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Abstract

Partitioning a network into different communities so that vertices of the same com-
munity share meaningful density- and pattern-based similarities is an important
area of research in the field of network science. For directed networks identify-
ing communities turns out to be especially challenging since the directed nature
of the edges makes it difficult to evaluate and interpret the significance of a can-
didate community. In this paper, we consider the strength of connections from
a single vertex to a prespecified collection of vertices in directed networks. We
propose a methodology to measure the statistical significance of these connections
through the use of p-values derived from a directed configuration null model. We
derive the asymptotic distribution of the number of edges between a vertex and a
community under the null model and show how to calculate p-values using this
reference distribution. Using both simulated and real data sets we show that these
conditionally based p-values can provide novel insights into the local structure of
directed networks.

1 Introduction

Networks arise in the modeling and understanding of a host of complex systems, ranging from
biological networks such as protein and gene interaction networks [2, 13], social networks modeling
collaborations, friendships, and other ties between individuals [8, 9, 21], and the world wide web,
namely the hyperlink structure between webpages or webblogs [1, 15]. In many such systems agents
influence each other in an asymmetric way and the associated network is directed. This includes
gene-interaction networks, where the expression of one gene causes or suppresses the expression of
another, and webblog networks where one blog references another by posting a hyperlink. Abstractly
such networks are represented via graphs where every edge has a specified direction.

Empirically, networks have the tendency to cluster into communities. In undirected networks, a
community is informally said to be a collection of vertices that share more edges within their own
community than they share with vertices outside the community. In the context of undirected net-
works, there is an enormous amount of literature and a wide array of algorithmic techniques to
extract such structures from data, see e.g. the surveys [7, 17] and the references therein. There
has been some recent work on the community structure in directed networks including a directed
version of modularity [3, 12], as well as a directed variant of spectral clustering [27]. Alternatively,
the community structure of a directed network can be estimated through fitting a directed stochastic
block model [2, 19, 22]. See [14] for a recent review of community detection in directed networks.

Though much work has been done on identifying community structure in both undirected and di-
rected networks, quantifying the significance of such local structures has been much less explored.
In undirected networks, the focus is typically on the significance of a proposed partition of the
network [5, 20, 25], though some authors have focused on more granular features of the network
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[11, 23]. To the best of our knowledge, there has been no prior work on assessing the statistical
significance of local structures in directed networks.

The main aim of this work is to quantify the statistical significance of connections from a vertex to
a collection of vertices in a directed network. That is, given a collection of vertices B and a single
vertex u, either within or outside of B, we aim to measure the strength of connection from u to B.
To fix a concrete example, consider the Adamic and Glance dataset on political blogs [1] shown in
Figure 1. One may be interested in knowing the association of blogs to a collection of blogs B,
where the blogs of B all have a similar feature such as political affiliation or posting habits, or B
may be a community detected from applying a detection method on the network.

B

u

Figure 1: An example of analyzing local connections within the political blog network where di-
rected edges represent posted hyperlinks between blogs. In this example, we consider measuring
the strength of connections between a particular webblog u and a collection of webblogs B based
on the hyperlink structure of these blogs.

We measure the strength of affiliation between a vertex and a collection of vertices by contrasting the
observed number of edges between the two groups with what is expected under a random network
with no preferential attachment, namely, the directed configuration model. Under this model, we
show that the (random) number of connections between a vertex and a collection is approximately
binomial. We use this approximate distribution as a reference measure to quantify the significance of
observed connections through a p-value. Numerical simulations (Figure 2) suggest that this approxi-
mation is valid even for networks of moderate size (n > 1000). We demonstrate the effectiveness of
our methodology on networks with pre-defined directed community structure, and through various
simulated networks show how the p-values can identify significant local patterns in the network. We
apply our proposed methodology to the political blog dataset of [1] and show that by quantifying
local significance, one can detect interesting local features of this hyperlink structure of the network
beyond what is available from standard community detection techniques.

