
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

CUTTINGEDGE: Influence Minimization in Networks

Elias Khalil, Bistra Dilkina, Le Song
Georgia Institute of Technology

801 Atlantic Drive - Atlanta, GA 30332
{ekhalil3,bdilkina,lsong}@cc.gatech.edu

Abstract

The diffusion of undesirable phenomena over social, information and technologi-
cal networks is a common problem in different domains. Domain experts typically
intervene to advise solutions that mitigate the spread in question. However, these
solutions are temporary, in that they only tackle the spread of a specific instance
over the network, failing to account for the complex modalities of diffusion pro-
cesses. We propose an optimization formulation for the problem of minimizing
the spread of influence in a network by removing some of its edges. We show
that the corresponding objective function is supermodular under the linear thresh-
old model, allowing for a greedy approximate solution with provable guarantees.
Preliminary experiments on real and synthetic network data show that our method
significantly outperforms other common heuristics.

1 Introduction

The diffusion of ideas and influence is a topic of study across many disciplines ranging from viral
marketing [6] and population epidemics [11], to social media [15] and other fields. A central ele-
ment in any diffusion process is the communication channel along which the spread occurs. Recent
efforts in network analysis, as well as the proliferation of real-world data of diffusion on the web,
have established the network as a strong abstraction tool for spread phenomena: nodes in the un-
derlying directed graph represent the individuals or entities in a given system, and edges represent
the presence of a medium of communication between the nodes. Based on this representation, a
number of methods have been devised with the goal of finding a set of k nodes whose adoption of a
given idea would result in maximizing the spread of this idea in the network [6, 12]. This particular
problem has been extended for different diffusion models [18], and increasingly efficient solutions
are being proposed for it [7].

However, not much attention has been accorded to the study of negative phenomena that propagate
in networks. Diseases that spread via contagion in societies, rumors that diffuse through blogs
and news websites, and computer viruses that propagate in computer networks and the internet are
all examples of processes, where the object of diffusion is considered harmful, hence undesirable.
An obvious counter-measure in those situations is to call upon domain experts, e.g biologists and
epidemics experts create new health and immunization measures, the New York Times or other
reputable media outlets deny rumors and fake news, etc. But such measures may suffer from being
too case-specific (tailored for one undesirable diffusion instance) rather than general, as well as too
heuristic, in that they do not model cascading behavior properly, and rather make use of human
judgment exclusively.

Adopting a more prinicipled computational approach to the problem, we ask the following question:
what structural changes to the network topology would result in suppressing the influence of an
undesireable diffusion process, in the best possible way? First, we consider the linear threshold
model as a diffusion model [10]. This model is widely adopted by sociologists as representative of
adoption dynamics, where each node or individual has a threshold, representing the fraction of its

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

neighbors or connections that must adopt a certain idea before they adopt it themselves. Moreover,
we do not make any assumptions about the nodes that initiate the diffusion in the network, i.e each
node is equally likely to cause the initial spread. The spread susceptability of a network is defined
as the sum of each node’s individual expected influence.

The problem can then be formulated as follows: Given a network G(V,E), a vector of diffusion
probabilities w and a budget k, find the set of k edges E∗, such that the spread susceptability of the
network G∗(V,E\E∗), resulting from removing E∗from E, is minimized.

Although the constrained optimization problem we propose is NP-hard, we show that the optimal
solution can be approximated to a constant factor. This is due to the fact that under the linear
threshold model the objective is monotonincally decsreasing and supermodular, a result we will
prove in detail in this paper. Therefore, the greedy algorithm, based on iteratively adding to the
chosen set the next best edge to remove in terms of marginal decrease in susceptability, until k edges
have been selected, produces solutions that are within (1 − 1/e) of the optimal value [17, 14]. We
also prove that other network manipulation operations, such as adding edges, deleting nodes and
adding nodes, are supermodular, as described in the Appendix 5.

We conduct computational experiments on both synthetic and real-world network data to evaluate
our greedy method, comparing it to other heuristics that rely solely on the structural properties of
the network (shortest paths, eigenvalues, degrees, etc), not making use of the probabilistic diffusion
information on the edges. Experiments show that our method significantly outperforms the other
heuristics.

Related Work: The topic of manipulating network structure to impact diffusion processes has
been recently explored in [20, 19, 13, 2]. Several studies consider manipulating nodes. Sheldon et.
al. [19] solve the problem of adding nodes to the network to maximize spread under the Independent
Cascade Model using Sample Average Approximation combined with Mixed Integer Programming.
Bogunovic [2] addresses the problem of finding the minimum set of nodes to block to guarantee a
desired level of containment of the spread under the Independent Cascade model.

