
Fast and Optimal Algorithms
for Weighted Graph Prediction

Nicolò Cesa-Bianchi
Università di Milano, Italy

cesa-bianchi@dsi.unimi.it

Claudio Gentile
Università dell’Insubria, Italy

claudio.gentile@uninsubria.it

Fabio Vitale
Università di Milano, Italy
fabio.vitale@unimi.it

Giovanni Zappella
Università di Milano, Italy

giovanni.zappella@studenti.unimi.it

Abstract

We show that the mistake bound for predicting the nodes of an arbitrary weighted
graph is characterized (up to logarithmic factors) by the weighted cutsize of a ran-
dom spanning tree of the graph. The cutsize is induced by the unknown adversarial
labeling of the graph nodes. In deriving our characterization, we obtain a simple
randomized algorithm achieving the optimal mistake bound on any graph. Our
algorithm draws a random spanning tree of the original graphand then predicts
the nodes of this tree in constant amortized time and linear space. Preliminary
experiments on real-world datasets show that our method outperforms both global
(Perceptron) and local (majority voting) methods.

1 Introduction
A widespread approach to the solution of classification problems is representing the data through a
weighted graph in which edge weights quantify the similarity between data points. This technique
for coding input data has been applied to several domains, including Web spam detection [12],
classification of genomic data [17], recognition of faces [5], and text categorization [8]. In most
applications, edge weights are computed through a complex data-modelling process and convey
crucially important information for classifying nodes.

This paper focuses on the online version of the graph classification problem: the entire graph is
known in advance and, at each step, the algorithm is requiredto predict the label of a new arbitrarily
chosen node. In the special case of unweighted graphs (whereall edges have unit weight) a key
parameter for controlling the number of prediction mistakes is the size of the cut induced by the
unknown adversarial labeling of the graph. Although in the unweighted case previous studies use
the cutsize to prove several interesting upper bounds [11, 10, 12], no general lower bounds on the
number of prediction mistakes are known, leaving fully openthe question of characterizing the
complexity of learning a labeled graph. In a recent paper [4]the expected number of mistakes is
bounded by the cutsize of a random spanning tree of the graph,a quantity stricly smaller than the
cutsize of the whole graph. In this paper we show that this quantity captures the hardness of the
graph learning problem, even in the general weighted case (where the expectation suitably depends
on the edge weights). Given any weighted graph, we prove thatany prediction algorithm must err on
a number of nodes which is at least as big as the weighted cutsize of the graph’s random spanning
tree. Moreover, if the ratio of the largest to the smallest weight is polynomial in the number of nodes,
we exhibit a simple algorithm achieving (to within logarithmic factors) the optimal mistake bound.

Following [4], our algorithm first extracts a random spanning tree of the original graph, and then
predicts all nodes of this tree using a generalized variant of the method proposed in [11]. Our tree
prediction procedure is extremely efficient: it only requiresconstantamortized time per prediction
and spacelinear in the number of nodes. Note that computational efficiency is a central issue in
practical applications where the involved datasets can be very large. Indeed, learning algorithms

1

whose time complexity scales, say, more than quadraticallywith the number of data points should
be considered impractical.

A significant contribution of this work is the experimental evaluation of our method, as compared
to methods recently proposed in the literature on graph prediction. In particular, we compare our
algorithm to the Perceptron algorithm with Laplacian kernel [10, 12], and to simple majority vote
predictors. The experiments have been carried out on two medium-size biological datasets from [6].
The two tree-based algorithms (ours and the Perceptron) have been tested using spanning trees
generated in various ways. Though preliminary in nature, our experimental comparison shows that,
in terms of the online mistake count, our algorithmalwaysoutperforms the tested competitors while
using the least amount of time and memory resources.

2 Preliminaries and basic notation
LetG = (V, E, W) be an undirected, connected, and weighted graph withn nodes and positive edge
weightswi,j > 0 for (i, j) ∈ E. A labeling ofG is any assignmenty = (y1, . . . , yn) ∈ {−1, +1}n

of binary labels to its nodes. We use(G, y) to denote the resulting labeled weighted graph. The
online learning protocol for predicting(G, y) is defined as follows. The learner is givenG while y

is kept hidden. The nodes ofG are presented to the learner one by one, according to an unknown
and arbitrary permutationi1, . . . , in of V . At each time stept = 1, . . . , n nodeit is presented and
the learner must predict its labelyit

. Thenyit
is revealed and the learner knows whether a mistake

occurred. The learner’s goal is to minimize the total numberof prediction mistakes.

