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Abstract

Many methods have been proposed for community detection in networks, but most
of them do not take into account additional information on the nodes that is often
available in practice. In this paper, we propose a new joint community detection
criterion that use both the network and the features to detect community struc-
ture. One advantage our method has over existing joint detection approaches is
the flexibility of learning the impact of different features which may differ across
communities. Another advantage is the flexibility of choosing the amount of influ-
ence the feature information has on communities. The method is asymptotically
consistent under the block model with additional assumptions on the feature dis-
tributions, and performs well on simulated and real networks.

1 Introduction

Community detection is a fundamental problem in network analysis, which has been extensively
studied in a number of domains – see [18, 4, 20] for some examples of applications. A number of
approaches to community detection are based on probabilistic models for networks with commu-
nities, such as the stochastic block model [10], the degree-corrected stochastic block model [12],
and the latent factor model [9]. Other approaches work by optimizing a criterion measuring the
strength of community structure in some sense and spectral approximations to such criteria. Exam-
ples include normalized cuts [21], modularity [17, 16], and many variants of spectral clustering, for
example [19].

Many of the existing community detection methods focus on analyzing the network based on its
adjacency matrix only. However, we often have access to additional information on the nodes,
which we will refer to as node features, and sometimes edges as well, e.g., [24, 23, 11]. In many
networks the distribution of node features is correlated with community structure [15], and thus a
natural question is whether we can improve community detection by using the node features. Sev-
eral approaches have been proposed that assume generative models for the network and its features,
including the network random effect model [8], the embedding feature model [27], the latent vari-
able model [7], the discriminative approach [26], the latent multigroup membership graph model
[14], and the social circles model for ego networks [15]. Most of these approaches were designed to
fit specific feature types, and their effectiveness depends heavily on the correctness of model spec-
ification. Approaches that are not model-based include edge weighing by node feature similarity
[25], attribute-structure mining [22] and SA-clustering [2]. Most methods in this category use all
features the same way without considering which ones influence the community structure, and lack
the flexibility of balancing the information coming from network adjacency matrix and its node fea-
tures. Including irrelevant node features may potentially lead to worse community detection, while
selecting features that cluster strongly, which is in itself a difficult problem in clustering, may not
correspond to features that correlate with community structure.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

In this paper, we propose a new joint community detection criterion that combines network edge
information and node features. The idea is that by properly weighing edges according to feature
similarities on their terminal nodes, the community structure in the network is enhanced and thus
the detection is improved. We learn which features are most helpful in identifying community struc-
ture from data, and allow for the possibility that having similar features may make nodes more or
less likely to connect, thus allowing for both assortative- and disassortative-type behavior for each
individual feature. On an intuitive level, our method looks for an agreement between clustering
structures suggested by the two data sources, the adjacency matrix and the node features. Once the
community structure is estimated, we can formally select relevant node features via a permutation
test, or we can alternatively achieve feature selection by using an `1 penalty on the feature coeffi-
cients. Numerical experiments on simulated and real examples show that our method performs well
compared to methods that use either the network alone or the features alone for clustering.

2 The joint community detection criterion

Our method is based on the intuition that communities are characterized by having more edges
within themselves than between. While this is certainly not the only possible type of community
structure, it is a very common one, and this intuition underlies many other methods for community
detection, e.g., modularity [16]. Our goal is to use such a community detection criterion based on
the adjacency matrix alone, and then weigh edges according to their feature similarities to improve
detection. While many such criteria have been proposed, having a simple criterion linear in the
adjacency matrix makes optimization much more feasible in our particular situation, as will become
clear below. Let A denote the adjacency matrix with Aij = 1 if there is an edge between nodes i
and j and Aij = 0 otherwise, or else an edge weight (our methods work the same way for weighted
and unweighted networks). Let fi denote the p-dimensional feature vector of node i. Let K be
the number of communities we are looking for, and let e be a vector of label assignment, with
ei = k, k = 1, . . . ,K, if node i belongs to community k. Let Ek = {i : ei = k}, and let |Ek| be
the number of nodes in community k. As a starting point for community detection, we use a very
simple analogue of modularity,

R(e) =

K∑
k=1

1

|Ek|α
∑
i,j∈Ek

Aij , (1)

which is then maximized over all possible assignments e. Here α > 0 is a tuning parameter, and
rescaling by |Ek|α is designed to rule out trivial solutions that put all nodes in the same community.
This criterion can be shown to be consistent under the stochastic block model by checking the
conditions of the general theorem in [1]. Note also that when α = 2, the criterion is approximately
the sum of edge densities within communities, and when α = 1, the criterion is the sum of average
“within community” degrees, which both intuitively represent community structure.