Kimura et. al. [13] attempt to solve the same edge-based influence minimization problem as ours
for the Independent Cascade model by removing edges greedily, which we show does not yield
approximations with guarantees. They compare their method to two other heuristics based on out-
degree and edge betweenness centrality [8], which we will use as baselines in our study as well.
Tong et. al. [20] also consider removing edges from the network but under a different cascade
model, for which the eigenvalue of the adjacency matrix determines the epidemic threshold.

While the Independent Cascade model has been well studied, fewer have considered the Linear
Threshold model. Chen et. al. [5] study influence maximization under the Linear Threshold Model
and show that computing exact influence in general networks is #P − hard. They propose a more
scalable method for estimating influence under the linear threshold model than using Monte-Carlo
simulations, an issue we intend to tackle in future work.

2 Cascade Models

An influence graph is a weighted directed graph G = (V,E,w), where V is a set of n vertices
(nodes) and E is a set of m directed edges, and w : V × V → [0, 1] is a weight function such that
w(u, v) = 0 if and only if (u, v) /∈ E. Under the Linear Threshold (LT) model, we additionally
have the requirement that

∑
u∈V wuv ≤ 1. Each time a cascade is propagated, every vertex v

first independently selects a threshold θv uniformly at random in the range [0, 1], corresponding
to the lack of knowledge of users true thresholds. A cascade proceeds in discrete time steps t =
0, 1, 2, 3, . . . starting with a set of activated nodes A = S0 where Si denotes the set of nodes
activated upto time t. An inactive node v becomes activate at time t+ 1 if:∑

u∈St
wu,v ≥ θv .

The process terminates if no more activations are possible. Under the Independent Cascade (IC)
model, started with a set of activated nodesA at time t = 0. At each discrete time step t = 0, 1, 2, . . .
each newly activated node v is given a single attempt at activating each of its still inactive neighbors

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

uwith probability of successwvu, independently of the history this far. If v succeeds then u is newly
activated at time t+ 1.

Given an influence graph G = (V,E,w) and an initial set of active nodes A ⊂ V , we define the
influence function σ(A,G) as the expected number of active nodes at the end of the random diffusion
process (for either of the independent cascade or linear threshold models).

Kempe et al.[12] showed that the linear threshold model is equivalent to the reachability in the
following set of random graphs, called live-edge graphs: Given an influence graph G = (V,E,w),
for every node v ∈ V , select at most one of its incoming edges at random, where each edge (u; v) is
selected with probability w(u; v), and no edge is selected with probability 1−

∑
u∈V w(u; v). The

random graph X generated by this process consists of all vertices in V and all selected edges, called
live. Let us denote by XG the set of all possible live-edge random graphs that can be generated from
G. Kempe et al. [12] show that:

Proposition 1 [Claim 2.6 of [12]]: Given an influence graphG and an initial setA, the distribution
of the set of active nodes in G starting with A under the linear threshold model is the same as the
distribution of the set of nodes reachable from A in the random graphs XG.

Let us denote the set of all reachable nodes in X when starting from a set A by r(A,X). Notice
that the generation process for live-edge graphs guarantees that each node v ∈ V has at most one
parent in any live-edge graphX . Given our live-edge graph generation process, it is easy to see that
the probability of a random live-edge graph X = (V,EX) ∈ X is:

Pr[X|G] =
∏

v:(u;v)∈EX

w(u; v)
∏

v:@(u;v)∈EX

1−
∑

(u;v)∈E

w(u; v)

 .

We can re-write the probability of a live-edge graph so that to isolate the contribution of each node:
Pr[X|G] =

∏
v∈V p(v,X,G), where:

p(v,X,G) =

{
w(u, v) when ∃(u, v) ∈ EX

1−
∑

(u,v)∈E w(u, v) when @(u, v) ∈ EX

For a subset V ′ ⊆ V , we will use the shorthand p(V ′, X,G) =
∏

u∈V ′ p(u,X,G).

Clearly from Proposition 1 it follows that

σ(A,G) =
∑

X∈XG

Pr[X|G] · r(A,X).

3 Deleting edges

We define the susceptibility of a graph G to diffusion as the sum of the expected influence of each
node when it is the single source for a cascade, more precisely σ(G) =

∑
a∈V σ(a,G).

