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Abstract
Finding a new mathematical representation for graphs, which allows direct com-
parison between different graph structures, is still an open-ended research direc-
tion. Having such a representation in a common, well-understood metric space is
the first prerequisite for a variety of machine learning algorithms like classifica-
tion, clustering, etc, over graph datasets. In this study, we propose a symmetric
positive semidefinite matrix with the (i, j)-th entry equal to the covariance be-
tween normalized vectors Aie and Aje as a representation for graph with adja-
cency matrix A. We argue that the covariance between vectors of the form Aie
and Aje, given some i and j, is an informative feature. We present theoretical
results supporting this argument. Our representation, being a covariance matrix in
a fixed dimensional metric space, can be directly compared across different graph
structures. This naturally provides a measure of similarity on graph objects. In the
task of social network classification, our proposal outperforms the state-of-the-art
methodologies. In addition, the computation can be performed in operations linear
in the number of edges, which makes the proposed approach faster and scalable.

1 Introduction
The study of social networks is becoming increasingly popular. A whole new set of information
about an individual is gained by analyzing the data derived from his/her social network. Personal
social network of an individual consisting only of neighbors and connections between them, also
known as ego network, has recently grabbed significant attention [17, 23]. This new view of the
gigantic incomprehensible social network as a collection of small informative overlapping ego net-
works generate a huge collection of graphs, which leads to a closer and more tractable investigation.

These enormous collections of ego networks, one centered at each user, open doors for many inter-
esting possibilities which were not explored before. For instance, consider the scientific collabora-
tion ego network of an individual. It is known that collaboration follows different patterns across dif-
ferent fields [19]. Some scientific communities are more tightly linked among themselves compared
to other fields having less dependencies among the collaborators. For instance, scientists working in
experimental high energy physics are very much dependent on specialized labs worldwide (example
CERN) and hence it is more likely that scientists in this field have a lot of collaborations among
themselves. It is expected that collaboration network in such a scientific domain will exhibit more
densely connected structures compared to a field in which people prefer to work independently.

The above peculiarity is also reflected in the ego networks. For an individual belonging to a more
tightly connected field, such as high energy physics, it is more likely that there is collaboration
among the individual’s coauthors. Thus, we can expect the collaboration ego network of an individ-
ual contains information about the characteristic of his/her research. By utilizing this information,
it should be possible to discriminate (classify) between scientists based on the ego networks. This
information can be useful in many applications including user-based recommendations [18, 9], rec-
ommending jobs [20], discovering new collaborations [4], citation recommendations [10], etc.

The focus of this paper is on social network classification or equivalently graph classification. The
first prerequisite for classifying networks is having the “right” measure of similarity between differ-
ent graph structures. Finding such a similarity measure is directly related to the problem of comput-
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ing meaningful mathematical embedding of social networks. In the present work, we address this
fundamental problem of finding an “appropriate” tractable mathematical representation for graphs.

There are many interesting theories which illustrate the peculiarities of social networks [22, 2, 14].
For instance, it is known that the spectrum of adjacency matrix of real-world graph is very specific.
In particular, it is been observed that scale-free graphs develop a triangle-like spectral density with
a power-law tail, while small-world graphs have a complex spectral density consisting of several
sharp peaks [7]. Despite such insight into social graph structures, finding a meaningful mathematical
representation for these networks with which these various graph structures can be directly compared
or analyzed in a common space is an under-studied area.

Recently it was shown that representing graphs as a normalized frequency vector which counts the
number of occurrence of various small k-size subgraphs (k = 3 or 4) leads to an informative repre-
sentation [21, 23]. A sound analysis of such a representation was presented in [23]. It was shown
that such a representation naturally models known distinctive social network characteristics like the
“triadic closure”. Computing the similarity between two graphs as the inner product between such a
frequency vector representation leads to the state-of-the-art social network classification algorithms.

It is not clear that a histogram based only on counting small sub-graphs can sufficiently capture all
essential properties of the graphical structure. It is expected that only counting small k-subgraphs
(k = 3 or 4) will loose information. It is also not clear what is the right value of k which provides the
right tradeoff between computation and expressiveness. For instance, we observe that (Section 6)
k = 5 leads to significant improvement over k = 4 at the cost a significant increase of computations.
Although, it is known that histograms based on counting subgraphs of size k can be reasonably ap-
proximated by simply sampling few induced subgraphs of size k, counting subgraphs with k ≥ 5 is
still computationally expensive as it requires testing the given sampled subgraphs with the represen-
tative set of graphs for isomorphism (see Section 6). Thus, finding a rich graph representation, which
aptly captures its behavior and is computational inexpensive, is an important research problem.

