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Abstract

The diffusion of undesirable phenomena over social, information and technologi-
cal networks is a common problem in different domains. Domain experts typically
intervene to advise solutions that mitigate the spread in question. However, these
solutions are temporary, in that they only tackle the spread of a specific instance
over the network, failing to account for the complex modalities of diffusion pro-
cesses. We propose an optimization formulation for the problem of minimizing
the spread of influence in a network by removing some of its edges. We show
that the corresponding objective function is supermodular under the linear thresh-
old model, allowing for a greedy approximate solution with provable guarantees.
Preliminary experiments on real and synthetic network data show that our method
significantly outperforms other common heuristics.

1 Introduction

The diffusion of ideas and influence is a topic of study across many disciplines ranging from viral
marketing [6]] and population epidemics [[L1]], to social media [[15] and other fields. A central ele-
ment in any diffusion process is the communication channel along which the spread occurs. Recent
efforts in network analysis, as well as the proliferation of real-world data of diffusion on the web,
have established the network as a strong abstraction tool for spread phenomena: nodes in the un-
derlying directed graph represent the individuals or entities in a given system, and edges represent
the presence of a medium of communication between the nodes. Based on this representation, a
number of methods have been devised with the goal of finding a set of £ nodes whose adoption of a
given idea would result in maximizing the spread of this idea in the network [6, [12]. This particular
problem has been extended for different diffusion models [18]], and increasingly efficient solutions
are being proposed for it [7].

However, not much attention has been accorded to the study of negative phenomena that propagate
in networks. Diseases that spread via contagion in societies, rumors that diffuse through blogs
and news websites, and computer viruses that propagate in computer networks and the internet are
all examples of processes, where the object of diffusion is considered harmful, hence undesirable.
An obvious counter-measure in those situations is to call upon domain experts, e.g biologists and
epidemics experts create new health and immunization measures, the New York Times or other
reputable media outlets deny rumors and fake news, etc. But such measures may suffer from being
too case-specific (tailored for one undesirable diffusion instance) rather than general, as well as too
heuristic, in that they do not model cascading behavior properly, and rather make use of human
judgment exclusively.

Adopting a more prinicipled computational approach to the problem, we ask the following question:
what structural changes to the network topology would result in suppressing the influence of an
undesireable diffusion process, in the best possible way? First, we consider the linear threshold
model as a diffusion model [10]. This model is widely adopted by sociologists as representative of
adoption dynamics, where each node or individual has a threshold, representing the fraction of its



neighbors or connections that must adopt a certain idea before they adopt it themselves. Moreover,
we do not make any assumptions about the nodes that initiate the diffusion in the network, i.e each
node is equally likely to cause the initial spread. The spread susceptability of a network is defined
as the sum of each node’s individual expected influence.

The problem can then be formulated as follows: Given a network G(V, E), a vector of diffusion
probabilities w and a budget k, find the set of k edges £, such that the spread susceptability of the
network G*(V, E\ E*), resulting from removing F*from F, is minimized.

Although the constrained optimization problem we propose is NP-hard, we show that the optimal
solution can be approximated to a constant factor. This is due to the fact that under the linear
threshold model the objective is monotonincally decsreasing and supermodular, a result we will
prove in detail in this paper. Therefore, the greedy algorithm, based on iteratively adding to the
chosen set the next best edge to remove in terms of marginal decrease in susceptability, until k£ edges
have been selected, produces solutions that are within (1 — 1/e) of the optimal value [17, [14]. We
also prove that other network manipulation operations, such as adding edges, deleting nodes and
adding nodes, are supermodular, as described in the Appendix [3

We conduct computational experiments on both synthetic and real-world network data to evaluate
our greedy method, comparing it to other heuristics that rely solely on the structural properties of
the network (shortest paths, eigenvalues, degrees, etc), not making use of the probabilistic diffusion
information on the edges. Experiments show that our method significantly outperforms the other
heuristics.

Related Work: The topic of manipulating network structure to impact diffusion processes has
been recently explored in [20} [19} 113} 2]]. Several studies consider manipulating nodes. Sheldon et.
al. [19] solve the problem of adding nodes to the network to maximize spread under the Independent
Cascade Model using Sample Average Approximation combined with Mixed Integer Programming.
Bogunovic [2] addresses the problem of finding the minimum set of nodes to block to guarantee a
desired level of containment of the spread under the Independent Cascade model.