In our setting, we are interested in manipulating the underlying influence graph in order to minimize
its susceptibility to diffusions. In particular, we address the question of which set of k edges to
delete such that the resulting graph has minimum susceptibility.

Given an influence graph G = (V,E,w), deleting a set of edges S ⊆ E results in an influence
graph GS = (V,E\S,wS) with edge weights wS(u, v) = w(u, v) for edges (u, v) ∈ E\S and
wS(u, v) = 0 for (u, v) ∈ S. Our optimization problem is the following:

S∗ = arg min
S⊆E:|S|=k

∑
a∈V

σ(a,GS)

We will show that fa(S) = σ(a,GS) is a monotone and supermodular function. Since we will be
modifying the set of edges in the influence graph, in a slight abuse of notation we will use XE\S
instead of XGS

, Pr[X|E\S] instead of Pr[X|GS]. From our earlier definition:

fa(S) = σ(a,GS) =
∑

X∈XE\S

Pr[X|E\S] · r(a,X).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

First, given an influence graph G = (V,E,w), any edge set S ⊆ E and an edge e = (u, v) ∈ E\S,
let us consider the sets of live-edge graphs XE\S and XE\{S∪e} with respect to the influence graphs
GS and GS∪e respectively. Let us partition the set XE\S into three subsets according to the live
edge selected for node v: 1) the set of live-edge graphs X e

E\S , where edge e = (u, v) is selected for
v ; X ē

E\S , where another edge ē = (y, v) was selected for v; X ∅E\S , where no edge was selected for
v. This partition is illustrated in Figure 1 .

Figure 1: Venn diagram for the set of live-edge graphs XE\S

The following two propositions characterize the relationship between XE\S and XE\{S∪e}.

Proposition 2 Given an influence graph G = (V,E,w), any edge set S ⊆ E and an edge e =

(u, v) ∈ E\S, then XE\{S∪e} = X ē
E\S ∪ X

∅
E\S .

Proof It is easy to see that any live-edge graph X ∈ XE\{S∪e} is also in XE\S since S ⊆ S ∪ e.
The set of live-edge graphs XE\S\XE\{S∪e} are all the live-edge graphs that contain the edge e,
namely X e

E\S .

Proposition 3 Given an influence graph G = (V,E,w), any edge set S ⊆ E and an edge (u, v) ∈
E\S, there is a one-to-one mapping fromX e

E\S toX ∅E\S , whereX ∈ X ∅E\S corresponds toX(u,v) =

(V,EX ∪ (u, v)) ∈ X e
E\S .

Now we are ready to show the following theorem:

Theorem 4 fa is a monotone decreasing function.

Proof Given the influence graph G = (V,E,w), we need to show that for any set S ⊆ E and
e = (u, v) ∈ E\S:

fa(S)− fa(S ∪ e) =
∑

X∈XE\S

Pr[X|E\S] · r(a,X)−
∑

X∈XE\{S∪e}

Pr[X|E\S ∪ e] · r(a,X) ≥ 0

Using Proposition 2, we can rewrite the above equation as:

fa(S)− fa(S ∪ e) =
∑

X∈X e
E\S

Pr[X|E\S] · r(a,X)

+
∑

X∈X∅
E\S

(Pr[X|E\S]− Pr[X|E\S ∪ e]) · r(a,X)

+
∑

X∈X ē
E\S

(Pr[X|E\S]− Pr[X|E\S ∪ e]) · r(a,X) (1)

The probability of a live-edge graph X ∈ XE\{S∪e} differs between the two influence graphs GS

and GS∪e only in the calculation concerning node v, since all other nodes have the same set of
possible parents with the same set of weights, i.e. we have p(V \v,X,GS) = p(V \v,X,GS∪e).

For X ∈ X ē
E\S , the probability is the same under both influence graphs, p(v,X,GS) =

p(v,X,GS∪e) = w(ē).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

For all X ∈ X ∅E\S , the probability of selecting no edge for v differs between the two influence
graphs. In particular, it easy to see that p(v,X,GS) = (1 −

∑
(y,v)∈E\S∪e w(y, x) − w(u; v)) =

p(v,X,GS−cupe)−w(u; v). Hence, Pr[X|E\S]−Pr[X|E\S ∪ e]) = −w(u, v) · p(V \v,X,GS).