It is reasonable to expect that prediction performance should degrade with the increase of ”ran-
domness” in the labeling. For this reason, our analysis of graph prediction algorithms bounds from
above the number of prediction mistakes in terms of appropriate notions of graph labelregularity.
A standard notion of label regularity is the cutsize of a labeled graph, defined as follows. Aφ-edge
of a labeled graph(G, y) is any edge(i, j) such thatyi 6= yj. Similarly, an edge(i, j) is φ-free if
yi = yj. Let Eφ ⊆ E be the set ofφ-edges in(G, y). ThecutsizeΦG(y) of (G, y) is the number
of φ-edges inΦG(y), i.e.,ΦG(y) =

∣∣Eφ
∣∣ (independent of the edge weights). Theweightedcutsize

ΦW
G (y) of (G, y) is ΦW

G (y) =
∑

(i,j)∈Eφ wi,j .

Fix (G, y). Let rW
i,j be the effective resistance (see, e.g., [15]) between nodesi andj of G. For

(i, j) ∈ E, let alsopi,j = wi,jr
W
i,j = wi,j

/(
wi,j + 1/r̃W

i,j

)
be the probability that(i, j) belongs to a

random spanning treeT [15]. Herer̃W
i,j denotes the effective resistance betweeni andj when edge

(i, j) is eliminated —if(i, j) is a bridge, whose elimination disconnectsG, we set1/r̃W
i,j = 0. Then

we have
E ΦT (y) =

∑

(i,j)∈Eφ

pi,j =
∑

(i,j)∈Eφ

wi,j

wi,j + 1/r̃W
i,j

. (1)

Since
∑

(i,j)∈E pi,j is equal ton − 1, irrespective of the edge weighting, the ratio1
n−1E ΦT (y) ∈

[0, 1] provides anedge density-independentmeasure of the cutsize inG. and allows one even to
compare labelings on different graphs. It is also importantto note thatE ΦT (y) can be much
smaller thanΦW

G (y) when there are strongly connected regions inG contributing prominently to
the weighted cutsize. To see this, consider the following scenario: If(i, j) ∈ Eφ andwi,j is large,
then(i, j) gives a big contribution toΦW

G (y). However, this might not happen inE ΦT (y). In fact,
if i andj are strongly connected (i.e., if there are many disjoint paths connecting them), theñrW

i,j is
very small, thus the termswi,j/(wi,j +1/r̃W

i,j) in (1) are small too. Therefore, the effect of the large
weightwi,j may often be compensated by the small probability of including (i, j) in the random
spanning tree.

3 A lower bound for any weighted graph
We start by proving a general lower bound, showing that any prediction algorithm must err at least
E ΦT (y) times on any weighted graph.

Theorem 1 LetG = (V, E, W) be a weighted undirected graph withn nodes and weightswi,j > 0
for (i, j) ∈ E. Then for allK ≤ n there exists a randomized labelingy of G such that for all
(deterministic or randomized) algorithmsA, the expected number of prediction mistakes made byA
is at leastK/2, whileE ΦT (y) < K.

2

Proof. The adversary uses the weightingP induced byW and defined bypi,j = wi,jr
W
i,j . Note

that pi,j is the probability that edge(i, j) belongs to a random spanning treeT of G. Hence∑
(i,j)∈E pi,j = n − 1 andΦP

G(y) = E ΦT (y) for any given labelingy of G. Let Pi =
∑

j pi,j

be the sum over the induced weights of all edges incident to node i. We call Pi the weight of
nodei. Let S ⊆ V be the set ofK nodesi in G having the smallest weightPi. The adversary
assigns a random label to each nodei ∈ S. This guarantees that, no matter what, the algorithm
A will make on averageK/2 mistakes on the nodes inS. The labels of the remaining nodes
in V \ S are set either all+1 or all −1, depending on which one of the two choices yields the
smallerΦP