One challenge in meaningfully representing a graph in a common space is the basic requirement that
isomorphic graphs should map to the same object. Features based on counting substructures, for
example the frequency of subgraphs, satisfy this requirement by default, but ensuring this property
is not trivial if we take a non-counting based approaches.

Our Contributions: We take an alternate route and characterize graph based on the truncated power
iteration of the corresponding adjacency matrix A, starting with the vector of all ones denoted by
e. Such a power iteration generates vector Aie in the ith iteration. We argue that the covariance
between vectors of the form Aie and Aje, given some i and j, is a very informative feature for a
given graph. We present theoretical results supporting this argument.

Instead of using a histogram-based feature vector representation, we represent graph as a symmetric
positive semidefinite covariance matrix CA, whose (i, j)th entry is the covariance between vectors
Aie and Aje. To the best of our knowledge this is the first representation of its kind. We further
compute the similarity between two given graph as the standard Bhattacharya similarity between the
corresponding covariance matrix representations. Our proposal follows a simple procedure involv-
ing only matrix vector multiplications and summations. The entire procedure can be computed in
time linear in the number of edges which makes our approach scalable in practice. Similarity based
on this new representation outperforms exiting methods on a real social network classification task.

In addition, this paper also shows some interesting insight in the domain of the collaboration net-
works. We show that it is possible to distinguish researchers working in different experimental
physics sub-domains just based on the ego network of the a researcher’s scientific collaboration. To
the best of our knowledge this is the first work that explores the information contained in the ego
network in scientific collaboration. The results presented could be of independent interest in itself.

Notations: Graph G = {V,E}, with |V | = n and |E| = m, is represented by a binary symmet-
ric adjacency matrix A ∈ Rn×n, where Ai,j = 1 if and only if (i, j) ∈ E. We use A(i),(:) ∈ R1×n

to denote the ith row of matrix A, and A(:),(j) ∈ Rn×1 to denote its jth column. We use e to
denote the vector of all 1s. Dimension of vector e will be implicit depending on the operation.
Vectors are by default column vectors (Rn×1).The transpose of a matrix A is denoted by AT , de-
fined as AT

i,j = Aj,i. The covariance between two vectors x ∈ Rn×1 and y ∈ Rn×1 is defined as
Cov(x, y) = 1

n

∑n
i=1(xi − x̄)(yi − ȳ), where x̄ = 1

n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi .
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2 Graphs as a Symmetric Positive Semidefinite Matrix
A graph is fully described by its adjacency matrix. A good description of a matrix operator is a set
of vectors generated from its power iteration. Power iteration of a matrix A ∈ Rn×n on a given
starting vector v ∈ Rn×1 computes normalized Aiv ∈ Rn×1 in the ith iteration.

In a seminal result [13], it was shown that the characteristic polynomial of a matrix can be computed
by using the set of vectors generated from its truncated power iterations, {v,Av,A2v, ..., Akv},
commonly known as the “k-order Krylov subspace” of matrix A. “Krylov subspace” lead to some
of the fastest linear algebraic algorithms for sparse matrices. In the web domain, power iterations
were used in algorithms including “Page-rank” and “HITS” [12]. A truncated power iteration of the
data similarity matrix also lead to an informative representation for clustering [16].

To meaningfully represent graphs in a common mathematical space, a basic requirement is that
isomorphic graphs should be mapped to the same object. Although the k-order “Krylov subspace”
sufficiently characterizes a matrix, it cannot be directly used as a common representation for the
associated graph because it is sensitive to the reordering of nodes. In other words the mapping
M : A → {v,Av,A2v, ..., Akv} is not a “graph invariant” mapping.

It turns out that if we use v = e, the vector of all ones, then the covariances among the different
vectors in the power iteration are “graph invariant” (see Theorem 2), i.e., their values do not change
with the spurious reordering of the nodes. Power iteration starting on vector e is the key ingredient
in HITS and Page-rank algorithms and are known to be quite informative. We start by defining
our covariance matrix representation for the given graph, and the algorithm to compute it. In later
sections we will argue why such a representation is suitable for discriminating graph structures.