We can re-write Eq. 1 as:

fa(S)−fa(S∪e) =
∑

X∈X e
E\S

Pr[X|E\S]·r(a,X)+
∑

X∈X∅
E\S

−w(u, v)·p(V \v,X,GS)·r(a,X)+0

Using Proposition 3, for each X ∈ X ∅E\S the corresponding live-edge graph in ∈ X e
E\S is X(u,v) =

(V,EX ∪ (u, v)) and it has probability Pr[X(u,v)|E\S] = w(u, v) · p(V \v,X(u,v), GS). Hence:

fa(S)− fa(S ∪ e) =
∑

X∈X∅
E\S

Pr[X(u,v)|E\S] ·
(
r(a,X(u,v))− r(a,X)

)
(2)

Since the live-edge graph X(u,v) has one more edge than X , clearly r(a,X(u,v)) − r(a,X) ≥ 0,
which completes the proof.

Given an influence graph G = (V,E,w), S ⊂ E and e = (u, v), g = (u′, v′) ∈ E\S, we will
establish the supermodularity of fa, by showing that fa(S)−fa(S∪e) ≥ fa(S∪g)−fa(S∪g∪e).
Let T = S ∪ g. From Eqn. 2 in the proof of Thm. 4, we know that we need to take into account
live-edge graphs in X ∅E\T and in X ∅E\S .

Proposition 5 There exists a family of sets P = {Φi : Φi ⊆ X ∅E\S}
t
i=1 that partitions X ∅E\S into t

disjoint subsets, where t = |X ∅E\T |.

Proof Since S ⊂ T , every live-edge graph Xi ∈ X ∅E\T is also in X ∅E\S . For each Xi, we create

a corresponding Φi ⊂ X ∅E\S in the following manner. Recall that g = (u′; v′). If node v′ has a
parent in Xi, then Φi = {Xi}. Otherwise if v′ has no parent in Xi, then Φi = {Xi, X

′
i}, where

X ′i = (Vi, Ei ∪ g). X ′i is a valid live-edge graph in X ∅E\S since v′ had no parent in Xi and g ∈ S.

It is easy to see that sets Φi are pairwise disjoint, since each set contains a distinct Xi and all X ′i are
obtained by extending the dinstinct Xi by g /∈ T .

We show that ∪ti=1Φi = X ∅E\S by contradiction. Let us assume ∃H = (VH , EH) ∈
X ∅E\Ssuch that H /∈ Φi,∀i = 1, .., t. If H does not contain g then all edges in H are in

S\g = T , and it is easy to see that ∃Xi ∈ X ∅E\T such that Xi = H , hence H ∈ Φi. Otherwise, if
H contains g, then the graph H ′′ = (VH , EH\g) is a valid live-edge graph where v′ has no parent.
Then similarly, ∃Xi ∈ X ∅E\T such that Xi = H ′′. Since H ′′ does not contain a live edge for v′,
then Φ = {Xi = H ′′, X ′i}, where X ′i = (VH′′ , EH′′ ∪ g) = H . Hence, we have a contradiction in
both cases.

Proposition 6 For all Xi ∈ X ∅E\T and the corresponding Φi ⊂ X ∅E\S , Pr[Xi|E\T] =∑
Y ∈Φi

Pr[Y |E\S].

Proof Recall that T\S = g = (u′, v′). The statement holds true trivially in the case when v′ has a
parent in Xi and hence Φi = {Xi}.
When v′ has no parent inXi, Φi = {Xi, X

′
i}, whereX ′i = (Vi, Ei∪g). We consider the contribution

of the node v′ to the probability of the relevant live-edge graphs, since all other nodes contribute the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

same amount in across all cases considered:

p(v′, Xi, E\T) = 1−
∑

(x,v′)∈E\T

w(x, v′)

p(v′, Xi, E\S) = 1−
∑

(x,v′)∈E\S

w(x, v′) = 1−
∑

(x,v′)∈E\T

w(x, v′)− w(u′, v′)

p(v′, X ′i, E\S) = w(u′, v′)

=⇒ p(v′, Xi, E\T) = p(v′, Xi, E\S) + p(v′, X ′i, E\S)

=⇒ Pr[Xi|E\T] = Pr[Xi|E\S] + Pr[X ′i|E\S]

Theorem 7 The function fa is supermodular.

Proof Given an influence graph G = (V,E,w), S ⊂ E and e = (u, v), g = (u′, v′) ∈ E\S, we
will establish the supermodularity of fa, by showing that (fa(S)−fa(S∪e)) ≥ (fa(T)−fa(T ∪e))
where T = S ∪ g. From Eqn. 2 in the proof of Thm. 4, we know that:

fa(S)− fa(S ∪ e) =
∑

X∈X∅
E\S

Pr[X(u,v)|E\S] ·
(
r(a,X(u,v))− r(a,X)

)

fa(T)− fa(T ∪ e) =
∑

X∈X∅
E\T

Pr[X(u,v)|E\T] ·
(
r(a,X(u,v))− r(a,X)

)
.