Kimura et. al. [13] attempt to solve the same edge-based influence minimization problem as ours
for the Independent Cascade model by removing edges greedily, which we show does not yield
approximations with guarantees. They compare their method to two other heuristics based on out-
degree and edge betweenness centrality [8], which we will use as baselines in our study as well.
Tong et. al. [20]] also consider removing edges from the network but under a different cascade
model, for which the eigenvalue of the adjacency matrix determines the epidemic threshold.

While the Independent Cascade model has been well studied, fewer have considered the Linear
Threshold model. Chen et. al. [3]] study influence maximization under the Linear Threshold Model
and show that computing exact influence in general networks is # P — hard. They propose a more
scalable method for estimating influence under the linear threshold model than using Monte-Carlo
simulations, an issue we intend to tackle in future work.

2 Cascade Models

An influence graph is a weighted directed graph G = (V, E, w), where V is a set of n vertices
(nodes) and F is a set of m directed edges, and w : V' x V' — [0, 1] is a weight function such that
w(u,v) = 0 if and only if (u,v) ¢ E. Under the Linear Threshold (LT) model, we additionally
have the requirement that ) i wy,, < 1. Each time a cascade is propagated, every vertex v
first independently selects a threshold 6, uniformly at random in the range [0, 1], corresponding
to the lack of knowledge of users true thresholds. A cascade proceeds in discrete time steps ¢ =
0,1,2,3,... starting with a set of activated nodes A = Sy where .S; denotes the set of nodes
activated upto time ¢. An inactive node v becomes activate at time ¢ + 1 if:

Zuest Wy > 91) .

The process terminates if no more activations are possible. Under the Independent Cascade (IC)
model, started with a set of activated nodes A at time ¢ = 0. Ateach discrete time stept =0,1,2,...
each newly activated node v is given a single attempt at activating each of its still inactive neighbors



u with probability of success w,,,, independently of the history this far. If v succeeds then u is newly
activated at time ¢ + 1.

Given an influence graph G = (V, E, w) and an initial set of active nodes A C V, we define the
influence function o (A, ) as the expected number of active nodes at the end of the random diffusion
process (for either of the independent cascade or linear threshold models).

Kempe et al.[12] showed that the linear threshold model is equivalent to the reachability in the
following set of random graphs, called live-edge graphs: Given an influence graph G = (V, E, w),
for every node v € V', select at most one of its incoming edges at random, where each edge (u;v) is
selected with probability w(u; v), and no edge is selected with probability 1 — > _, w(u;v). The
random graph X generated by this process consists of all vertices in V' and all selected edges, called
live. Let us denote by Xz the set of all possible live-edge random graphs that can be generated from
G. Kempe et al. [12] show that:

Proposition 1 [Claim 2.6 of [12|]]: Given an influence graph G and an initial set A, the distribution
of the set of active nodes in G starting with A under the linear threshold model is the same as the
distribution of the set of nodes reachable from A in the random graphs Xg.

Let us denote the set of all reachable nodes in X when starting from a set A by (A, X). Notice
that the generation process for live-edge graphs guarantees that each node v € V has at most one
parent in any live-edge graph X . Given our live-edge graph generation process, it is easy to see that
the probability of a random live-edge graph X = (V, Ex) € X is:

Pr[X|G] = H w(u; v) H 1- Z w(u;v)

vi(uv)EEx vif(uv)EEx (wv)eE
We can re-write the probability of a live-edge graph so that to isolate the contribution of each node:
Pr[X|G] = [],cy p(v, X, G), where:
p(v, X,G) = { 11096%)(“70)613 w(u,v) XEZE %EZ:Z% 2 g;
For a subset V' C V, we will use the shorthand p(V’, X, G) = [[,cv p(u, X, G).
Clearly from Proposition [I]it follows that

o(A,G)= > Pr[X|G]-r(A,X).

XeXa

3 Deleting edges

We define the susceptibility of a graph G to diffusion as the sum of the expected influence of each
node when it is the single source for a cascade, more precisely o(G) = >,y 0(a, G).