Given a graph with adjacency matrix A ∈ Rn×n and a number k, we compute the first k terms of
power iteration, to generate normalized vectors of the form Aie, i ∈ {1, 2, ..., k}. Since we start with
e, we choose, without lose of generality, to normalize the sum equal to n for the ease of analysis.
We then compute matrix CA ∈ Rk×k with CA

i,j = Cov( nAie
||Aie||1 ,

nAje
||Aje||1 ). See Algorithm 1.

Algorithm 1 Covariance Representation(A,k)
Input: Adjacency matrix A ∈ Rn×n, k, the number of power iterations.
Initialize x0 = e ∈ Rn×1.
for t = 1 to k do

M(:),(t) = n× Axt−1

||Axt−1||1
xt = M(:),(t)

end for
µ = e ∈ Rk×1

CA = 1
n

∑n
i=1(M(i),(:) − µ)(M(i),(:) − µ)T

return CA ∈ Rk×k

Theorem 1 The matrix CA is symmetric positive semidefinite. �

Theorem 2 For any permutation matrix π we have Cπ = CπAπT

i.e., CA is a graph invariant. �

Note that the converse of Theorem 2 is not true. We can not even hope for it because then we would
have solved the intractable Graph Isomorphism Problem by using this tractable matrix representa-
tion. For example, consider adjacency matrix of a regular graph. It has e as one of its eigenvectors
with eigenvalue equal to d, the constant degree of the regular graph. So, we have Aie = die and
Cov(die, dje) = 0. Thus, all regular graphs are mapped to the same zero matrix. Perfectly regular
graphs never occur in practice and there is always some variation in the degree distribution of real-
world graphs. For non regular graphs, i.e., when e is not a eigenvector of the adjacency matrix, we
will show in the next section that the proposed CA representation is quite informative.

3 More Properties of Matrix CA

In this Section, we argue that the representation CA encodes various key features of the given graph,
making it an informative representation. In particular, we show that CA contains information about
the spectral properties of A as well as the counts of small substructures present in the graph.
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For adjacency matrix A, let λ1 ≥ λ2 ≥ ...λn be the eigenvalues and v1, v2, ...vn be the correspond-
ing eigenvectors. We denote the component wise sum of the eigenvectors by s1, s2, s3, ..., sn, i.e.,
si denotes the component-wise sum of the eigenvector vi.

Theorem 3 CA
i,j =

(
n(

∑n
t=1 λi+j

t s2t)
(
∑n

t=1 λi
ts

2
t)(

∑n
t=1 λj

ts
2
t)

)
− 1. �

Theorem 3 illustrates that the representation CA is tightly linked with the spectrum of adjacency
matrix A, which is an important characteristic of the given graph. It is further known that the counts
of various small local substructures contained in the graph such as the number of triangles, number
of small paths, etc., are also important features [23] for a given graph. We next show that the matrix
CA is also sensitive to these counts of various local sub-structures.

Theorem 4 Given the adjacency matrix A of an undirected graph with n nodes and m edges:

CA
1,2 =

n

2m

(
3∆ + P3 + n(V ar(deg)) +m

(
4m
n − 1

)
(P2 +m)

)
− 1

where ∆ denotes the total number of triangles, P3 is the total number of distinct paths of length
3, P2 is the total number of distinct paths of length 2 and V ar(deg) = 1

n

∑n
i=1 deg(i)

2 −(
1
n

∑n
i=1 deg(i)

)2
is the variance of degree.

The above two Theorems tell that our proposed representation CA encodes crucial information
for discriminating network structures. Theorem 2 says that this object is a graph invariant and a
covariance matrix in a fixed dimensional space. Thus, CA is directly comparable between different
graph structures, as will be supported by our experiments.

4 Computing Similarity between Graphs
We have argued that the matrix CA captures critical information of the underlying graph. Given a
fixed k, we have a representation for graphs in a common mathematical space, the space of sym-
metric positive semidefinite matrices Sk×k, whose mathematical properties are well understood. In
particular, there are standard notions of similarity between such matrices.

The fact that matrix CA is actually a covariance matrix motivates us to define the similarity between
two graphs, with adjacency matrices A ∈ Rn1×n1 and B ∈ Rn2×n2 respectively, as the Bhat-
tacharya similarity between two Gaussian distributions with zero means and covariance matrices
CA and CB respectively. This similarity can be computed as follows

Sim(CA, CB) = e
− 1

2 log

(
det(Σ)√

(det(CA)det(CB))

)
(1)

Here, det() is the determinant and Σ = CA+CB

2 . Note that CA ∈ Rk×k and CB ∈ Rk×k are
computed using the same value of k.