For t = |X ∅E\T |, using Prop. 5 we can write:

fa(S)− fa(S ∪ e) =

t∑
i=1

∑
X∈Φi

Pr[X|E\S] ·
(
r(a,X(u,v))− r(a,X)

)
(3)

Then we need only compare fa(S) − fa(S ∪ e) and fa(T) − fa(T ∪ e) component-wise for each
Xi ∈ X ∅E\T , i = 1, . . . , t. Clearly, when Φi = {Xi}, the two are equal. When Φi = {Xi, X

′
i}, we

need to show that:

Pr[Xi|E\S] ·
(
r(a,Xi,(u,v))− r(a,Xi)

)
+ Pr[X ′i|E\S] ·

(
r(a,X ′i,(u,v))− r(a,X

′
i)
)

≥ Pr[Xi|E\T] ·
(
r(a,Xi,(u,v))− r(a,Xi)

)
Based on Prop. 6 we know that Pr[Xi|E\T] = Pr[Xi|E\S] + Pr[X ′i|E\S]. Then to establish
the above inequality, it suffices to show that r(a,X ′i,(u,v)) − r(a,X

′
i) ≥ r(a,Xi,(u,v)) − r(a,Xi).

Recall that X ′i = (Vi, Ei ∪ g). Since live-edge graphs are constructed in a way that each node
has at most one incoming edge, each reachable node x has a unique path from the source a to
x. Also a reachability path in Xi,(u,v) is clearly also present in X ′i,(u,v). Therefore if removing
e = (u; v) from Xi,(u,v) results in unreachability of some nodes in Xi then those same nodes
become unreachable when removing e = (u; v) from X ′i,(u,v). In addition, removing e = (u; v)

from X ′i,(u,v) might disconnect some additional nodes whose path from the source a includes g.
Hence, the reduction in reachable from nodes when removing e = (u; v) from X ′i,(u,v) is same or
larger than the reduction when removing e = (u; v) from Xi,(u,v). This completes the proof.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Greedy approximation algorithm

Since the susceptibilty of a graph is a linear combination of fa,∀a ∈ V , then it is supermodular
itself. In fact, it is established that minimizing a supermodular function f is equivalent to maximizing
the submodular function −f . The classical result by Nemhauser et. al. [17] shows that this type of
optimization problem can be approximated to a constant factor of (1 − 1/e) using a simple greedy
approach on the input set. In our case, the input set is the set of all edges in a graph G, E. Starting
with an empty set of edges S0, at each iteration i of the greedy algorithm, we add to our result set
the edge e maximizing the marginal gain ∆(e|Si−1) = σ(GSi−1

) − σ(GSi−1∪e), where Si is the
result set up till the i-th iteration. The greedy CUTTINGEDGE algorithm (Alg. 1) runs in k steps,
where k is the budget.

Input: G(V,E), k
Output: E∗
for i=1 to k do

E∗=E∗ ∪ argmaxe∈E\E∗ ∆(e|Si−1)

end

Algorithm 1: CUTTINGEDGE

a

b

d

d

e
(a) Original graph

a

b

d

d

e
(b) Graph with S removed

a

b

d

d

e
(c) Graph with T removed

Figure 2: Example graph where the IC model is not supermodular.

Unfortunately, this positive algorithmic result under the Linear Threshold model does not carry over
to the Independent Cascade model.

Theorem 8 The function fa is not supermodular under the Independent Cascade model.

Proof We give a counter-example to prove the above. Consider the graph illustrated in Fig. 2(a)
as our original influence graph G = (V,E,w) with all weights equal to 1. Hence, in this trivial
setting there is always only one possible cascade. Let S = {(b; e)}, T = S ∪ (a; d), and e = (a; b).
The resulting graphs after removing S and T are illustrated in Fig. 2 (b) and (c) respectively. The
influence of node a after removing S is 3, and adding e to S results in influence of 2. Hence the
marginal gain of adding e to S is 1. The influence of node a after removing T is 2, and adding e to
T reduces the influence to 0, with a marginal gain of 2. Hence adding e to the smaller set S results
in a larger marginal gain, violating the supermodularity property.