In our setting, we are interested in manipulating the underlying influence graph in order to minimize
its susceptibility to diffusions. In particular, we address the question of which set of k edges to
delete such that the resulting graph has minimum susceptibility.

Given an influence graph G = (V, E,w), deleting a set of edges S C FE results in an influence
graph Gg = (V, E\S,wg) with edge weights wg(u,v) = w(u,v) for edges (u,v) € E\S and
wg (u,v) = 0 for (u,v) € S. Our optimization problem is the following:

S* =arg min Z o(a,Gs)

SCE:|S|=k
CE:|S|=k 7=

We will show that f,(S) = o(a,Gg) is a monotone and supermodular function. Since we will be
modifying the set of edges in the influence graph, in a slight abuse of notation we will use X\ g
instead of X, Pr[X|FE\S] instead of Pr[X|Gg]. From our earlier definition:

fa(8) =0(a,Gs) = > Pr[X|E\S]-r(a, X).

XEXE\S



First, given an influence graph G = (V, E, w), any edge set S C F and an edge e = (u,v) € E\S,
let us consider the sets of live-edge graphs Xz g and X'z {sue) With respect to the influence graphs
Gs and Gy respectively. Let us partition the set X'p\ g into three subsets according to the live
edge selected for node v: 1) the set of live-edge graphs X g\ - where edge e = (u, v) is selected for

v; X g\ o» Where another edge & = (y,v) was selected for v; X 0 . where no edge was selected for

E\S®
v. This partition is illustrated in Figure [I].

XE\S
Figure 1: Venn diagram for the set of live-edge graphs X\ g

The following two propositions characterize the relationship between Xz g and Xg\ (sUe} -

Proposition 2 Given an influence graph G = (V, E,w), any edge set S C E and an edge e =
(u,v) € E\S, then Xp\(sue} = XE\S U Xg\s.

Proof It is easy to see that any live-edge graph X € X\ (sue} is also in Xpy g since S C S Ue.
The set of live-edge graphs Xp\ s\ Xp\ (suey are all the live-edge graphs that contain the edge e,
namely X g\ 5 |

Proposition 3 Given an influence graph G = (V, E,w), any edge set S C E and an edge (u,v) €
E\S, there is a one-to-one mapping from XE\S to Xg\s, where X € X}%\S corresponds 10 Xy, ) =
(V, Ex U (u,v)) € Xp\ s

Now we are ready to show the following theorem:

Theorem 4 f, is a monotone decreasing function.

Proof Given the influence graph G = (V, E,w), we need to show that for any set S C E and
e = (u,v) € E\S:

fa(8) = fa(SUe) = > Pr[X|E\S]-r(a,X)— Y PrX|E\SU¢]-r(a,X)>0

XEXE\S XEXE\{SUc}

Using Proposition 2] we can rewrite the above equation as:

fa(S) = fa(SUe) = > Pr[X|E\S]-r(a, X)

XeXg, o

+ Y (Pr[X|E\S] - Pr[X|E\S Ue]) - r(a, X)

Xexg\s

+ Y (Pr[X|E\S] - Pr[X|E\S U¢]) - r(a, X) (1)
XGXE\S

The probability of a live-edge graph X € X'p\ [suey differs between the two influence graphs G's
and Gy, only in the calculation concerning node v, since all other nodes have the same set of
possible parents with the same set of weights, i.e. we have p(V\v, X, Gg) = p(V\v, X, Gsue)-

For X € XE\S, the probability is the same under both influence graphs, p(v, X,Gg) =
p(v, X, Gsue) = w(e).



Forall X € X g\ - the probability of selecting no edge for v differs between the two influence
graphs. In particular, it easy to see that p(v, X, Gs) = (1 = 22, ,)em sue WY, 2) — w(u;v)) =
p(v, X, Gs_cupe) — w(u; v). Hence, Pr[X|E\S] — Pr[X|E\SUe]) = —w(u,v) -p(V\v, X, Gg).

