript, 2009.

[16] A. Rueppet al. The FunCat, a functional annotation scheme for systemiatssification of proteins from
whole genomesNucleic Acids Researci32(18):5539-5545, 2004.

[17] H. Shin, K. Tsuda, and B. Scholkopf. Protein functibdass prediction with a combined grapBxpert
Systems with Application86:3284—-3292, 2009.

[18] P. Uetzet al. A comprehensive analysis of protein-protein interactionSaccharomyces cerevisiae.
Nature 403(6770):623-627, 2000.

[19] D.B. Wilson. Generating random spanning trees moreldyithan the cover time. IRroc. 28th STOC
1996.

[20] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-superiggarning using Gaussian fields and harmonic
functions. InICML Workshop on the Continuum from Labeled to UnlabeledaatMachine Learning
and Data Mining 2003.