G(y). We now show that the weighted cutsizeΦW
P (y) of this labelingy is less than

K, independent ofthe labels of the nodes inS. Since the nodes inV \ S have all the same la-
bel, theφ-edges induced by this labeling can only connect either two nodes inS or one node in
S and one node inV \ S. HenceΦW

P (y) = ΦP,int
G (y) + ΦP,ext

G (y), whereΦP,int
G (y) is the

cutsize contribution withinS, andΦP,ext
G (y) is the one from edges betweenS andV \ S. Let

P int
S =

∑
(i,j)∈E : i,j∈S pi,j andP ext

S =
∑

(i,j)∈E : i∈S,j∈V \S pi,j . From the very definition of

P int
S andΦP,int

G (y) we haveΦP,int
G (y) ≤ P int

S . Moreover, from the way the labels of nodes in
V \ S are selected, it follows thatΦP,ext

G (y) ≤ P ext
S /2. Finally,

∑
i∈S Pi = 2P int

S + P ext
S holds,

since each edge connecting nodes inS is counted twice in the sum
∑

i∈S Pi. Putting everything
together we obtain

2P int
S + P ext

S =
∑

i∈S

Pi ≤
K

n

∑

i∈V

Pi =
2K

n

∑

(i,j)∈E

pi,j =
2K(n− 1)

n

the inequality following from the definition ofS. Hence

E ΦT (y) = ΦP
G(y) = ΦP,int

G (y) + ΦP,ext
G (y) ≤ P int

S +
P ext

S

2
≤

K(n − 1)

n
< K .

�

4 The Weighted Tree Algorithm for weighted trees
In this section, we describe the Weighted Tree Algorithm (WTA) for predicting the labels of a
weighted tree. In Section 6 we show how to applyWTA to solve the more general weighted graph
prediction problem.WTA first turns the tree into a line graph (i.e., a list), then runsa fast nearest
neighbor method to predict the labels of each node in the line. Though this technique is similar to
that one used in [11], the fact that the tree is weighted makesthe analysis significantly more difficult.

Given a labeled weighted tree(T, y), the algorithm initially creates a weighted line graphL′ con-
taining some duplicates of the nodes inT . Then, each duplicate node (together with its incident
edges) is replaced by a single edge with a suitably chosen weight. This results in the final weighted
line graphL which is then used for prediction. In order to createL from T , WTA performs the
following tree linearizationsteps:

1. An arbitrary noder of T is chosen, and a lineL′ containing onlyr is created.

2. Starting fromr, a depth-first visit ofT is performed. Each time an edge(i, j) is traversed
(even in a backtracking step), the edge is appended toL′ with its weightwi,j , andj becomes
the current terminal node ofL′. Note that backtracking steps can create inL′ at most one
duplicate of each edge inT , while nodes inT may be duplicated several times inL′.

3. L′ is traversed once, starting from terminalr. During this traversal, duplicate nodes are
eliminated as soon as they are encountered. This works as follows. Letj be a duplicate
node, and(j′, j) and(j, j′′) be the two incident edges. The two edges are replaced by a
new edge(j′, j′′) having weightwj′,j′′ = min

{
wj′,j , wj,j′′

}
.1 Let L be the resulting line.

The analysis of Section 5 shows that this choice ofwj′,j′′ guarantees that the weighted cutsize ofL
is smaller than twice the weighted cutsize ofT . OnceL is created fromT , the algorithm predicts the
label of each nodeit using a nearest-neighbor rule operating onL with a resistance distancemetric.

1By iterating this elimination procedure, it might happen that more than two adjacent nodes get eliminated.
In this case, the two surviving terminal nodes are connectedin L by the lightest edge among the eliminated
ones inL′.

3

That is, the prediction onit is the label ofis∗ , beings∗ = argmins<t d(is, it) the previously revealed
node closest toit, andd(i, j) =

∑k

s=1 1/wvs,vs+1
is the sum of the resistors (i.e., reciprocals of edge

weights) along the (unique) pathi = v1 → v2 → · · · → vk+1 = j connecting nodei to nodej.