We can re-write Eq. [T] as:

fa(S)—fa(SUe) = Z Pr[X|E\S]-7(a, X)+ Z —w(u,v)-p(V\v, X,Gg)-r(a, X)+0

X€XE\ s Xexh o

Using Proposition foreach X ¢ X g\ g the corresponding live-edge graph in € X’ E:\ g 18 X(yv) =
(V, Ex U (u,v)) and it has probability Pr[X, .)|E\S] = w(u,v) - p(V\v, X (4,4, Gs). Hence:

fa(8) = fa(SUE) = Y Pr[X(uolE\S]- (r(a, X(uw) — r(a, X)) 2)
XeXxp s

Since the live-edge graph X(,, .,y has one more edge than X, clearly r(a, X(,,.)) — r(a, X) > 0,
which completes the proof. |

Given an influence graph G = (V,E,w), S C E and e = (u,v),g = (uv,v") € E\S, we will
establish the supermodularity of f,, by showing that f,(S) — f.(SUe) > f.(SUg) — fo(SUgUe).
Let ' = S U g. From Eqn. 2] in the proof of Thm. f] we know that we need to take into account
live-edge graphs in X}%\T and in X g\ 5

Proposition 5 There exists a family of sets P = {®; : ®; C Xg\s};?:l that partitions Xg\s into t

disjoint subsets, where t = |X3\T|.

Proof Since S C T, every live-edge graph X; € Xg\T is also in Xg\s. For each X, we create
a corresponding ®; C X g\ g in the following manner. Recall that g = (u’;2"). If node v’ has a
parent in X;, then ®; = {X;}. Otherwise if v’ has no parent in X;, then ®; = {X,, X/}, where
X! = (V;, E; Ug). X] is avalid live-edge graph in Xg\s since v’ had no parent in X; and g € S.
It is easy to see that sets ®; are pairwise disjoint, since each set contains a distinct X; and all X/ are
obtained by extending the dinstinct X; by g ¢ T

We show that U!_,®;, = Xg\s by contradiction. Let us assume dH = (Vy,Eg) €
Xg\ssuch that H ¢ ®;,Vi = 1,..,t. If H does not contain g then all edges in H are in
S\g = T, and it is easy to see that 3X; € Xg\T such that X; = H, hence H € ®;. Otherwise, if
H contains g, then the graph H” = (V, Egr\g) is a valid live-edge graph where v’ has no parent.
Then similarly, 3X; € X g\T such that X; = H”. Since H" does not contain a live edge for v’,

then ® = {X,;, = H”, X}, where X| = (Vy», Eg~» U g) = H. Hence, we have a contradiction in
both cases. |

Proposition 6 For all X; € Xg\T and the corresponding ®; C Xg\s, Pr[X;|E\T| =
ZYe‘bi Pr[Y[E\S].

Proof Recall that T\.S = g = (u/,v"). The statement holds true trivially in the case when v’ has a
parent in X; and hence ®; = {X;}.

When v’ has no parent in X;, ®; = {X;, X/}, where X| = (V;, E;Ug). We consider the contribution
of the node v’ to the probability of the relevant live-edge graphs, since all other nodes contribute the



same amount in across all cases considered:

p(v', X;, E\T) = 1-— Z w(z,v)
(z,0")EE\T

p(v', X;, E\S) = 1- Z w(z,v)=1- Z w(z,v') —wu,v")
(z,v")EE\S (z,0")EE\T

p(v', X!, E\S) w(u',v")
= p(vleivE\T) :p(vleiaE\S) +p(U/,X'L/3E\S)

— Pr[X;|E\T] = Pr[X;|E\S] + Pr[X!|E\S]

Theorem 7 The function f, is supermodular.

Proof Given an influence graph G = (V, E,w), S C F and e = (u,v),g9 = (v/,v") € E\S, we
will establish the supermodularity of f,, by showing that (f,(S)— fo(SUe€)) > (fo(T) — fa(T'Ue))
where T' = S U g. From Eqn. [2]in the proof of Thm. 4] we know that:

fa(8) = fa(SUE) = Y Pr[X(uulE\S]- (r(a, X(uw) — r(a, X))

Xex?

