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Abstract

Spectral clustering has become one of the most popular clustering algorithms and
it is currently being used in a wide range of applications. Unfortunately, the run-
ning time of spectral clustering algorithms might be cubic on the size of the input
dataset, which makes it prohibitive to use this approach on very large datasets. In
recent years, several efforts have been made to cope with these scalability issues,
however, a satisfactory solution is still missing. In this work 1, we investigate a
variant of the spectral clustering which can be efficiently parallelized in MapRe-
duce and we study its effectiveness in finding communities on large-scale social
networks. Our evaluation on both real and synthetic large-scale social networks
shows promising results for our approach.

1 Introduction

Clustering is one of the most important subroutine in tasks of machine learning and data mining.
Spectral clustering, which exploit pairwise similarities of data instances, has been widely used in
several areas such as image segmentation and community detection, because of its effectiveness to
find clusters.

However, spectral clustering algorithms are not efficient as their running time is cubic in the size of
the input dataset. This makes these algorithms incapable of handling large graphs. MapReduce is a
programming model for large-scale data processing and is used for making distributed calculations
in a cluster of computers.

In this work, we investigate a variant of the spectral clustering which can be efficiently parallelized
in MapReduce and we study its effectiveness in finding communities on large-scale social networks.
Our approach consists of computing efficiently an eigenvalue decomposition and then to use a recent
parallel version of k-means++ (called k-means|| [26]) which comes with approximation guarantees
on the quality of the clustering so computed. We then focus on the problem of finding communities
in large-scale social networks. We conduct an experimental evaluation on both synthetic and real-
world social networks which shows promising results.

The remainder of this paper is organized as follows: in section 2, we present the basic principles
of spectral clustering algorithms and the bottlenecks for handling large graph datasets. In section 3,

1This work was a part of master thesis of S. Tsironis as an intern student, under the collaboration of Telecom
ParisTech and Ecole Polytechnique.
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we show the related work on spectral clustering approaches for large datasets and we propose some
solutions to this problem. In section 4, we present our parallel spectral clustering algorithm and we
mark some technical issues and our contributions to the problem. Experimental results in section 5
show the evaluation of our approach on both real-world and synthetic large scale social networks.
Section 6 shows our concluding remarks.

2 Background

This section presents the spectral clustering algorithm and describes the bottlenecks that led to the
need of a parallel approach, in order to deal with massive graphs.

2.1 Basic notations

Given a set of n points x1, ..., xn, spectral clustering algorithms constructs an affinity matrix A ∈
Rnxn where Aij ≥ 0 represents the similarity between xi and xj . We consider a commonly used
spectral clustering algorithm, proposed by Ng et al. [1], called normalized spectral clustering. The
similarity information is then used to group these points into k clusters. The most common similarity
function used is the Gaussian:

Sij = exp
(‖xi − xj‖2

2σ2

)
In our implementation, we use the similarity representation where:

Aij =

{
1 if i, j are connected
0 otherwise

After forming the affinity matrix, spectral clustering algorithm constructs the graph Laplacian [2]
matrix, that constitutes a graph representation of the initial data points. There are several forms of
the Laplacian matrix [3], but we consider the normalized symmetric Laplacian:

Lsym = I −D−1/2AD−1/2,

where D is the diagonal matrix with

Dii =

n∑
j=1

Aij

To implement spectral clustering one has to compute the first k eigenvectors (those corresponding to
the k smallest eigenvalues) of graph Laplacian matrix, which is usually sparse. Eigenvalue decom-
position of the graph Laplacian is the most important step of spectral clustering algorithm, because
it obtains a representation of the initial data into a low-dimensional space in order to be clustered.

Let U ∈ Rnxk be the matrix contains the first k eigenvectors ui,..., uk as columns. Spectral clus-
tering algorithm forms a matrix T ∈ Rnxk from U by normalizing the rows to norm 1, that is set

Tij = Uij/(
j∑

k=1

U2
ik)

−1/2. Each row of matrix T is a vector (yi),i=1...n that represents an initial data

point into the new low-dimensional space. Finally, the points yi are clustered into clusters C1,...,Ck

using k-means clustering algorithm.

2.2 Eigenvalue decomposition

Methods for sparse eigenproblems [4]-[5] usually obtain the solution from the information generated
by the application of the matrix to various vectors. Matrices are only involved in matrix-vector
products. This preserves sparsity and also allows the solution of problems in which matrices are not
available explicitly.