4 Experiments and Results

We evaluate the effectiveness of our algorithm CUTTINGEDGE on both synthetic and real-world
networks, and compare the quality of the solution it provides against other heuristic algorithms.

Since evaluating the true expected susceptability of a graph has been shown to be #P -hard problem
[4], we use the usual Monte Carlo based approach and approximate it by the average susceptability
over a large sample of live-edge graphs. Using the greedy approach in a naive way will result in
evaluating marginal gain for each candidate edge at every iteration. Instead, we use a technique
called lazy evaluation [16], which avoids computing the function for all edges and has been shown
to result in significant speed-ups over the naive evaluation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

G
ra

ph
 S

us
ce

pt
ib

ili
ty

 R
at

io

CuttingEdge
Random
Weights
Betweenness
Eigen
Degree

(a) FORESTFIRE, 500 nodes,
1691 edges

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

G
ra

ph
 S

us
ce

pt
ib

ili
ty

 R
at

io

CuttingEdge
Random
Weights
Betweenness
Eigen
Degree

(b) MEMETRACKER, 861 nodes, 5000 edges

Figure 3: Comparison of methods for (a) FORESTFIRE, (b) MEMETRACKER. Lower is better.

Synthetic networks Forest fire is a generation model that produces networks mimicking the struc-
ture of growing networks [1]. The model produces realistic networks in terms of heavy-tailed degree
distributions, community structure and other network properties. We generate a 500-node 1691-edge
FORESTFIRE network using parameters: forward burning probability 0.3, and backward burning
probability 0.25. As for the diffusion probabilities on the edges, each is chosen uniformly at ran-
dom, subject to the condition

∑
u∈V wuv ≤ 1 for any node v in the network. We use 5000 live-edge

graph samples to estimate influences for this network.

Real-world networks In order to evaluate our method in a relvant application context, we consider
the publicly available MemeTracker network [15]. This is a who-copies-from-whom dataset, where
each node u is a news media site or blog, and each edge e(u, v) represents the recorded event
of v copying u. These edges are inferred from actual hyperlink cascade traces using a network
inference algorithm, NETINF [9]. To assign probabilities on the edges, we make use of the median
transmission time, also provided as part of the dataset. Let t̃u,v be the median transmission time

between two nodes u and v, then we set wu,v =∝ 1

t̃u,v
, rewarding smaller transmission times with

higher diffusion probabilities, and vice versa. We assign a probability of 0.2 to the event that a node
v does not adopt despite its in-neighbors influence, such that

∑
u∈V wu,v + 0.2 = 1. We also use

5000 live-edge graph samples to estimate influences in this case.

Heuristics To evaluate the quality of the solution provided by CUTTINGEDGE, we compare it
against other heuristic metrics that are based on the structure of the network irrespective of the
dynamics entailed by the diffusion model. These heuristic strategies can be described as follows:
(1) select k edges uniformly at random (referred to as ’Random’), (2) select the k edges that cause
the maximum decrease in the leading eigenvalue of the network when removed from it (referred
to as Eigen’) [21, 20], (3) select the k edges with highest edge betweenness centrality, where this
measure is defined for edge e as the sum of the fraction of all-pairs shortest paths that pass through
e (referred to as ’Betweenness’) [3], (4) select the k edges whose destination nodes have the highest
out-degree (referred to as ’Degree’), (5) select the k edges with highest diffusion probability (weight)
wu,v , where an edge goes from node u to v (referred to as ’Weights’). Note that all three methods
’Eigen’,’Betweenness’ and ’Degree’ are weighted, where the diffusion probability of each edge is
also its weight in the corresponding adjacency matrix.

Results To evaluate the solution quality for CUTTINGEDGE and the other heuristics, we compute
the ratio of the graph susceptibility after the given edge set is removed from the graph, to the graph
susceptibility when no edge is removed. Clearly, the smaller the ratio is, the more effective a method
is. For the FORESTFIRE network, CUTTINGEDGE completely mitigates diffusion after almost 400
edges (23% out of 1691 edges) are removed from the network. This can be explained by the fact

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

that even for a large number of sample cascades, the number of edges that are actually live across
all cascades is less than the number of edges in the network. While the heuristics perform poorly
relative to our method, ’Degree’ fares best amongst those, surpassing both supposedly ”smarter”
methods ’Betweenness’ and ’Eigen’. Perhaps surprisingly, ’Random’ also provides a better solution
than most heuristics, despite its results being averaged over multiple random edge sets for each k.
As seen in the figure, ’Random’ does not decrease strictly monotonically due to the repeated random
choosing of edges, as opposed to the other methods which are all incremental (i.e the set of edges
chosen for a given k includes all edges chosen for k−1). Removing the edges with highest diffusion
probability as in ’Weights’ barely decreases the susceptibility even for a large k.