E\s
foT) = fu(TUe) = > PrX(uuE\T] - (r(a, Xuw) - r(a, X))
Xexp, ,
Fort = |X \T| using Prop Iwe can write:
fa(S) = fa(SUe) Z > PrX[E\S] - (r(a, X(uw) — r(a, X)) 3)
i=1 Xed;

Then we need only compare f,(S) — fo(S Ue) and f(T) — fo(T U e) component-wise for each
X, € XE\T, i=1,...,t Clearly, when &, = {X,}, the two are equal. When ®; = {X;, X/}, we

need to show that:

PrXGIB\S] - (r(a, Xiu) = (0, X)) + Pr(XE\S] - (r(a, X (y0y) = (0, X))
= PI‘[XJE\T] ' (’f‘(&, Xi,(u,'u)) - T(G/in))

Based on Prop. [] we know that Pr[X;|E\T] = Pr[X;|E\S] + PT[X’|E\S] Then to establish
the above inequality, it suffices to show that r(a, X} , .\) — 7(a, Xj) = r(a, X; (uv)) — r(a, X;).
Recall that X! = (V;, E; U g). Since live-edge graphs are constructed in a way that each node
has at most one incoming edge, each reachable node x has a unique path from the source a to
x. Also a reachability path in X; (, ,y is clearly also present in X () Therefore if removing
e = (w;v) from X; (, . results in unreachability of some nodes in X; then those same nodes

become unreachable when removing e = (u;v) from X7 . In addition, removing ¢ = (u;v)
from X/ i () might disconnect some additional nodes whose path from the source a includes g.
Hence, the reduction in reachable from nodes when removing ¢ = (u;v) from X/ i ()

larger than the reduction when removing e = (u;v) from X (,, ,,y. This completes the proof. |

is same or



Greedy approximation algorithm

Since the susceptibilty of a graph is a linear combination of f,,Va € V, then it is supermodular
itself. In fact, it is established that minimizing a supermodular function f is equivalent to maximizing
the submodular function — f. The classical result by Nemhauser et. al. [17] shows that this type of
optimization problem can be approximated to a constant factor of (1 — 1/e) using a simple greedy
approach on the input set. In our case, the input set is the set of all edges in a graph G, E. Starting
with an empty set of edges S, at each iteration ¢ of the greedy algorithm, we add to our result set
the edge e maximizing the marginal gain A(e|S;—1) = 0(Gs,_,) — 0(Gs,_,ue), where S; is the
result set up till the i-th iteration. The greedy CUTTINGEDGE algorithm (Alg. 1) runs in k steps,
where £ is the budget.

Input: G(V, E), k
Output: E*
for i=11to k do
| E*=E*U argmax,c g\ g Ale]Si-1)
end

Algorithm 1: CUTTINGEDGE

JONOEENOIONENONN
(a) Original graph (b) Graph with S removed (c) Graph with T" removed

Figure 2: Example graph where the IC model is not supermodular.

Unfortunately, this positive algorithmic result under the Linear Threshold model does not carry over
to the Independent Cascade model.

Theorem 8 The function f, is not supermodular under the Independent Cascade model.

Proof We give a counter-example to prove the above. Consider the graph illustrated in Fig. [(a)
as our original influence graph G = (V, E,w) with all weights equal to 1. Hence, in this trivial
setting there is always only one possible cascade. Let S = {(b;e)}, T = S U (a;d), and e = (a; b).
The resulting graphs after removing S and T are illustrated in Fig. 2] (b) and (c) respectively. The
influence of node a after removing S is 3, and adding e to S results in influence of 2. Hence the
marginal gain of adding e to S is 1. The influence of node a after removing 7' is 2, and adding e to
T reduces the influence to 0, with a marginal gain of 2. Hence adding e to the smaller set S results
in a larger marginal gain, violating the supermodularity property. |

4 Experiments and Results

We evaluate the effectiveness of our algorithm CUTTINGEDGE on both synthetic and real-world
networks, and compare the quality of the solution it provides against other heuristic algorithms.

Since evaluating the true expected susceptability of a graph has been shown to be # P-hard problem
[4]], we use the usual Monte Carlo based approach and approximate it by the average susceptability
over a large sample of live-edge graphs. Using the greedy approach in a naive way will result in
evaluating marginal gain for each candidate edge at every iteration. Instead, we use a technique
called lazy evaluation [16]], which avoids computing the function for all edges and has been shown
to result in significant speed-ups over the naive evaluation.
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Figure 3: Comparison of methods for (a) FORESTFIRE, (b) MEMETRACKER. Lower is better.