Theorem 5 The similarity Sim(CA, CB), defined in (1), between graphs with adjacency matrix A
and B is positive semidefinite and a valid kernel. �

Thus, the similarity function defined in this section is a valid kernel [11] and hence can be directly
used in existing machine learning algorithms operating over kernels such as SVMs. We will see
performance of this kernel on social network classification task later in Section 5.

4.1 Computation Complexity
For a fixed k, computing the set of vectors {Ae,A2e, A3e, ..., Ake} recursively as in Algorithm 1
has computation complexity of O(mk). Note that the number of non-zeros in matrix A is 2m and
each operation inside the for-loop is a sparse matrix vector multiplication, which has complexity
O(m). Computing the covariance matrix CA requires summation of n outer products of vectors of
dimension k, which has complexity O(nk2). Computing Eq. (1) involves the determinants of k × k
matrices, which requires O(k3). Thus, the complexity for computing similarity is O(mk+nk2+k3).

The value of k should be small like 4 or 5, because power iteration converges quickly and large
values of k will make the CA representation singular. Thus, the total time complexity of computing
the similarity between two graphs reduces to O(m+ n) = O(m) (as usually m ≥ n).
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5 Evaluations on Real Social Network Classification
5.1 Task and Data
The task is to classify the research area of an individual taking into account the information contained
in his/her ego collaboration network. We used three public collaboration network datasets [15]
(http://snap.stanford.edu/data/): 1) High energy physics collaboration network (ca-
HepPh.html), 2) Condensed matter physics collaboration network (ca-CondMat.html), and 3) Astro
physics collaboration network (ca-AstroPh.html). These networks are generated from e-print arXiv
and cover scientific collaborations between authors papers submitted to the respective categories. If
an author i co-authored a paper with author j, the graph contains an undirected edge from i to j. If
the paper is co-authored by p authors, this generates a completely connected (sub)graph on p nodes.

To generate meaningful ego-networks from each of these huge collaboration networks, we select
different users who have collaborated with more than 50 researchers and extract their ego networks.
The ego network is just the subgraph containing the selected node and all its neighbors. We randomly
choose 1000 such users from each of the high energy physics collaboration network and the astro
physics collaboration network. In case of condensed matter physics, the collaboration network only
had 415 individuals with more than 50 neighbors and so for this domain we take all of them.

Table 1: Graph statistics of ego-networks used in the paper.

STATS High Energy Condensed Matter Astro Physics
No of Graphs 1000 415 1000
Mean No of Nodes 131.95 73.87 87.40
Mean No of Edges 8644.53 410.20 1305.00
Mean Clustering Coefficient 0.95 0.86 0.85

We have 2415 undirected ego network structures in total. The basic statistics of these ego networks
is summarized in Table 1. We label each of the graph according to which of the three collaboration
network it belongs to. Thus, our classification task is to take a researcher and his/her ego collabora-
tion network and determine whether he/she belongs to high energy physics group, condensed matter
physics group, or Astro physics group. This is a specific version of a general problem that arises in
social media: “how audiences differ with respect to their social graph structure ?” [1].

For a better insight, we break the problem into 4 classification tasks: 1) high energy physics v.s.
condensed matter physics (HEP Vs CM), 2) high energy physics v.s. astrophysics (HEP Vs ASTRO),
3) astrophysics v.s. condensed matter physics (ASTRO Vs CM), and 4) all the three domains (Full).

5.2 Competing Methodologies
We run the standard Kernel C-SVMs [3] on the data all pairwise similarity for classification. We
evaluate the following five measures for computing similarity between two given graphs.

The Proposed Similarity (PROP): Given two graphs, we compute the similarity between them
using Eq. (1). Instead of tuning k individually for each of the tasks, for easy replication of results
we used 3 fixed values of k = {4, 5, 6} for all of them, denoted by PROP-4, PROP-5 and PROP-6.

4-Subgraph Frequency(FREQ-4): Following [23], for each of the graphs we first generate a fea-
ture vector of normalized frequency of subgraphs of size four. It is well-known that the subgraph
frequencies of arbitrarily large graphs can be accurately approximated by sampling a small number
of induced sub-graphs. In line with the recent work, we computed such a histogram by sampling
1000 random subgraphs over 4 nodes. This process generates a normalized histograms of dimen-
sion 11 for each graph since there are 11 non-isomorphic different graphs with 4 nodes [23]. The
similarity between two graphs is the inner product between the corresponding feature vectors.