5 Analysis
In this section we derive an upper bound on the number of mistakes made byWTA on any weighted
treeT = (V, E, W) in terms of the number ofφ-edges, the weighted cutsize, and the sum of resistors
of φ-free edges,RW

T =
∑

(i,j)∈E\Eφ 1/wi,j . The following lemma establishes some simple but
important relationships between the treeT and its linearized versionL. Theorem 3 below exploits
this lemma to bound the total number of mistakes on any tree.

From the construction in Section 4 we see that when we transformL′ into L the pairs of edges(j′, j)
and(j, j′′) of L′ which are incident to a repeated nodej get replaced inL (together withj) by a
single edge(j′, j′′) —step 3 in Section 4. We call these edgesspuriousedges. Assume that(j′, j′′)
is spurious inL. Whenyj′ 6= yj′′ we have created a spuriousφ-edge by eliminating aφ-edge and a
φ-free edge fromL′. Whenyj′ = yj′′ 6= yj, we have created a spuriousφ-free edge by eliminating
two φ-edges fromL′. LetRW

0 be the sum of resistors of all spuriousφ-free edges created during the
elimination of pairs ofφ-edges inL′.

Lemma 2 Let (T, y) be a labeled tree,(L, y) be a linearized version of it, andL′ be the line
graph with duplicates (as described in Section 4). Then the following holds:RW

L ≤ RW
L′ + RW

0 ≤
2RW

T + RW
0 , ΦW

L (y) ≤ ΦW
L′ (y) ≤ 2ΦW

T (y), andΦL(y) ≤ ΦL′(y) ≤ 2ΦT (y).

Proof. Note that each edge ofT occurs inL′ at least once and at most twice. This provesΦW
L′ (y) ≤

2ΦW
T (y) andΦL′(y) ≤ 2ΦT (y). Note further thatL contains some non-spurious edges fromL′

plus a number of spurious edges. Each spuriousφ-free edge(j′, j′′) can be created (by eliminating
a nodej) when either (i)yj′ = yj′′ = yj, which implies thatwj′,j′′ corresponds to the weight of
a φ-free edge eliminated inL′ together with nodej, and thuswj′,j′′ is not included inRW

0 ; or (ii)
yj′ = yj′′ 6= yj , which implies thatwj′,j′′ is included inRW

0 . This proves the first inequality. To
prove the remaining inequalities, first note that a spuriousedge(j′, j′′) cannot be aφ-edge inL
unless either(j, j′) or (j, j′′) is aφ-edge inL′. Moreover, if(j′, j′′) is aφ-edge inL, then its weight
is not larger than the weight of the associatedφ-edge inL′ —Step 3 in Section 4. �

Theorem 3 If WTA is run on a weighted and labeled tree(T, y), then the total numbermT of
mistakes satisfies

mT = O

(
ΦT (y)

(
1 + log

(
1 +

RW
T ΦW

T (y)

ΦT (y)

)))
.

The mistake bound in Theorem 3 shows, in the logarithmic factors, that the algorithm takes advan-
tage of labelings such that the weights ofφ-edges are small (thus makingΦW

T (y) small) and the
weights ofφ-free edges are high (thus makingRW

T small). This somehow matches the intuition
behindWTA ’s nearest-neighbor rule according to which nodes that are close to each other are ex-
pected to have the same label. In particular, observe that the way the above quantities are combined
makes the bound independent of rescaling of the edge weights. Again, this has to be expected, since
WTA’s prediction is scale insensitive. On the other hand, it mayappear less natural that the mistake
bound also depends linearly on the cutsizeΦT (y), independent of the edge weights. As a matter of
fact, this linear dependence on the unweighted cutsize cannot be eliminated (this is a consequence
of Theorem 1 in Section 3).

The following lemma (proof omitted due to space limitations) proves a mistake bound for any
weighted line graph. It also shows that, for anyK ≥ 0, one can drop from the bound the con-
tribution of any set ofK resistors inRL

T at the cost of addingK extra mistakes.

Lemma 4 If WTA is run on a weighted line graph(L, y), then the total numbermL of mistakes
satisfies

mL = O

(
ΦL(y)

(
1 + log

(
1 +

R̃W
L ΦW

L (y)

ΦL(y)

))
+ K

)

whereR̃W
L is the sum of of the resistors of any set formed by all butK φ-free edges ofL.