Synthetic networks Forest fire is a generation model that produces networks mimicking the struc-
ture of growing networks [1]. The model produces realistic networks in terms of heavy-tailed degree
distributions, community structure and other network properties. We generate a 500-node 1691-edge
FORESTFIRE network using parameters: forward burning probability 0.3, and backward burning
probability 0.25. As for the diffusion probabilities on the edges, each is chosen uniformly at ran-
dom, subject to the condition ZuEV Wy < 1 for any node v in the network. We use 5000 live-edge

graph samples to estimate influences for this network.

Real-world networks In order to evaluate our method in a relvant application context, we consider
the publicly available MemeTracker network [[15]. This is a who-copies-from-whom dataset, where
each node u is a news media site or blog, and each edge e(u,v) represents the recorded event
of v copying u. These edges are inferred from actual hyperlink cascade traces using a network
inference algorithm, NETINF [9]]. To assign probabilities on the edges, we make use of the median
transmission time, also provided as part of the dataset. Let #,_, be the median transmission time

1 . S .
between two nodes v and v, then we set w,, , =0 =——, rewarding smaller transmission times with
u,v
higher diffusion probabilities, and vice versa. We assign a probability of 0.2 to the event that a node
v does not adopt despite its in-neighbors influence, such that ), wy,, + 0.2 = 1. We also use
5000 live-edge graph samples to estimate influences in this case.

Heuristics To evaluate the quality of the solution provided by CUTTINGEDGE, we compare it
against other heuristic metrics that are based on the structure of the network irrespective of the
dynamics entailed by the diffusion model. These heuristic strategies can be described as follows:
(1) select k£ edges uniformly at random (referred to as 'Random’), (2) select the k& edges that cause
the maximum decrease in the leading eigenvalue of the network when removed from it (referred
to as Eigen’) [21] 20], (3) select the k£ edges with highest edge betweenness centrality, where this
measure is defined for edge e as the sum of the fraction of all-pairs shortest paths that pass through
e (referred to as "Betweenness’) [3]], (4) select the k edges whose destination nodes have the highest
out-degree (referred to as *Degree’), (5) select the k edges with highest diffusion probability (weight)
Wy, Where an edge goes from node u to v (referred to as "Weights’). Note that all three methods
’Eigen’,Betweenness’ and ’Degree’ are weighted, where the diffusion probability of each edge is
also its weight in the corresponding adjacency matrix.

Results To evaluate the solution quality for CUTTINGEDGE and the other heuristics, we compute
the ratio of the graph susceptibility after the given edge set is removed from the graph, to the graph
susceptibility when no edge is removed. Clearly, the smaller the ratio is, the more effective a method
is. For the FORESTFIRE network, CUTTINGEDGE completely mitigates diffusion after almost 400
edges (23% out of 1691 edges) are removed from the network. This can be explained by the fact



that even for a large number of sample cascades, the number of edges that are actually live across
all cascades is less than the number of edges in the network. While the heuristics perform poorly
relative to our method, 'Degree’ fares best amongst those, surpassing both supposedly ’smarter”
methods *Betweenness’ and "Eigen’. Perhaps surprisingly, 'Random’ also provides a better solution
than most heuristics, despite its results being averaged over multiple random edge sets for each k.
As seen in the figure, 'Random’ does not decrease strictly monotonically due to the repeated random
choosing of edges, as opposed to the other methods which are all incremental (i.e the set of edges
chosen for a given k includes all edges chosen for £ — 1). Removing the edges with highest diffusion
probability as in *Weights’ barely decreases the susceptibility even for a large k.

As for the MEMETRACKER dataset results, CUTTINGEDGE is able to fully mitigate diffusion by
removing only around 500 edges, or 10% of the network’s 5000 edges. Already for £ = 100, the
gap in the susceptibility ratio between CUTTINGEDGE and the other heuristics is significant, around
0.4 as compared to 0.95 for the most competitive heuristic here, *Eigen’.