2 Related Work

We briefly describe the related work done for networks in the undirected regime, as we know of no
prior work on directed networks. The work closest to this paper is [23] where a null configuration
model and the corresponding p-values were used to develop a testing-based procedure that extracts
statistically significant communities. In [11], the statistical significance of a collection of vertices is
assessed via measuring the probability of finding a subset with similar connectivity patterns in an
(undirected) configuration model. The same authors later develop a community detection algorithm
based on the order statistics of these probability scores in [10]. In [5] and [25], the significance
of a community is assessed through comparison with the vertex features of the network. Here, the
features of the network act as a ground-truth for which the significance of observed community
structure can be assessed. The authors in [20] consider the statistical significance of a partition
of an undirected network, where the modularity of a potential partition is first calculated and then
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compared to the probability of observing this modularity of an equally sized partition in a random
network.

3 Statistical Model and Framework

3.1 The Directed Configuration Model

Throughout we letGo = (V,E) be an observed directed network with n vertices, whereGo possibly
contains self-loops or multiple edges. Assume that Go has vertex set V = [n] = {1, . . . , n}. The
edge set E of Go contains all (ordered) pairs (i, j) such that i, j ∈ [n] and there is a directed
link from i to j in Go, with repetitions for multiple edges. For vertex u ∈ [n] let dino (u) denote
the in-degree and douto (u) denote its out-degree. Denote the in-degree sequence of Go by din

o =
{dino (1), . . . , dino (n)} and the out-degree sequence by dout

o = {douto (1), . . . , douto (n)}. Note that∑
u d

in
o (u) =

∑
u d

out
o (u) = |E|.

Our analysis begins with a directed stochastic network model that is derived from the in- and
out- degree sequences of Go, specifically, the directed configuration model, which we denote by
DCM({din

o ,d
out
o }). The directed configuration model is a probability measure on the family of

graphs with vertex set [n], in-degree sequence din
o , and out-degree sequence dout

o that reflect a
random assignment of directed edges. This model is a natural extension of the well known undi-
rected configuration model [4, 6, 16] and has been used for modularity based community detection
algorithms [3, 12]. An important characteristic of the directed configuration model is its ability to
capture and preserve strongly heterogeneous degree distributions that are often encountered in real
network data sets, as well as preserving the directed nature of the observed network.

The directed configuration model has a simple two stage generative form. First, each vertex u ∈ [n]
is assigned dino (u) inward pointing and douto (u) outward pointing directed half-edges. At the next
stage, two half-edges - one inward and one outward - are chosen uniformly at random and connected
to form a directed edge. These two half-edges are removed from the set of available half-edges. This
procedure is repeated sequentially by picking at each stage a random inward pointing and outward
pointing half-edge to connect until all half-edges are connected. We write Ĝ = ([n], Ê) to denote
the random network generated by this procedure. Note that even if Go is simple, Ĝ may contain self
loops and multiple edges.

3.2 Asymptotic Results and Assessing the Significance of Local Connections

Under the DCM({din
o ,d

out
o }) model there are no preferential attachments among vertices [n]. Thus,

the model provides a reference measure against which the statistical significance of the connections
from a vertex to a collection of vertices in Go can be assessed. The more the observed number
of directed edges from the expected number under the DCM, the greater the significance of the
connection.

Let Go be an observed network and Ĝ its associated random DCM network. Given a vertex u ∈ [n]
and a vertex set B ⊂ [n] define

do(u : B) =
∑
v∈B

∑
e∈E

I(e = (u, v)) (1)

to be the number of directed edges pointing from vertex u to some vertex in B in the observed
network. Write d̂(u : B) for the random variable specifying the number of edges originating from
u and ending in B in Ĝ. Then d̂(u : B) takes values in the set {0, 1, . . . , dout(u)}. Note that
do(u : B) = d̂(u : B) = douto (u) when B = [n].