Next, we introduce feature-based edge weights which, ideally, should upweigh edges within commu-
nities and downweigh edges between them, thus enhancing the community structure in the observed
network. However, node features may not be perfectly correlated with community structure, differ-
ent communities may be driven by different features, as pointed out by [15], and features themselves
may be noisy. Thus we need to learn the impact of different features on communities as well as bal-
ance the role of network information and node features in community detection. This leads us to
propose a joint community detection criterion (JCDC), defined by

max
e,β

R(e;β) :=

K∑
k=1

1

|Ek|α
∑
i,j∈Ek

Aijw(fi,fj ;βk) (2)

where α is a tuning parameter chosen by the user, and {β1, . . . ,βK} are the unknown vector of
coefficients that controls the impact of each feature for communities 1, . . . ,K. Note that each
community has its own vector of coefficients, which allows for features playing different roles in
different communities.

For the sake of simplicity, we model the edge weight wij as a function of the node features fi and
fj via a p-dimensional vector of their similarity measures φij = φ(fi,fj), setting

w(fi,fj ;βk) = w(φij ;βk) (3)
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The choice of similarity measures in φ depends on the type of fi (for example, on whether the
features are numerical or categorical) and is determined on a case by case basis; the only important
property of similarity is that it assigns higher values to features that are more similar. To eliminate
potential differences in units and scales, we standardize all φij along each feature dimension.

Finally, we choose a functional form forw. This function should be increasing in “overall similarity”
between nodes, and choosing a concave function facilitates optimization. In this paper, we use the
exponential function

w(φij ,β) := wmax − e−〈φij ,β〉 (4)

One can use other functions of similar shapes, for example, the logit exponential function, which
we found empirically to perform similarly. Note that (4) depends on an additional tuning parameter
wmax > 1, whose role is to balance the roles of A and F := {f1, . . . ,fn} in community detection;
this will be discussed in detail in Sections 3.1 and 4.2.

3 Optimizing the joint community detection criterion

The joint community detection criterion needs to be optimized over both the community assignment
e and the parameters β, which determine the edge weights wij . Using block coordinate descent, we
optimize the joint criterion by fixing one variable and optimizing over the other one, and iterating
until convergence.

3.1 Optimizing over label assignments with fixed weights

In this step we treat all edge weights wij’s as fixed constants. It is infeasible to search over all
nK possible label assignments, and, like many other community detection methods, we rely on a
greedy label switching algorithm to optimize over e, specifically, the tabu search [6], which updates
the label of one node at a time. When the target community sizes are large, our method allows for
a simple local update which does not require recalculating the entire criterion. For a node i, the
condition for the algorithm to prefer to assign it to community k rather than l is,

Skk + 2Si↔k
|Ek + 1|α

+
Sll
|El|α

>
Skk
|Ek|α

+
Sll + 2Si↔l
|El + 1|α

, (5)

where Skk and Sll denote twice the total edge weights in communities k and l, respectively, and
Si↔k and Si↔l denote the sum of edge weights between node i and all other nodes in Ek and El,
respectively. When |Ek| and |El| are large, (5) is approximately equivalent to

Si↔k
|Ek|

· |Ek|
1−α

|El|1−α
>
Si↔l
|El|

. (6)

The simplified condition (6) allows for a “local” update for the label of i without calculating the
entire criterion. It also illustrates the impact of the tuning parameter α: when α = 1, both sides
of (6) can be viewed as averaged weights of all edges connecting node i to communities Ek and
El, respectively. Then our method assigns node i to the community with which it has the strongest
connection. When α 6= 1, the LHS is multiplied by a factor (|Ek|/|El|)1−α. Suppose Ek is larger
than El; then choosing 0 < α < 1 increases the preference for assigning a node to the larger
community, while α > 1 favors smaller communities.