As for the MEMETRACKER dataset results, CUTTINGEDGE is able to fully mitigate diffusion by
removing only around 500 edges, or 10% of the network’s 5000 edges. Already for k = 100, the
gap in the susceptibility ratio between CUTTINGEDGE and the other heuristics is significant, around
0.4 as compared to 0.95 for the most competitive heuristic here, ’Eigen’.

5 Conclusion

We have presented an optimization formulation for the problem of edge-based influence minimiza-
tion in networks. Under the linear threshold model, we prove that the objective function is super-
modular, allowing for an approximation algorithm that yields solutions with strong guarantees. Our
first experimental results on both synthetic and real-world networks demonstrate our method’s effec-
tiveness in mitigating diffusion processes, one that is unmatched by other commonly used eigenvalue
and centrality-based heuristics.

Possible areas of future work include more extensive experimentation on a wider array of datasets.
Also, we intend to research algorithmic methods to make our method scalable to networks with
millions of nodes and edges. More broadly, the class of problems at the intersection of network
manipulation and diffusion processes remains very challenging and interesting.

Acknowledgements. We thank Prof. Hanghang Tong for providing us with his code for the
’Eigen’ method.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References
[1] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,

286(5439):509–512, 1999.
[2] Ilija Bogunovic. Robust Protection of Networks against Cascading Phenomena. PhD thesis,

Master Thesis ETH Zürich, 2012, 2012.
[3] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Soci-

ology, 25(2):163–177, 2001.
[4] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for prevalent viral

marketing in large-scale social networks. In KDD: ACM SIGKDD International Conference
on Knowledge Discovery and Data mining, pages 1029–1038, 2010.

[5] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social networks
under the linear threshold model. In ICDM: IEEE International Conference on Data Mining,
pages 88–97, 2010.

[6] Pedro Domingos and Matt Richardson. Mining the network value of customers. In KDD: ACM
SIGKDD International Conference on Knowledge Discovery and Data mining, pages 57–66,
2001.

[7] Nan Du, Le Song, Hongyuhan Zha, and Manuel Gomez Rodriguez. Scalable influence es-
timation in continuous time diffusion networks. In NIPS: Advances in Neural Information
Processing Systems, page To Appear, 2013.

[8] Michelle Girvan and Mark EJ Newman. Community structure in social and biological net-
works. PNAS: Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.

[9] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of diffu-
sion and influence. In KDD: ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1019–1028, 2010.

[10] Mark Granovetter. Threshold models of collective behavior. American Journal of Sociology,
pages 1420–1443, 1978.

[11] Herbert W Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599–653,
2000.

[12] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a
social network. In KDD: ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 137–146, 2003.

[13] Masahiro Kimura, Kazumi Saito, and Hiroshi Motoda. Blocking links to minimize contam-
ination spread in a social network. ACM Transactions on Knowledge Discovery from Data
(TKDD), 3(2):9, 2009.

[14] Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability: Prac-
tical Approaches to Hard Problems, 3, 2012.

[15] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the dynamics of the
news cycle. In KDD: ACM SIGKDD International Conference on Knowledge Discovery and
Data mining, pages 497–506, 2009.

[16] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and
Natalie Glance. Cost-effective outbreak detection in networks. In KDD: ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data mining, pages 420–429, 2007.

[17] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approxima-
tions for maximizing submodular set functionsi. Mathematical Programming, 14(1):265–294,
1978.

[18] Manuel Gomez Rodriguez, David Balduzzi, and Bernhard Schölkopf. Uncovering the temporal
dynamics of diffusion networks. In ICML: International Conference on Machine Learning,
pages 561–568, 2011.

[19] Daniel Sheldon, Bistra Dilkina, Adam N Elmachtoub, Ryan Finseth, Ashish Sabharwal, Jon
Conrad, Carla P Gomes, David Shmoys, William Allen, Ole Amundsen, et al. Maximizing
the spread of cascades using network design. In UAI: Conference in Uncertainty in Artificial
Intelligence, pages 517–526, 2010.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

[20] Hanghang Tong, B Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, and Christos Falout-
sos. Gelling, and melting, large graphs by edge manipulation. In CIKM: ACM International
Conference on Information and Knowledge Management, pages 245–254, 2012.