Recall that the total variation distance between two probability mass functions p := {p(i)}i>0 and
q := {q(i)}i>0 on the natural numbers N is defined by:

dTV (p,q) :=
1

2

∞∑
i=1

|p(i)− q(i)|

We now state a theorem that describes the approximate distribution of d̂(u : B) when the size of the
network n is large.
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Theorem 1. Let
{
din
o,n,d

out
o,n

}
n>1

be the in- and out- degree sequences of an observed sequence

of graphs {Gn
o}n>1 where Gn

o is a graph of size n and associated edgeset En. Let {Ĝn}n>1 be
the corresponding random graphs on [n] constructed via the directed configuration model. Let Fn

be the empirical distribution of din
o,n and Hn the empirical distribution of dout

o,n . Assume that there
exist cumulative distribution functions F and H on [0,∞) with 0 < µ1 :=

∫
R+ xdF (x) < ∞ and

0 < µ2 :=
∫
R+ xdH(x) <∞ such that

Fn
w−→ F, Hn

w−→ H (2)

and ∫
R+

x dFn(x) → µ1,

∫
R+

x dHn(x) → µ2 (3)

Fix kout > 1 and a vertex u = un ∈ [n] with out-degree doutn (u) = kout. Let Bn ⊆ [n], n > 1, be
a sequence of sets of vertices.
Then, the random variable d̂n(u : Bn) is approximately Binomial(kout, pn(Bn)) in the sense that

dTV (d̂n(u : Bn),Bin(kout, pn(Bn)))→ 0 (4)

as n→∞. Here,

pn(Bn) =

∑
v∈Bn

dinn (v)∑
w∈[n]

dinn (w)
=

1

|En|
∑
v∈Bn

dinn (v) (5)

A proof of this theorem is given in the Supplementary material. Theorem 1 gives us that under the
directed configuration model, the number of directed edges from a vertex with out-degree kout to
a collection of vertices B is approximately binomial on {0, 1, . . . , kout} with probability equal to
the relative proportion of the total in-degree of B to the entire network. As the directed configura-
tion model DCM({din

o ,d
out
o }) does not contain preferential connections between vertices, one can

assess the strength of connection between a vertex u and collection B in Go by comparing the ob-
served number of connections, do(u : B), with the random variable d̂(u : B). By treating do(u : B)

as an observed value of a test statistic that is distributed as d̂(u : B) under the null network model
DCM({din

o ,d
out
o }), the probabilities

p(u : B) = P (d̂(u : B) > do(u : B)) (6)

have the form of a p-value for testing the hypothesis that u does not strongly link to B. Small
values of p(u : B) indicate that there are more edges from u to B than expected under the directed
configuration model on the same vertex set. We use these p-values to quantify the strength of
connection from any vertex to any fixed collection of vertices.

4 Numerical Study

4.1 Convergence Rate under the DCM

We first empirically investigate the convergence rate to zero of the total variation distance of d̂(u :
B) from the binomial distribution as given in Equation (4). We construct directed configuration
models Gn of size n where each vertex is first independently assigned an in-degree from a power
law distribution with exponent τ = 3. To ensure that the sum of the in- and out- degrees are
equal, we randomly permute the in-degree sequence and assign each vertex an out-degree from this
permuted sequence. We fix subsets Bn ⊆ Gn with P (Bn) ≈ 0.25 for all n by letting Bn be a
uniformly chosen random subset containing one fourth of the vertices in the network. We calculate
the observed number of connections d(u : Bn) for all vertices u ∈ Gn with out-degree k for a range
of k between 3 and 10. We then calculate the total variation distance dTV (d(u : Bn),Bin(k, p(Bn)))
using the empirical distribution of d(u : B) for each fixed k. At each size n, we simulate 100
networks and calculate the total variation distance in this way for each network and each k. We
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repeat this simulation across n from 500 to 10000 in increments of 500 and report the distribution
of the total variation distance at each n for k = 3 in Figure 2. Even for n as small as 500 the total
variation distance is typically below 0.05. For networks of size n = 2500 or more, the total variation
distance is on average below 0.02. The rates for other values of k (not shown) are very similar to the
case for k = 3.
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Figure 2: The total variation distance between a Bin(3, .25) distribution and the number of edges
from a vertex u to the collection Bn for all u with out-degree 3. For each size, the total variation
distance is shown over 100 generations of a directed configuration model with in- and out- degree
sequences which follow a power law distribution of exponent 3.