Note that all the S’s in (6) are functions of edge weights and thus depend on the tuning parameter
wmax. When β = 0, all weights are equal to the constant wmax−1. On the other hand, for all values
of β the sharp upper bound on any edge weight iswmax. Therefore, the ratio rw = wmax/(wmax−1)
is the maximum amount by which our method can reweigh an edge. When wmax is large, rw ≈ 1,
and thus the information from the network structure dominates. When wmax is close to 1, rw is large
and the feature-driven edge weights have a large impact. However, even if wmax is close to 1, the
features will not necessarily dominate the network information, especially in a sparse graph, since
we only consider and reweigh observed edges.

While the tuning parameter wmax controls the amount of influence features can have on community
detection, it does not affect the estimated parameters β for a fixed community assignment. This is
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easy to see from rearranging terms in (2):

R(e,β) =

K∑
k=1

1

|Ek|α
∑

(i,j)∈Ek

Aijwmax +

K∑
k=1

1

|Ek|α
∑

(i,j)∈Ek

Aijg(fi,fj ;βk) (7)

where g(fi,fj ;βk) := w(fi,fj ;βk) − wmax. The tuning parameter wmax is only involved in the
term that does not depend on β.

Asymptotically, if the feature weights satisfy some conditions, the optimal community assignment
is consistent under the stochastic block model. More precisely, let c be the true labels, and let
P(Aij = 1|ci = k and cj = l) = ρnPkl, where ρn := P(Aij = 1) → 0 is the global edge
probability scaling parameter. Let P̃kl := PklE[wij |(i, j) ∈ (ck, cl)]. If for any a 6= b, we have
α(P̃aa + P̃bb) > 2P̃ab for α ≥ 1 and (2α − 1)min(P̃aa, P̃bb) > P̃ab, then P(ê = c) → 1 if
nρn/ log n → +∞ and ‖ê − c‖ p→ 0 if nρn → +∞. The proof follows the reasoning of [1] and
[28] and is omitted here due to length constraints.

3.2 Optimizing over weights with fixed label assignments

Since we chose a concave edge weight function (4), for a given community assignment e the joint
criteiron is a concave function of βk, and it is straightforward to optimize over βk by gradient ascent.
The role of βk is to control the impact of different features on each community. One can show by
a Taylor-series type expansion around the maximum (details omitted) and also observe empirically
that for our method, the estimated β̂k is correlated with the feature similarity levels between nodes
in community k. Specifically, we found that in practice the estimated β̂(`)

k is an increasing function
of the sample mean of the corresponding similarity Ê[φ(`)ij |(i, j) ∈ Ek]. In other words, our method

produces large estimated β̂(`)
k ’s for a feature d if it has high similarity values φ(`)

ij ’s for i, j ∈ Ek.

However, in the extreme case, the optimal β̂(`)
k can be +∞ if all φ(`)

ij ’s are positive in community

k or −∞ if all φ(`)
ij ’s are negative. To avoid extreme solutions like this, we subtract a penalty term

λ‖β‖ from JCDC while optimizing over β. We use a small value of λ that serves as a safeguard
against extreme solutions and does not much affect moderate values of estimated β(`)

k .

In order to formally assess the significance of each feature for a particular community, we can
perform a permutation test once we have estimated βk and the label assignments e. For each feature
` ∈ {1, . . . , p}, we generate a random permutation (n1, . . . , nN ) of (1, . . . , N). Then we permute
the dth dimension of the node similarity measure φ(`)

ij into φ(`)
ninj and optimize the joint community

detection criterion over β(`) while fixing all φ(`′)
ij for `′ 6= `. Repeating this many times gives us the

null distribution for β(`) under the hypothesis that the `-th feature has no impact on communities
(since permuting the similarity values at random destroys any such relationship even if there was
one). This null distribution can be then used to compute a p-value for the estimated β(`)

k .

4 Simulation studies

In this section, we compare the performance of the JCDC method with methods that use network
information or node features only on simulated data. We also investigate the impact of the tuning
parameters α and wmax on the results of the JCDC method.