[21] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. Epidemic spread-
ing in real networks: An eigenvalue viewpoint. In IEEE International Symposium on Reliable
Distributed Systems, pages 25–34, 2003.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Appendix

We show that the supermodularity we proved for deleting edges holds as well for the three other
possible network manipulation operations: adding edges, deleting nodes and adding nodes.

Given an influence graph G′(V,E′, w′) and the complete influence graph G = (V,E,w) (where
every two nodes are connected in both directions), such that E′ ⊆ E,w′ ⊆ w, we would like to
add k edges from E\E′ such that G′’s susceptibility to diffusion is maximized. Our optimization
problem is the following:

S∗ = arg max
S⊆E\E′:|S|=k

∑
a∈V

σ(a,GS),

where GS = (V,E′ ∪ S,w′ ∪ wS).

We will show that ga(S) = σ(a,GS) is a monotone and supermodular function. From our earlier
definition:

ga(S) = σ(a,GS) =
∑

X∈XE∪S

Pr[X|E ∪ S] · r(a,X).

Theorem 9 The function ga is supermodular.

Proof Now consider the graph G = (V,E,w) and G′(V,E′, w′), E′ ⊆ E. Let S ⊆ T ⊆ E\E′,
and e ∈ E\(E′ ∪ T).

Then, adding edges S to G′ results in the same expected influence as removing edges E\(S ∪ E′)
from G. Namely, if A = E\(S ∪ (E′ ∪ e)), then ga(S) = fa(A ∪ e). Also, ga(S ∪ e) = fa(A).
Analogously, if B = E\(T ∪ (E′ ∪ e)), then ga(T) = fa(B ∪ e). Also, ga(T ∪ e) = fa(B). Note
that B ⊆ A. But we know from 7 that:

fa(B)− fa(B ∪ e) ≥ fa(A)− fa(A ∪ e),
which implies that:

ga(T ∪ e)− ga(T) ≥ ga(S ∪ e)− ga(S),

ga(S)− ga(S ∪ e) ≥ ga(T)− ga(T ∪ e).
Since S ⊆ T , then ga is supermodular, completing the proof.

Now define ES ⊆ E, for any set of nodes S ⊆ V , as the set of edges having as source or target a
node in S. Also, for any node v ∈ V /∈ S, define ES

v = (v, u) ∈ E|u /∈ S.

Then, let the function describing the graph susceptibility in the event of node deletion be defined as:

ha(S) =
∑

X∈XE\ES

Pr[X|ES] · r(a,X).

Theorem 10 The function ha is supermodular.

Proof Let G = (V,E,w) be the complete influence graph, and B = A ∪ u,where A,B, u ∈ V .
Also let v ∈ V \B and EB

v = {e1, e2, ..., ek}. From 7, we can write:

fa(EA)− fa(EA ∪ e1) ≥ fa(EB)− fa(EB ∪ e1)

fa(EA ∪ e1)− fa(EA ∪ e1 ∪ e2) ≥ fa(EB ∪ e1)− fa(EB ∪ e1 ∪ e2)

...

fa(EA ∪ e1 ∪ ... ∪ ek−1)− fa(EA ∪ e1 ∪ ... ∪ ek−1 ∪ ek) ≥ fa(EB ∪ e1 ∪ ... ∪ ek−1)− fa(EB ∪ e1... ∪ ek−1 ∪ ek)

Adding all these equations together, we obtain:

fa(EA)− fa(EA ∪ EB
v) ≥ fa(EB)− fa(EB ∪ EB

v)

If the edges (u, v) and (v, u) are both not in E, then EA
v = EB

v , and the proof is complete. Even
if either one or both of these two edges appear in E, ha is still supermodular. We show that for the
case where (u, v), (v, u) ∈ E.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

In that case, EA
v = EB

v ∪ (u, v) ∪ (v, u), and fa is monotone decreasing, implying that fa(EA ∪
EA

v) ≤ fa(EA∪EB
v), and consequently fa(EA)−fa(EA∪EA

v) ≥ fa(EA)−fa(EA∪EB
v). Since

fa(EA) = ha(A), fa(EA ∪ EA
v) = ha(A ∪ v) (and the same for B instead of A), we finally get:

ha(A)− ha(A ∪ v) ≥ ha(B)− ha(B ∪ v)

which comletes this proof.

Adding nodes is also supermodular by a similar proof based on ga instead of fa.

13

	Introduction
	Cascade Models
	Deleting edges
	Experiments and Results
	Conclusion