4.2 Analysis of Networks with Directed Community Structure

We now evaluate the effectiveness of our methodology on networks that contain prescribed directed
community structure. We use the stochastic co-blockmodel of [19], a generative model that specifies
the probability of connection between sender and receiver community (block) pairs. Given r, p ∈
(0, 1) and r+p 6 1, the stochastic co-blockmodel specifies that vertices of a sender community point
(with outward directed edges) to vertices of an associated receiver community with probability p+r,
while all other vertices point to one another with probability r. Note that one sender community can
be associated with more than one receiver community and vice versa. Figure 3 shows an example of
a stochastic co-blockmodel with one sender community A and two receiver communities B and C.

For our simulations, we generate stochastic co-blockmodels of size n with two equally sized com-
munities A and B where vertices in one block point to vertices in the other with probability p + r,
and vertices within the same block point to one another with probability r. We fix r = 0.05 and
consider values of p corresponding to the signal to noise ratio SNR = p/r. We generate networks
over SNR between 0 and 2 in increments of 0.025. At each SNR setting, we calculate the mean
p-value of vertices in opposing blocks as well as the mean p-value of vertices within the same block.
We repeat this simulation for networks of size n = 100, 500, 1000, and 2000. For each SNR value,
we generate 30 networks and record the average p-value. We show the average p-value associated
with the vertices of A in Figure 4. The distributions of p-values for the vertices from communities
A and B to the collection B is shown for SNR = 0.5 in Figure 5.

We observe several important features of our p-value quantity from Figure 4. When SNR = 0, all
vertices point to one another with equal probability rmeaning that there is no preferential attachment
between any vertex pair. Our p-values reflect that across all n, taking values around 0.5. As the value
of the SNR grows, the strength of attachment of the vertices fromA toB increases and the strength
of attachment from the vertices in A to A decreases. This trend is captured by the trend of our
p-values: the average p(u : B)|u∈A decreases to 0 and the average p(u : A)|u∈A increases to 1 as
the SNR increases. The rate of convergence of these p-values increases as the size of the network
increases. We further illustrate this point in Figure 5 by comparing the separation of p(u : B)|u∈A
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A

B

C

P(   ) = r
P(   ) = p + r

Figure 3: An example of the stochastic co-blockmodel with sender community A and receiver com-
munities B and C. Here, edges point from A to both B and C with probability p + r and all other
vertices point to one another with probability r.

and p(u : B)|u∈B for various network sizes. For larger n, we see better separation of the two sets
of p-values.

This example illustrates the effectiveness of our methodology on networks with prescribed commu-
nity structure. In the case where all edges are randomly assigned with equal probability (when SNR
= 0), the p-values hover around 0.5 correctly suggesting the network contains no significant local
connections. As communities become more distiguishable (SNR > 0.5), the p-values appropriately
capture the local structure. These observations suggest that these local p-values may be utilized as a
community detection tool in its own right; however, we save this exploration for future work.
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Figure 4: The strengths of connections of the sender community A to receiver communities A and
B within the stochastic co-blockmodel simulations. The x-axis in each plot is the signal to noise
ratio SNR = p/r and the y-axis shows the average p-value of vertices from A to the given receiver
community. We simulate the stochastic co-blockmodels as described in the text and illustrate these
results for networks of size n = 100, 500, 1000, and 2000.