4

Proof of Theorem 3 [sketch]. Recall thatRW
0 is the sum of resistors on all spuriousφ-free edges

obtained by eliminating pairs ofφ-edges inL′. Hence, we can injectively associate with each such
edge two distinctφ-edges inL′, and therefore the total number of spurious edges giving contribution
to RW

0 is bounded byΦL′(y)/2, which in turn can be bounded byΦT (y) via Lemma 2. Applying
Lemma 4 (setting̃RW

L to RW
L − RW

0) along with Lemma 2 concludes the proof. �

6 The Weighted Tree Algorithm on weighted graphs
In order to solve the more general problem of predicting the labels of a weighted graphG, one can
first generate a spanning treeT of G and then runWTA directly onT . In this case it is possible to
rephrase Theorem 3 in terms of properties ofG. Note that for each spanning treeT of G, ΦW

T (y) ≤
ΦW

G (y) andΦT (y) ≤ ΦG(y). Specific choices of the spanning treeT control in different ways
the quantities in the mistake bound of Theorem 3. For example, a minimum spanning tree tends to
reduce the value ofRW

T , betting on the fact thatφ-edges are light. Adapting the proof of Theorem 3,
we can prove the following result.

Theorem 5 If WTA is run on a random spanning treeT of a labeled weighted graph(G, y) with n
nodes, then the total numbermG of mistakes statisfies

E mG = O

(
E
[
ΦT (y)

]
(

1 + log

(
1 + n

wφ
max

w¬φ
min

)))

where w¬φ
min = min(i,j)∈E\Eφ wi,j and wφ

max = max(i,j)∈Eφ wi,j . In particular, if the ratio
max(i,j),(k,ℓ)∈E wi,j

/
wk,ℓ is bounded by a polynomial inn, thenE mG = O

(
E[ΦT (y)] log n

)
.

Note that havingK φ-free edges with exponentially small (inn) weights does not necessarily lead
to a vacuous bound in Theorem 5 whenK is small enough. Indeed, one can use Lemma 4 also
to replace the factorw¬φ

min by the(K + 1)-th smallestφ-free weight at the cost of adding justK
more mistakes. On the other hand, ifG has exponentially largeφ-edge weights, then the bound can
indeed become vacuous. This is not surprising, though, since the algorithm’s inductive bias is to bet
on graphs having small weighted cutsize.

7 Computational complexity
A direct implementation ofWTA operating on a treeT with n nodes would require running time
O(n log n) over then prediction trials, and linear memory space. We now sketch how to implement
WTA in O(n) time, i.e., inconstantamortized time per trial.

Once the given treeT is linearized into ann-node lineL, we initially traverseL from left to right.
Call j0 the left-most terminal node ofL. During this traversal, the resistance distanced(j0, i) is
incrementally computed for each nodei in L. This makes it possible to calculate in constant time
d(i, j) for any pair of nodes, sinced(i, j) = |d(j0, i) − d(j0, j)| ∀i, j ∈ L. On top of lineL a
complete binary treeT ′ is constructed having2⌈log2 n⌉ leaves.2 Thek-th leftmost leaf (in the usual
tree representation) ofT ′ is thek-th node inL (numbering the nodes ofL from left to right). The
algorithm maintains this data-structure in such a way that at time t: (i) the subsequence of leaves
whose labels are revealed at timet are connected through a (bidirectional) listB, and (ii) all the
ancestors inT ′ of the leaves ofB are marked. See Figure 1 for an example.

WhenWTA is required to predict the labelyit
, the algorithm looks for the two closest leavesi′ and

i′′ oppositely located inL with respect toit. The above data-structure supports this operation as
follows. WTA starts fromit and goes upwards inT ′ until the first marked ancestor anc(it) of it is
reached. During this upward traversal, the algorithm markseach internal node ofT ′ on the path
connectingit to anc(it). Then,WTA starts from anc(it) and goes downwards in order to find the
leaf i′ ∈ B closest toit. Notice how the algorithm uses node marks for finding its way down: For
instance, in Figure 1 the algorithm goes left since anc(it) was reached from below through the right
child node, and then keeps right all the way down toi′. Nodei′′ (if present) is then identified via the
links in B. The two distancesd(it, i

′) andd(it, i
′′) are compared, and the closest node toit within

B is then determined. Finally,WTA updates the links ofB by insertingit betweeni′ andi′′.