Lanczos algorithm [6], the most well-known large scale eigensolver, produces an orthogonal trans-
formation of a symmetric matrix A into a tridiagonal matrix T. The point of the algorithm is that, due
to the orthogonality of the transformation, matrix T is similar to the original matrix A (for instance,
each eigenvalue of T is also an eigenvalue of A), but it is much easier to calculate with T because it
has a tridiagonal form. This idea of Lanczos is frequently applied to solve eigenvalue problems and
linear systems.
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2.3 K-means

K-means algorithm [7] is applied to objects that are represented by points in a d-dimensional vector
space. Thus, it clusters a set of d-dimensional vectors, D = {xi|i = 1, ..., n}, where xi ∈ Rd

denotes the i-th object or “data point”. K-means algorithm clusters all of the data points in D such
that each point xi falls in one and only one of the k partitions.

In clustering algorithms, points are grouped by some notion of “closeness” or “similarity”. In k-
means there is a set of cluster representatives C = {ci|i = 1, ..., k}, which are called the cluster
means or the cluster centroids. K-means attempts to minimize the total squared Euclidean distance
between each point xi and its closest cluster centroid cj .

2.4 Complexity analysis

Regarding the computational complexity of spectral clustering algorithm, the most expensive step
is the computation of the eigenvalues/eigenvectors of Laplacian matrix. This process has time com-
plexity O(n3), where n is the number of input data points. The construction of similarity matrix has
time complexity O(n2) and the application of k-means in the results of eigenvalue decomposition
costs O(nldk), where n is the number of input data points, l is the number of k-means iterations, d
is the dimensionality of the input data and k is the number of final clusters.

Despite the importance of spectral clustering algorithms, they are not widely be viewed as a com-
petitor to classical algorithms as hierarchical clustering and k-means for large scale data mining
problems. The overall computational complexity of spectral clustering algorithm is O(n3). This
makes spectral clustering methods becoming infeasible for problems with n on the order of thou-
sands. Furthermore, problems with n in the order of millions (or billions) are entirely out of reach.

3 Related work

Research on speeding up the execution of Spectral Clustering algorithms has been focused mainly on
approximating the affinity matrix using nearest neighbour techniques [8]-[9] or by extracting dense
regions in large graphs [9]-[11] or techniques that can handle large number of edges in one machine
[12]. Another important field, that has an important role in the total running time and complexity of
Spectral Clustering, is the eigenvalue decomposition step. Several methods [8], [13]-[14] have been
used to approximate the eigenvectors of the affinity matrix.

In MapReduce [15], existing approaches still focus on the preprocessing step of the input data points
in order to speed up the whole process. Gao et al. [16], proposed a distributed spectral clustering
approach that focuses on preprocessing the input data points using Local Sensitivity Hashing (LSH)
and applying Mahout implementation for Spectral Clustering on the results of LSH. Cordeiro et al.
[17], proposed a hybrid method for clustering, that minimizes I/O cost and network cost among
processing nodes. This method includes a parallel clustering method (ParC method) and a sample-
and-ignore method (SnI method).

Our approach focuses in two directions: efficient selection of top k eigenvectors of the Laplacian
matrix and careful selection of the initial centroids for k-means step. Our implementation makes
use of the advantages of MapReduce and provides a spectral clustering method that can handle large
graphs in a reasonable time.

3.1 Eigensolver selection

Taking into account the complexity analysis of spectral clustering algorithms, it is completely infea-
sible to get the exact eigenvalues/eigenvectors of a large matrix and especially using a centralized
approach. There are many parallel large scale eigensolvers [18]-[20] proposed during the last years.
Most of these algorithms are adaptations of power method to find eigenpairs of a square matrix.

HEIGEN, proposed by Faloutsos et al. [21], as part of the peta-scale graph mining library PEGA-
SUS [22]-[23], is a parallel eigensolver designed to be accurate, efficient, and able to run on the
MapReduce environment. MapReduce enables HEIGEN to handle matrices much larger that these
that can be handled by algorithms based on MPI.
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HEIGEN uses the Lanczos eigensolver for symmetric matrices, and especially an improved version
of basic Lanczos algorithm, the Lanczos-SO (Selective Orthogonalization). The purpose of selective
orthogonalization is to prevent the computation of many unwanted copies of all the well-separated
outer eigenvectors. This reduces the number of Lanczos steps required to compute the wanted
eigenvalues and eigenvectors and so keeps the number of calls on the input matrix as low as possible.