In all cases below, we generate networks with n = 100 nodes and K = 2 non-overlapping com-
munities. The edges are generated independently as Aij ∼ Bernoulli

(
2dr
1+r

)
if nodes i and j are in

the same community and Bernoulli
(

2d
1+r

)
if nodes i and j are in different communities. Here d is

a parameter that controls the expected overall edge density of the network, and r denotes the edge
probability ratio for within and between communities. For each node i, the features are generated
from a bivariate normal distribution, with fi ∼ N((µ, 0)T , σ2I) if node i is in community 1 and
fi ∼ N((−µ, 0)T , σ2I) if node i is in community 2.
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4.1 Comparison to methods that use network structure or node features only

For this experiment, each community consists of 50 nodes, and d = 0.1. We vary the values of µ
and r and compare the JCDC method with Newman-Girvan modularity, which only uses network
information, and the K-means algorithm, which only uses node features. Agreement between the
estimated communities and the true community labels is measured using normalized mutual infor-
mation (NMI), a quantity commonly used in the network literature, with higher values indicating
better agreement.
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Figure 1: (a),(b),(c): Performance of different methods measured by NMI as a function of µ and r.
(d) Difference in NMI between JCDC and the better of modularity and K-means.

The performance for all methods is shown in heatmaps in Figure 1 (a)-(c). Figure 1d plots the
difference in NMI between JCDC and the better of modularity and K-means for each pair of values
of µ and r. As one would expect, as µ increases, the performance of K-means improves and that
of modularity stays constant, while as r increases, the performance of modularity improves and
that of K-means stays constant. In most cases, the JCDC method outperforms both modularity
and K-means, except when r is small and µ is relatively large. This is the scenario where the
within community edge probability is similar to that of between community (a low signal high noise
setting), while the feature distributions of the two communities are very different. The inferiority
of JCDC to K-means in this scenario is understandable as JCDC always uses both the network
structure and the features, and in this case only the features are informative.

4.2 The impact of tuning parameters

Two user-selected parameters need to be fixed ahead of time, α and wmax. We first evaluate the
impact of α on the estimated community size and detection accuracy. The values of d and r are set
to 0.3 and 2, respectively. We vary the number of nodes in the smaller community from 10 to 50
and the value of α from 0.3 to 1.5. Figure 2 records the number of nodes in the estimated larger
community by JCDC and the corresponding NMI. For comparison, we also record the results for the
Newman-Girvan modularity, which tends to produce communities of similar size, no matter what
the truth is. For JCDC, as α increases, the sizes of estimated communities become more balanced.
This observation agrees with the intuition discussed in Section 3.1, i.e., a small α favors larger
communities while a large α favors smaller communities when choosing where to assign a node.
In terms of community detection accuracy, Figure 2b shows that the JCDC method outperforms
modularity over a wide range of values of α. However, the more unbalanced the true communities
are, the narrower the range of α over which JCDC achieves the best performance. This is expected
since unbalanced community sizes make the problem more challenging.

Next, we investigate the impact of wmax, which controls the amount of influence features can have
on community detection. To serve the goal, we generate the edges and node features based on two
different community structures. Specifically, we consider two community assignments, cA and cF .
In cA, we set cAi = 1 for i = 1, . . . , 30 and cAi = 2 for i = 31, . . . , 100, while in cF , we set cFi = 1
for i = 1, . . . , 70 and cFi = 2 for i = 71, . . . , 100. Then the edges are generated based on cA with
the node features generated based on cF . The values of µ and α are set to 1.5 and 1, respectively.
We vary the values of wmax and r and inspect the agreement between the estimated communities ê
and cA and cF , respectively. The results are shown in Figure 3.
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Figure 2: Solid lines correspond to JCDC, horizontal dashed lines to modularity; horizontal dotted
lines in (a) show the true size of the larger community. Figures (a) and (b) share the same legend.
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Figure 3: Solid lines correspond to NMI between ê and cA, dashed lines to NMI between ê and cF .

As we can see, in general, when wmax is small and r is not very large, the estimated community
structure agrees more with cF than with cA. When wmax increases, the estimated ê becomes more
similar to cA. This again agrees with the discussion in Section 3.1, i.e., the first term in (7) dominates
the second one when wmax is large enough. Further, as r increases, the community structure in the
network becomes more prominent, thus ê becomes more similar to cA. It is also interesting to note
that the rate at which the NMI between ê and cF decreases is lower than that at which the NMI
between ê and cA increases. This suggests that in practice, one may consider to use a relatively
large value of wmax.