5 Political Blog Dataset

The political blog network of [1] is a snapshot of the webblog structure of 1494 political blogs on
a single day closely following the 2004 U.S election. The vertices of the network represent the
political blogs where each blog has been classified as either liberal or conservative by the authors in
[1]. Directed edges represent hyperlinks from one blog to another in the network. We consider only
blogs in the largest weakly connected component of this original network. The resulting network
contains 1222 blogs - 636 liberal and 586 conservative - and 19021 directed edges.

We consider the two collections of vertices - the liberals and the conservatives - and calculate the
strength of affiliation of every blog to these collections using our p-value scores. In words, the
p-values quantify the extent to which each blog hyperlinks to the liberal and conservative groups.
Unsurprisingly, we find that the blogs tend to link predominantly and significantly to blogs of their
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Figure 5: The distribution of p-values p(u : B) for the generated co-block model at SNR = 0.5.
From left to right, we show these distributions according to network size n. These figures suggest
that as n grows, the communities A and B become more and more distinguishable.

own political affiliation, an observation which has been the primary result of numerous community
detection studies [12, 18]. Our local methodology, however, provides additional insights about this
hyperlink structure which we now describe. All quantitative results are shown in Table 1.

First of all, we observe that conservative blogs tend to make significant links, with p-value 6 0.10,
more often than their liberal counterparts. Moreover, the conservative blogs tend to more often link
significantly to their own affiliated blogs. Indeed, 89% of the conservative blogs link significantly
to at least one of the political groups in the network. Of these significant edges, 99% are made to
their own conservative group. On the other hand, only 73% of the liberal blogs make significant
connections from which 94.5% of the connections are to their own political group. These observa-
tions suggest that even though the liberal and conservative blogs tend to link predominantly to their
own group, the linking tendency of the two groups are inherently different.

Next, our analysis identifies that a surprising 237 (19.4%) of the blogs in this network do not make
significant connections - as indicated by a p-value greater than 0.10 - to either the conservative
or liberal groups. This suggests that these blogs may be one of two types: either one that shares
roughly equal amounts of hyperlinks with both political groups, or one that is loosely connected
and posts very few hyperlinks. Figure 6 illustrates this phenomenon in the network. Of these 237
blogs, 149 post fewer than 2 hyperlinks suggesting that these blogs are of the background type. Of
the remaining 88 non-significantly connected blogs (32 conservative and 56 liberal), we find that the
blogs still tend to have more connections with their own political affiliation. From Figure 7 we see
that even when the blogs aren’t strongly connected with either political party, the conservative blogs
still tend to favor their own political affiliation more than their liberal counterpart. These results
demonstrate that our p-values can shed light on overlapping and background community structure.
These are two important features that arise in many real-world networks (see e.g, [23, 24, 26]) but
are typically overlooked by community detection methods on directed networks.

Table 1: Political Affiliation of Webblogs (p-values < 0.10 suggest strong affiliation)

Affiliated with
Conservative Group Liberal Group Neither

# Conservative Blogs (%) 514 (88) 8 (1) 64 (11)
# Liberal Blogs (%) 24 (4) 439 (69) 173 (27)
Total 538 438 237

6 Conclusion

We have proposed and investigated a methodology to assess the statistical significance of local con-
nections from a vertex to any collection of vertices in directed networks. We have shown that under
the directed configuration model, the number of directed edges from a vertex to a collection is
approximately binomial. Through numerical simulations we have shown that this approximation
is valid even for networks of only moderate size. Using this binomial distribution as a reference
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Figure 6: The p-values quantifying the strength of connection from each web blog to the groups
of affiliated blogs. Plot A and B shows the p-values associated with edges from each blog to the
collection of liberal and conservative blogs, respectively. Plot C shows the minimum p-value of
connectedness to each collection of blogs. Plot C suggests that weakly connected blogs are either
overlapping and close to the center of the two communities, or background and situated in the
periphery of the network.
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Figure 7: The p-values of the 88 weakly affiliated political blogs (minimum p-value > 0.10 and
out-degree > 2). (Left): The p-value of association with the conservative group (p(u : C)). (Right):
The p-value of association with the liberal group (p(u : L)). These figures suggest that even when
the blogs aren’t strongly affiliated with either group, they still tend to link to blogs of their own
political affiliation.