5-Subgraph Frequency (FREQ-5): Recent success of counting induced subgraphs of size 4 in
the domain of social networks leads to a natural curiosity “whether counting all subgraphs of size
5 improves the accuracy values over only subgraphs of size 4 ?”. To answer this question, we also
consider the histogram of normalized frequency of subgraphs of size 5. Similar to the case of FREQ-
4, we sample 1000 random induced subgraphs of size 5 to generate a histogram representation. There
are 34 non-isomorphic different graphs on 5 nodes and hence we obtain a vector of dimension 34.

3-Subgraph Frequency (FREQ-3): To understand the importance of size 4 subgraphs, we also
compare with the histogram representation based on frequencies of subgraphs of size 3. There are 4
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non-isomorphic graphs with 3 nodes and hence here we generate a histogram of dimension 4. Since
this is a cheaper task, we use all the size 3 subgraphs instead of sampling only few of them. Again
the similarity value is the inner product between the corresponding vectors.

Random Walk Similarity (RW): Random walk similarity is a widely used similarity measure
over graphs. This similarity is based on a simple idea: given a pair of graphs, perform random
walks on both, and count the number of similar walks (see [24]). There is a rich set of litera-
ture regarding connections of this similarity with well-known similarity measures in different do-
mains such as Binet-Cauchy Kernels for ARMA models [25], rational kernels [5], r-convolution
kernels [8]. The random walk similarity [25] between two graphs with adjacency matrix A and
B is defined as RWSim(A,B) = 1

n1n2
eTMe, where M is the solution of Sylvester equation

M = (ATMB)exp−λ + eeT . This can be computed in closed forms efficiently in O(n3) time. We
use standard recommendations for the value of λ.

Table 2: Prediction accuracy in percentage for proposed and the state-of-the-art similarity measures
on different ego network classification tasks. The reported results are averaged over 10 repetitions
of 10-fold cross-validation. Standard errors are indicated using parentheses. Best results in bold

Methodology COLLAB
(HEnP Vs CM)

COLLAB (HEnP
Vs ASTRO)

COLLAB (AS-
TRO Vs CM)

COLLAB
(Full)

PROP-4 98.06(0.05) 87.70(0.13) 89.29(0.18) 82.94(0.16)
PROP-5 98.22(0.06) 87.47(0.04) 89.26(0.17) 83.56(0.12)
PROP-6 97.51(0.04) 82.07(0.06) 89.65(0.09) 82.87(0.11)
FREQ-5 96.97 (0.04) 85.61(0.1) 88.04(0.14) 81.50(0.08)
FREQ-4 97.16 (0.05) 82.78(0.06) 86.93(0.12) 78.55(0.08)
FREQ-3 96.38 (0.03) 80.35(0.06) 82.98(0.12) 73.42(0.13)
RW 96.12 (0.07) 80.43(0.14) 85.68(0.03) 75.64(0.09)

5.3 Evaluations and Results
The evaluations consists of running kernel SVM on all the tasks using five different kernels (simi-
larity measures) as described. The evaluation procedure is the standard cross validation estimation
of classification accuracy. First, we split each dataset into 10 folds of identical size. We then com-
bine 9 of these folds and again split it into 10 parts, then use the first 9 parts to train the kernel
C-SVM [3] and use the 10th part as validation set to find the best performing value of C from
{10−7, 10−6, ..., 107}. With this fixed choice of C, we train the C-SVM on all the 9 folds and pre-
dict on the 10th fold acting as an independent evaluation set. The procedure is repeated 10 times
with each fold acting as an independent test set once. For each dataset the procedure is repeated
10 times randomizing over partitions. The mean classification accuracy and the standard errors are
shown in Table 2. Note that we did not tune any parameter other than the “C” for kernel SVM.

In all of the tasks, similarity measure based on the proposed representation outperforms all the
other competing state-of-the-art measures, most of the time with a significant margin. This clearly
demonstrates that the covariance matrix representation captures sufficient information about the ego
networks and is capable of discriminating between them. The accuracy for three different values of
k are not very much different form each other, except in some cases with k = 6, which shows that
slight variations in k do not have any significant change in the performance. Ideally, k can be tuned
based on the dataset, but for easy replication of results we used 3 fixed choices of k.