2For simplicity, this description assumesn is a power of2. If this is not the case, we could add dummy
nodes toL before buildingT ′.

5

Figure 1: Constant amortized-time implementation of
WTA. The lineL is made up ofn = 16 nodes (the
adjacent boxes at the bottom). Shaded boxes are the
revealed nodes, connected through a dark grey doubly-
linked list B. The depicted treeT ′ has both unmarked
(white) and marked (shaded) nodes. The arrows indi-
cate the traversal operations performed byWTA when
predicting the label of nodeit: The upwards traversal
stops as soon as a marked ancestor anc(it) is found, and
then a downward traversal begins. Notice thatWTA first
descends to the left, and then keeps going right all the
way down. Oncei′ is determined, a single step within
B suffices to determinei′′.

In order to quantify the amortized time per trial, the key observation is that each internal nodek of
T ′ gets visited only twice duringupwardtraversals over then trials: The first visit takes place when
k gets marked for the first time, the second visit ofk occurs when a subsequent upwards visit also
marks the other (unmarked) child ofk. Once both ofk’s children are marked, we are guaranteed
that no further upwards visits tok will be performed. Since the preprocessing operations takeO(n),
the above shows that the total running time over then trials is linear inn, as anticipated.3

8 Preliminary experiments

We now present the results of a preliminary experimental comparison on two real-world weighted
graph datasets. Our goal is to compare the prediction accuracy of WTA to the one achieved by fast
algorithms for weighted graphs (and for which accuracy performance guarantees are available in the
literature). We compare our algorithm to the following two online prediction methods, intended as
representatives of two different ways of facing the graph prediction problem, a global approach and
a local approach.

ThePerceptron algorithm with graph Laplacian kernel [10] (abbreviated asGPA, Graph Percep-
tron Algorithm). This algorithm predicts the nodes of a weighted graphG = (V, E) after mapping
V via the linear kernel based onL+

G + 11
⊤, whereLG is the laplacian matrix ofG. As recently

shown in [12], computing the pseudoinverseL+
G whenG is a tree takes quadratic time in the number

of nodesn. This can be exploited by generating a spanning treeT of G, and then invokingGPA on
T . Both time and space are quadratic inn (rather than linear, as forWTA). The mistake bound onT
has the formmT ≤ ΦW

T (y)DW
T , whereDW

T is the spanning tree diameter.GPA is a global approach
in the sense that the graph topology affects, via the inverseLaplacian, the prediction on all nodes.

TheOnline Majority Vote algorithm (abbreviated asOMV). As the common underlying assump-
tion to graph prediction algorithms is that nearby nodes arelabeled similarly, a very intuitive and
fast algorithm for predicting the label of a nodeit is via a weighted majority vote on all labels of
the adjacent nodes seen so far, i.e.,SGN(

∑
j<t : (it,ij)∈E yij

wit,ij
). The total time required, as well

as the memory space, isΘ(|E|), since we need to read (at least once) the weights of all edges.
OMV-like algorithms are local approaches, in the sense that prediction at one node is affected only
by adjacent nodes.

It is fair to stress that many other algorithms have been proposed which are able to deal with weighted
graphs, including the label-consistent mincut approach of[3] and the energy minimization methods
in [2, 20]. We do not carry out a direct experimental comparison to them either because (seemingly)
they do not have good scaling properties or because they do not have online prediction performance
guarantees. We combineWTA and4 GPA with spanning trees generated in different ways.

Random Spanning Tree(abbreviated asRST). Each spanning tree is taken with probability propor-
tional to the product of its edge weights (e.g., [15, Ch. 4]).

3Notice, however, that the worst-case time per trial isO(log n). For instance, on the very first trialT
′ has

to be traversed all the way up and down.
4Note thatOMV-like algorithms do not operate on spanning trees.