5 Data applications

5.1 The Mexican political elite network

The Mexican political elite network [5, 3] consists of 35 Mexican politicians including presidents
and their close associates. The edge between two politicians indicates a significant tie of any type
between them (political, business, friendship, etc.). There is one available continuous node feature,
the year in which the person first assumed significant power in the government. We also know the
politician’s backgrounds – military or civilian – which we can compare to detected communities.
In early years of the time period under consideration, the military dominated the government, and
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over the years civilian politicians gradually took over. The background partition and the community
detection results by different methods – by our method (JCDC), modularity on the network alone,
and K-means on the year – are shown in Figure 4.
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Figure 4: The background partition (red: military, blue:civilian) and community detection results by
different methods.

The absorption of civilian politicians into the government was a gradual process and there is no sin-
gle cut-off threshold on year that separates the backgrounds of politicians well. This explains why
K-means does not agree well with political background. On the other hand, politicians stepping into
power in years close to each other tend to have similar backgrounds, which is accounted for by higher
edge weights in our method. As measured by normalized mutual information (NMI) between esti-
mated communities and the background partition, our method (NMI=0.37) outperforms both modu-
larity (NMI=0.20) andK-means (NMI=0.26). The same holds for the Jaccard Index(JI): our method
achieves JI=0.85, modularity JI=0.74, and K-means JI=0.66. The estimated β is (1.59, 1.04) with
permutation test based p-values of (0.02, 0.00). This indicates that our method recognizes the year
as a significant feature in formation of both estimated communities.

5.2 The lawyer friendship network

The Lawyer friendship network [13] consists of 71 lawyers in a Northeastern US corporate law firm.
The edges indicate friendship ties between lawyers. There are 7 features available on each node:
status (partner or associate), gender, office location (Boston or Hartford), years with the firm, age,
practice (litigation or corporate) and law school attended (Harvard, Yale, University of Connecticut,
or other). We eliminated 6 isolated nodes with zero degrees. Figure 5 shows heat plots of the
adjacency matrix rearranged by sorting the columns and the rows of the original adjacency matrix
in ascending order by each feature. Partition by office location (Figure 5(c)) shows the clearest
community structure, and thus we will use partition by office location to compare to community
detection on the network using all the other variables as node features. In this comparison, we
omit the very small Providence office, which has only two non-isolated nodes and only two edges
to other nodes. Communities estimated by different methods and the office location partition are

(a) status (b) gender (c) office (d) year (e) age (f) practice (g) school

Figure 5: Adjacency matrices aligned along each marginal feature

shown in Figure 6. Comparing the estimated communities to the office location partition, our JCDC
method, modularity, and K-means achieve normalized mutual information of 0.34, 0.02, and 0.00,
respectively, and the corresponding Jaccard indexes are 0.85, 0.56, and 0.54. Clearly, using the
additional features improves community detection in this case.

The coefficients βk and their p-values estimated in our method are given in Table 1. Our method
identifies status and practice as features important in the first community and finds no significant
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Figure 6: The office location partition and community detection results from different methods

features in the second community. This suggests that status and practice help in detecting the first
community, while the second community is determined primarily from the information on the net-
work itself.

Table 1: Estimated βk and their p-values

status gender year age practice school
Community 1 0.38(0.00) 0.02(0.31) 0.15(0.12) 0.18(0.10) 0.15(0.048) 0.00(0.37)
Community 2 0.05(0.10) 0.00(0.32) 0.07(0.12) 0.03(0.17) 0.00(0.31) 0.00(0.28)

6 Discussion

The JCDC method we proposed has the ability to incorporate feature information into community
detection and improve results compared to using the network information alone or the feature infor-
mation alone. It is designed for community structures manifesting themselves by more connections
within communities, and benefits the most from features that are correlated to the community struc-
ture. It also has the ability to identify relevant features and allows for features playing different roles
in different communities, which is key to good performance in realistic scenarios.

There are several aspects of our method that can be improved upon or extended in future work.
One is accounting for variations in node degrees, which are usually regarded as independent of
community structure, but may in some cases be correlated with features. Another direction for future
work is extending our method to the case of overlapping community cases. The JCDC criterion (2)
can be decomposed into a sum over separate “quality measures” on each estimated community,
which can in principle be optimized in parallel to allow for overlaps. The global maximum of each
quality measure will correspond to the same community, which is not a desirable solution, and thus
initializing the search from distinct and possibly non-overlapping communities is crucial. These
issues are a topic for future work.
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