5 Conclusion

We have presented an optimization formulation for the problem of edge-based influence minimiza-
tion in networks. Under the linear threshold model, we prove that the objective function is super-
modular, allowing for an approximation algorithm that yields solutions with strong guarantees. Our
first experimental results on both synthetic and real-world networks demonstrate our method’s effec-
tiveness in mitigating diffusion processes, one that is unmatched by other commonly used eigenvalue
and centrality-based heuristics.

Possible areas of future work include more extensive experimentation on a wider array of datasets.
Also, we intend to research algorithmic methods to make our method scalable to networks with
millions of nodes and edges. More broadly, the class of problems at the intersection of network
manipulation and diffusion processes remains very challenging and interesting.

Acknowledgements. We thank Prof. Hanghang Tong for providing us with his code for the
’Eigen’” method.
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Appendix

We show that the supermodularity we proved for deleting edges holds as well for the three other
possible network manipulation operations: adding edges, deleting nodes and adding nodes.

Given an influence graph G'(V, E’, w') and the complete influence graph G = (V, E,w) (where
every two nodes are connected in both directions), such that £/ C E,w’ C w, we would like to
add k edges from E\E’ such that G'’s susceptibility to diffusion is maximized. Our optimization
problem is the following:

S* = arg max E o(a,Gg
SCE\E':|S|=k (2, Gs),
acV

where Gg = (V, E' U S, w’ Uwg).

We will show that g,(S) = o(a,Gg) is a monotone and supermodular function. From our earlier
definition:
9a(S) =0(a,Gs) = > PrX|EUS] r(a,X).
XeXpus

Theorem 9 The function g, is supermodular.
Proof Now consider the graph G = (V, E,w) and G'(V, E',w’),E’ C E. Let S C T C E\F/,
ande € E\(E'UT).

Then, adding edges .S to G results in the same expected influence as removing edges E\(S U E’)
from G. Namely, if A = E\(S U (E’ Ue)), then g,(S) = fa(AUe). Also, g,(SUe) = f,(A).
Analogously, if B = E\(T'U (E’' Ue)), then go(T) = fo(B Ue). Also, go(T'Ue) = f,(B). Note
that B C A. But we know from [7] that:

fa(B) = fa(BUe€) = fa(A) — fa(AUe),
which implies that:

9a(TUe) = ga(T) > ga(SUe) — ga(9),

9a(5) = ga(SU€) = ga(T) — ga(T' Ue).
Since S C T, then g, is supermodular, completing the proof. |

Now define Eg C F, for any set of nodes .S C V, as the set of edges having as source or target a
node in S. Also, for any node v € V' ¢ S, define ES (v,u) € Elu ¢ S.

Then, let the function describing the graph susceptibility in the event of node deletion be defined as:

ha(S)= > Pr[X|Es]-r(a, X).

XGXE\ES

Theorem 10 The function h, is supermodular.

Proof Let G = (V, E,w) be the complete influence graph, and B = A U u, where A, B,u € V.
Alsoletv € V\B and E = {e1,ea, ..., ex }. From [7| we can write:

fa(Ea) = fa(EaUer) > fo(ER) — fa(EpUer)
fa(EaUer) — fa(EaUerUez) > fo(EpUer) — fa(EpUer Ueg)

(AVAR:

fa(EA Ueg U...U ek_l) — fa(EA UeiU...Uep_1 U €k)
Adding all these equations together, we obtain:
fa(Ba) = fo(BAVEY) > fuo(Ep) — fo(Ep U EY)

If the edges (u,v) and (v, u) are both not in E, then E = EP, and the proof is complete. Even
if either one or both of these two edges appear in E, h, is still supermodular. We show that for the
case where (u,v), (v,u) € E.

12

fa(EB Ueg U...U €k_1) — fa(EB Jes...

Uer_1 U ek)



In that case, E4 = EP U (u,v) U (v, u), and f, is monotone decreasing, implying that f,(E4 U
EM < fo(EAUEDB), and consequently f,(Fa) — fo(EAUEA) > fo(E4) — fa(EAUEP). Since
fa(Ea) = ho(A), fo(Ea U E2) = hy(AUw) (and the same for B instead of A), we finally get:

ha(A) = ha(AUv) > ha(B) — ha(B U )

which comletes this proof.

Adding nodes is also supermodular by a similar proof based on g, instead of f,. ]
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