measure, we quantify the significance of these directed connections through a p-value. We have
shown when the network data are drawn from a model with prespecified community structure, these
p-values readily identify community structure. Finally, we applied our methodology to a political
webblog network where like community detection we find that the blogs tend to link to their own
political group; however, only through analyzing the local structure of the blog network were we
able to distinguish the linking tendencies of the two political groups and identify blogs that were not
significantly linking to either group. Identifying local patterns in real-world directed networks and
assessing their statistical significance is an important area of research that can be utilized in many
real world applications. We have introduced one such methodology which provides an effective
exploratory tool in this area.
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Supplemental Material

Approximate Distribution of d̂(u : B)

Here we prove Theorem 1 which gives the approximate law of d̂(u : B) from which our proposed
p-values are derived. This result is specific to the directed configuration model which is used as a
null network network model for quantifying statistically significant connections.

Proof: Equation (3) implies that for the total number of edges |En| one has∫
R
xdFn(x) =

∞∑
k=0

k
Nk(n)

n
=
|En|
n
∼ µ

where Nk(n) is the number of vertices of in-degree k. Thus |En| ∼ nµ.

Consider the distribution of d̂(u : B), namely the number of connections from vertex u to the subset
B in DCM({d(in)

o ,d
(out)
o }) on a vertex set [n]. We drop the n notation throughout for simplicity.

When constructing the directed configuration model, one can start at any vertex and start sequentially
attaching its outward half-edges at random to available inward pointing half edges. Thus we start
with the fixed vertex u and decide the inward pointing half edges paired to the dout(u) := kout

outward half edges of vertex u. Let A1 be the event that the first outward pointing half-edge of
vertex u connects to the collection of vertices B. Let p1(B) denote the probability of this event.
Then,

p1(B) =

∑
v∈B d

in(v)

[
∑

v∈[n] d
in(v)]− 1

=

∑
v∈B d

in(v)

|E| − 1
(7)

In general for 1 6 i 6 kout, let Ai denote the event that an outward half-edge i of u connects to the
set B and write pi(B) for the conditional probability of Ai conditional on the outcomes of the first
i− 1 choices. For i = 2, we claim that uniformly on all outcomes for the first edge, this conditional
probability can be bounded as

[
∑

v∈B d
in(v)]− 1

|E| − 2
6 p2(B) 6

∑
v∈B d

in(v)

|E| − 2
(8)

The lower bound in (8) arises if the first outward half-edge of u connected to a half-edge pointing
to B while the upper bound arises if the first outward half-edge does not connect to a half-edge
pointing to B. Arguing analogously for 1 6 i 6 k we find that the conditional probability pi(B)
that the i-th half-edge of vertex u connects to B is bounded (uniformly on all choices of the first
i− 1 edges) as

[
∑

v∈B d
in(v)]− (i− 1)

|E| − i
6 pi(B) 6

∑
v∈B d

in(v)

|E| − i
(9)

Recall that p(B) =
∑

v∈B d
in(v)/|E|. Using (9) and the fact that |E| ∼ nµ, we have

sup
16i6kout

|pi(B)− p(B)| 6 kout − 1

|E| − kout
→ 0 (10)

as n→∞.

Finally, note that the random variable d̂(u : B) can be expressed as

d̂(u : B) =

kout∑
i=1

1 {Ai}

Thus, using (10) we have that

dTV (d̂(u : B),Bin(k, p(B)))→ 0, as n→∞.

This completes the proof.

�
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