3.2 K-means selection

K-Means is an algorithm that can be easily parallelized in MapReduce in order to deal with large
number of data points [24]. Nevertheless, k-means may need a large number of iterations in order
to converge to a solution. MapReduce is not suitable for executing algorithms with large number of
iterations.

In order to overcome this issue, it is important to make a careful choice of the initial cluster centroids
which lead to a good solution and will converge after a small number of iterations. Arthur and
Vassilvitskii [25], proposed k-means++ that selects carefully a set of centroids that leads k-means
to converge quickly to a solution but the problem for large datasets is that it may perform many
passes over the input data, especially when we need a large number of clusters. This problem solved
by applying a sampling method [26], that select a subset from the input data points and them extract
the initial centroids using k-means++ algorithm.

4 Proposed method

In this section we discuss the technical issues that contribute in efficiency of our algorithm and
finally we present our approach that can perform spectral clustering for large graph datasets.

4.1 Technical issues

HEIGEN improves the efficiency of eigenvalues/eigenvectors computation by adapting the use of
block-based operations [21]. Using blocks the number of the intermediate keys (and the number of
reducers in use) for MapReduce are fewer than operations that do not use blocks and the performance
of the reducers is increased. A typical example of an operation that is optimized using blocks, is the
matrix-vector multiplication, where the matrix is large and the vector is large and dense.

Matrix operations, like matrix-vector and matrix-matrix multiplication, can also be applied in ma-
trix/vectors that can be hold in the main memory of a single machine. In this case, the matrix/vector
that fits into main memory can become available to all mappers at the same time using distributed
cache functionality in Hadoop. This functionality decreases the number of MapReduce jobs that
have to be executed and, furthermore, decreases the execution time for these operations.

4.2 Algorithm

Let G = (V, E) an undirected unweighted graph of a set of data points and A is the affinity matrix,
representing the similarity between all nodes inside this graph. The next figure shows the proposed
spectral clustering algorithm, that can deal with massive graph datasets.

In comparison with the most well-known spectral clustering algorithms there is a difference in
steps 3-4. More specifically, spectral clustering algorithms compute the smallest k eigenval-
ues with the corresponding eigenvectors of the normalized symmetric Laplacian matrix Lsym =

I −D−1/2AD−1/2. Our approach is lead by the fact that matrices Lsym and D−1/2AD−1/2 have
in total the same eigenvectors, with the difference that the eigenvectors of Lsym corresponding to
the smallest eigenvalues are the same with the eigenvectors ofD−1/2AD−1/2 corresponding to the
largest eigenvalues. For the eigenvalues, it holds that if λ is an eigenvalue of Lsym then (1 − λ) is
an eigenvalue of D−1/2AD−1/2.

Our objective is to use this approach for detect communities in large networks, and especially in
social networks. Our contributions are led by the fact that we want to perform community detection
efficiently and with accurate results. HEIGEN and k-means|| are two approaches that speed up the
spectral clustering algorithm and provide good clustering results for large networks.
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Algorithm 1 Proposed Parallel Spectral Clustering Algorithm
1: Construct diagonal matrix D, where the element (i, i) in the main diagonal is the degree of the

i-th node in the graph.
2: Compute inverse square root matrix D−1/2 of the degree matrix D.
3: Compute matrix L = D−1/2AD−1/2

4: Compute the eigenvectors of matrix L, corresponding to the largest k eigenvalues of matrix L
using HEIGEN algorithm.

5: Let Unxk a matrix which contains the selected eigenvectors of matrix L as columns.
6: Form matrix T ∈ Rnxk from U by normalizing the rows to norm 1, that is set Tij =

Uij/(
j∑

k=1

U2
ik)

−1/2.

7: Let (yi),i=1...n be the vector corresponding to the i-th row of T.
8: Cluster points yi in Rk into clusters C1,...,Ck using k-means|| algorithm.

Table 1: Synthetic graph datasets

DATASET NODES EDGES GROUND TRUTH CLASSES

1 1000 24644 24
2 3000 148374 41
3 5000 251410 67
4 10000 982916 60
5 20000 1980228 100

5 Experiments

5.1 Datasets

We used both synthetic and real graph datasets in order to evaluate our method. Synthetic graph
datasets were built using the Fortunato graph generator [27] and the size of the graph varies from
1000 to 20000. Table 1 shows the details for the synthetic datasets. The ground truth classes,
created for each dataset, are disjoint to each other. The real graph dataset, taken from SNAP net-
work (http://snap.stanford.edu/data/), is a product co-purchasing network collected
by crawling Amazon website. The graph contains 334863 nodes and 925872 bidirected edges split
into 151307 overlapping communities.