As expected, counting subgraphs of size 4 (FREQ 4) always improve significantly over just counting
subgraphs of size 3 (SUBGREQ-3). This is in line with the recent work [23] which shows the
effectiveness of counting subgraphs of size 4. Interestingly, counting subgraphs of size 5 (FREQ-5)
improves significantly over FREQ-4 on all tasks, except for HEnP Vs CM classification. This clearly
shows the sub-optimality of histogram obtained by counting very small graphs (k ≤ 4). Even with
sampling, FREQ-5 is an order of magnitude expensive than other methodologies. Unfortunately, as
we will see in the next section, with increasing k, we loose the computational tractability of counting
induced k-subgraphs in the given graph (even with sampling).

Our covariance methodology consistently performs better than (FREQ 5). This clearly demonstrates
the superiority of the CA representation. As argued in Section 3, the matrix CA even for k = 4 or 5,
does incorporate information regarding the counts of bigger complex sub-structures in the graph.
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This along with the information of the full spectrum of the adjacency matrix leads to a very sound
representation which outperforms state-of-the-art similarity measures over graphs.

6 Run-Time Comparisons
To obtain an estimate of the computational costs of various similarity methods, we compare the times
required to compute the similarity values between two given graphs using different methodologies
as presented in Section 5.2. We record the cpu time taken for computing similarity between all
possible pairs of graphs. As summarized in Table 3, All experiments were performed in MATLAB
on an Intel(R) Xenon 3.2 Ghz CPU machine having 72 GB of RAM.

It can be seen that other than the FREQ-5 and RW all other methods are quite competitive. It is not
surprising that RW kernels are slow since they have cubic runtime complexity. Although computing
histogram based on counting all the subgraphs of size 4 is much more computationally expensive
than counting subgraphs of size 3, approximating the histogram by sampling is fairly efficient.

Table 3: Time (in sec) required for computing all pairwise similarity
Prop-4 Prop-5 Prop-6 Freq-3(All) Freq-4(1000 samp) Freq5 (1000 samp) RW
260.56 276.56 286.87 369.83 265.77 7433.41 25195.54

Even with sampling, FREQ-5 is an order of magnitude slower. To understand this phenomenon,
we review the process of computing the histogram by counting subgraphs. There are 34 graph
structures over 5 nodes unique up to isomorphism. Each of these 34 structures has 5! = 120 many
isomorphic variants (one for every permutation). To compute a histogram over these 34 structures,
we first sample an induced 5-subgraph from the given graph. The next step is to match this subgraph
to one of the 34 structures. This requires determining which of the 34 graphs is isomorphic with
the given sampled subgraph. The process is repeated 1000 times for every sample. Thus every
sampling step requires solving graph isomorphism problem. Even FREQ-4 has the same problem
but there are only 11 possible subgraphs and the number of isomorphic structures for each graph is
only 4! = 24. The problem becomes intractable as we move beyond 5 as the graph isomorphism
problem is combinatorially hard.

The proposed similarity based on CA is significantly less expensive than FREQ-5 and at the same
time performs better. Counting-based approaches do capture information but quickly loose tractabil-
ity once we start counting bigger substructures. Power iterations of the adjacency matrix is a nice
way of capturing information about the underlying graph and at the same time is computationally
efficient. The biggest problem with these power iterations is that they are not directly compara-
ble. The representation CA removes this concern and makes power iterations of different adjacency
matrix comparable in a common space.

7 Conclusion
We embed graphs into a new mathematical space of positive semidefinite matrices Sk×k. We take
an altogether different approach for characterizing graphs based on the covariance matrix of vectors
obtained from the power iteration of the adjacency matrix. Our analysis indicates that the proposed
matrix representation CA contains most of the important characteristic information about the net-
works structure. Since the CA representation is a covariance matrix in a fixed dimensional space,
it naturally provides a measure of similarity between different graphs. The procedure is simple and
can be computed in time linear in number of edges, making our approach scalable in practice.

Our experimental evaluations demonstrate the superiority of the proposed CA representation, over
other state-of-the-art methodologies, in ego network classification tasks. The run-time comparisons
indicate that the proposed approach provides the right balance between the expressiveness of repre-
sentation and the computational tractability. Since finding tractable and meaningful representations
of graph is a fundamental problem, we believe that our results will provide good motivation for
using the new representation CA in analyzing real networks.
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