6

Depth first spanning tree(DFST). The spanning tree is created with a randomized depth-firstvisit
in the following way: A root is randomly selected; then each newly visited node is chosen with
probability proportional to the weights of the edges connecting the current vertex with the adjacent
nodes that have not been visited yet. This spanning tree generation is intended to approximate the
standardRST generation which in practice might be more time-consuming.

Minimum Spanning Tree (MST), i.e., the spanning tree minimizing the sum of the resistors of all
edges.MST is the tree whose Laplacian best approximates the Laplacianof G according to the trace
norm criterion (see, e.g., [12]).

Shortest Path Spanning Tree(SPST). In [12], the shortest path tree is used for its small diameter,
which is always at most twice the diameter ofG. A short diameter tree allows for a better control
over the (theoretical) performance ofGPA. By varying the root node, we generatedn shortest path
spanning tree, and then took the one having minimal diameteramong them.

We ran our experiments on two medium size biological datasets: (1) Krogan et al.’s dataset [14, 6]
(abbreviated asKrogan); (2) A second dataset (abbreviated asComb) resulting from a combina-
tion [6] of three datasets from [7, 13, 18].

Both Krogan and Comb represent high-throughput protein-protein interaction networks of budding
yeast taken from [6]. In particular, Krogan is a weighted graph based on a large high-throughput and
reliable dataset reported in [14]; Comb is the combination of three high-throughput yeast interaction
sets from [7, 18, 13]. We only consider the biggest connectedcomponents of both datasets, obtaining
2,169 nodes and 6,102 edges for Krogan, and 2,871 nodes and 6,407 edges for Comb. In these
graphs, each node belongs to one or more classes, each class representing a protein function. We
selected the set of functional labels at depth one in theFunCatclassification scheme of the MIPS
database [16], resulting in 17 classes per dataset. We finally binarized the problems via a standard
one-vs-rest scheme, obtaining17 + 17 = 34 binary classification problems.

The experimental setup on the 34 binary classification problems is the following: (i) We first gener-
ated50 random permutations of the node indices for each dataset; (ii) we computedMST andSPST
for each graph and made (for bothWTA and GPA) one run per permutation on each binary prob-
lem, averaging results over permutations; (iii) we generated50 RST and50 DFST for each graph,
and operated as in (ii) with a further averaging over the randomness in the tree generation; (iv) we
ran50 experiments (one per permutation) for each binary problem with OMV, again averaging over
permutations.

In order to analyze the labeling properties of each binary problem, we calculated the percentage ofφ-
edges in the graphs, as well as in each type of spanning tree used in our experiments. These statistics
are reported in the table below. Figures forRST andDFST are averaged over random generation of
spanning trees. In particular, those concerningRST estimate the edge density-independent measure
E ΦT (y)/(n − 1) mentioned in Section 2.

Original RST DFST SPST MST

Percentageφ-edges Krogan 17.62 18.73 18.57 19.33 18.08
Percentageφ-edges Comb 19.14 31.58 31.66 20.25 19.58

This table shows that the average fraction ofφ-edges inMST is always smaller than those of the
other spanning trees. SinceMST is made up of edges with large weight, this suggests that in the
considered datesets the heaviest edges are likely to beφ-free, as one is expecting.

In the next table we give the fraction of prediction mistakesachieved by the various algorithms on the
two datasets. The results forOMV are omitted, since they tend to perform poorly on our biological
graphs which are rather sparse. Hence, we selected the best three spanning tree performers forWTA,
and the best three spanning tree performers forGPA. For simplicity of presentation, the results are
averaged over the 17 binary classification problems, In boldare the best accuracy on each dataset.
Standard deviations are in braces (these are further averaged over the 17 classes).