5.2 Results

We ran our experiments in a Hadoop clusters consisting of 5 machines, 1 master and 4 slave nodes.
We set the maximum number of iterations for HEIGEN to 20 and the maximum number of k-means
iterations to 30. For the centralized approach we implemented the spectral clustering algorithm,
proposed by Ng et al. [1], using the Jama library implementation for eigenvalue decomposition and
matrix operations and the WEKA implementation for k-means step.

Table 2 shows the evaluation of clustering results, produced by our parallel spectral clustering ap-
proach, in comparison with them produced by centralized spectral clustering approach. For this
evaluation , we use the F-measure metric which combines the precision and recall ideas from Infor-
mation Retrieval literature. Parallel spectral clustering approach gives better or equivalent clustering
results with centralized approach when size is relatively small.

Regarding the running time of these two approaches, as we can see in Table 3, centralized approach
is more efficient for smaller datasets, but for larger datasets it starts becoming infeasible to get a
solution in a reasonable time. On the other hand, despite the fact that our parallel approach gives
less accurate results as the size increases, it still gives good results in a reasonable time.
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Table 2: F-measure results (Centralized vs. Parallel Spectral Clustering)

DATASET CLUSTERS EIGENVECTORS F-MEASURE
(CENTRALIZED)

F-MEASURE
(PARALLEL)

1 20 6 0.7603 0.8354
2 40 4 0.7679 0.8113
3 60 5 0.8356 0.8209
4 60 5 0.7593 0.7416
5 100 5 0.8248 0.6678

Table 3: Running time (Centralized vs. Parallel Spectral Clustering)

DATASET TIME (CENTRALIZED) TIME (PARALLEL)

1 <1 min ∼ 2 hours
2 ∼ 9 min ∼ 3 hours
3 ∼ 43 min ∼ 4 hours
4 >5 hours ∼ 4.5 hours
5 >2 days ∼ 5 hours

Furthermore, we ran these two implementation into a synthetic graph with 60000 nodes and almost 4
million edges where centralized spectral clustering approach failed to execute while parallel spectral
clustering approach executed successfully.

The following figures show the evaluation of the clustering results, produced by our parallel spectral
clustering approach, for a real graph dataset. We set the maximum number of iterations for HEIGEN
to 100 and we used the top 51 eigenvectors. We extracted 100 clusters and the whole experiment
completed successfully in almost 2 days.

F-measure is not a suitable metric when the available ground truth communities are overlapping. We
decided to use normalized entropy in order to evaluate our results. As the ground truth communities
are overlapping and our clusters disjoint, we compute the normalized entropy for every ground truth
community in respect to the extracted clusters. The optimal value for the normalized entropy, where
all data points inside a cluster belong also to the same community, is 0. On the other hand, the worst
case for a cluster is every data point belong to a different cluster than the others.In this case, the
value of the normalized entropy is 1.

As we can see in the figures, we split the normalized entropy into 11 classes and we map each
community to a specific class in such a way that the normalized entropy of the community is less
or equal the class value. Each plot in the figures shows the distribution of the communities in these
classes and belong to a specific size range.

Figure 1 shows the normalized entropy class distribution for communities that contain at most 50
points. Our algorithm is performing very well for small communities as we can see in the first plot
where more than 15000 communities have entropy value set to 0. We can see that many communi-
ties are concentrated into entropy classes with value less or equal to 0.6, which can be seen as an
satisfying entropy value.

Figure 2 shows the normalized entropy class distribution for all communities. Because the majority
of the communities have small size we split them into two plots, one that contains communities
with size less or equal to 5000 and another one that contains the rest of them. In this figure, we can
see clearly that more than 60000 communities have normalized entropy value set to 0, which is the
optimal case.Also, it is shown that the majority of communities give a satisfying entropy value, even
for those communities that have size more than 5000 points.
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Figure 1: Normalized Entropy - Amazon Dataset (size <= 50)

Figure 2: Normalized Entropy - Amazon Dataset (all)

6 Conclusion

In this paper, we have shown our parallel implementation of the spectral clustering to give equivalent
results with proposed centralized approaches. Also we proved its ability to give accurate results for
large datasets that one machine cannot handle. We plan to perform further experiments on larger
graph datasets using larger MapReduce clusters. Because our approach supports undirected and
unweighted graphs, we plan to extend its functionality to support also directed and weighted graphs.
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