Dataset WTA+MST WTA+DFST WTA+RST GPA+MST GPA+SPST GPA+RST

Krogan 18.69 (± 0.59) 18.53 (± 0.65) 18.90 (± 0.69) 20.94 (± 0.48) 19.82 (± 0.47) 21.53 (± 0.55)
Comb 19.82 (± 0.56) 19.82 (± 0.62) 19.94 (± 0.60) 20.90 (± 0.40) 21.52 (± 0.41) 22.11 (± 0.49)

The experiments show that our algorithm outperformsGPA andOMV on both datasets. In particular,
though we only reported aggregated results, the same relative performance pattern among the various

7

algorithms repeats sistematically over all 17 binary problems. In addition,WTA runs significantly
faster than its competitors, and is also fairly easy to implement. The combinationWTA+MST tends
to perform best. This might be explained by the fact thatMST tends to select lightφ-edges of the
original graph. As a matter of fact, our results also show that WTA can achieve good accuracy results
even when combined withDFST, though the use of this kind of spanning tree does not providethe
same theoretical performance guarantees asRST. Hence, in practice,DFSTmight be viewed as a fast
and practical way to generate spanning trees forWTA.

9 Work in progress
The above experiments have only been performed on medium-size sparse graphs, and should there-
fore be considered preliminary in nature. We are now runningextensive experiments with further
datasets with both sparse and dense graphs. We expect to be able to report them at the workshop. In
addition, we are also running experiments withRST by disregarding the edge weightsat generation
time, and then re-assigning them at the end of the tree generationphase. As shown in [19, 1], it is
possible to generate this kind of spanning tree in time linear in n for many and important classes of
unweighted graphs. The preliminary experiments we conducted suggest thatWTA is able to achieve
very similar performances as the ones of standardRST. Observe that the resulting algorithm has a
total time (including the generation of spanning tree) which is linear in the numbern of nodes of
(most) graphs.

References
[1] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker and M.R. Tuttle. Many random walks are faster than

one. InProc. 20th SPAA, 2008.
[2] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large graphs. In

Proc. 17th COLT, 2004.
[3] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. InProc. 18th

ICML, 2001.
[4] N. Cesa-Bianchi, C. Gentile, F. Vitale. Fast and optimalprediction of a labeled tree. InProc. 22nd COLT,

2009.
[5] H. Chang, and D.Y. Yeung. Graph laplacian kernels for object classification from a single example.CVPR

(2), 2011–2016, 2006.
[6] G. Pandey, M. Steinbach, R. Gupta, T. Garg, and V. Kumar. Association analysis-based transformations

for protein interaction networks: a function prediction case study. InProc. 13th ACM SIGKDD, 2007.
[7] A.-C. Gavinet al. Functional organization of the yeast proteome by systematic analysis of protein com-

plexes.Nature, 415(6868):141-147, 2002.
[8] A. Goldberg, and X. Zhu. Seeing stars when there arent many stars: Graph-based semi-supervised learning

for sentiment categorization. HLT-NAACL 2006 Workshop on Textgraphs: Graph-based algorithms for
Natural Language Processing, 2004.

[9] N. Goyal, L. Rademacher, and S. Vempala. Expanders via random spanning trees. InProc. 19th SODA,
2009.

[10] M. Herbster and M. Pontil. Prediction on a graph with thePerceptron. InNIPS 19, 2007.
[11] M. Herbster, G. Lever, and M. Pontil. Online predictionon large diameter graphs. InNIPS 22, 2009.
[12] M. Herbster, M. Pontil, and S. Rojas-Galeano. Fast prediction on a tree. InNIPS 22, 2009.
[13] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y.Sakaki. A comprehensive two-hybrid analysis

to explore the yeast protein interactome.PNAS, 98(8):4569-4574, 2001.
[14] N.J. Kroganet al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. In

Nature, 440:637-643, 2006.
[15] R. Lyons and Y. Peres.Probability on Trees and Networks.Manuscript, 2009.
[16] A. Rueppet al. The FunCat, a functional annotation scheme for systematic classification of proteins from

whole genomes.Nucleic Acids Research, 32(18):5539-5545, 2004.
[17] H. Shin, K. Tsuda, and B. Schölkopf. Protein functional class prediction with a combined graph.Expert

Systems with Applications, 36:3284–3292, 2009.
[18] P. Uetzet al. A comprehensive analysis of protein-protein interactionsin Saccharomyces cerevisiae.

Nature, 403(6770):623-627, 2000.
[19] D.B. Wilson. Generating random spanning trees more quickly than the cover time. InProc. 28th STOC,

1996.
[20] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic

functions. InICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning
and Data Mining, 2003.

8

