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Abstract

Many real-world processes evolve in cascades over networks, whose topologies
are often unobservable and change over time. However, the so-termed adoption
times when for instance blogs mention popular news items are typically known,
and are implicitly dependent on the underlying network. To infer the network
topology, a dynamic structural equation model is adopted to capture the relation-
ship between observed adoption times and the unknown edge weights. Assuming
a slowly time-varying topology and leveraging the sparse connectivity inherent to
social networks, edge weights are estimated by minimizing a sparsity-regularized
exponentially-weighted least-squares criterion. To this end, a solver is developed
by leveraging (pseudo) real-time sparsity-promoting proximal gradient iterations.
Numerical tests with synthetic data and real cascades of online media demonstrate
the effectiveness of the novel algorithm in unveiling sparse dynamically-evolving
topologies, while accounting for external influences in the adoption times.

1 Introduction

Networks arising in natural and man-made settings provide the backbone for the propagation of con-
tagions such as the spread of popular news stories, the adoption of buying trends among consumers,
and the spread of infectious diseases [28, 8]. For example, a terrorist attack may be reported within
minutes on mainstream news websites. An information cascade emerges because these websites’
readership typically includes bloggers who write about the attack as well, influencing their own
readers in turn to do the same. Although the times when “nodes” get infected are often observable,
the underlying network topologies over which cascades propagate are typically unknown and dy-
namic. Knowledge of the topology plays a crucial role for several reasons e.g., when social media
advertisers select a small set of initiators so that an online campaign can go viral, or when healthcare
initiatives wish to infer hidden needle-sharing networks of injecting drug users.

The propagation of a contagion is tantamount to causal effects or interactions being exerted among
entities such as news portals and blogs, consumers, or people susceptible to being infected with
a contagious disease. Acknowledging this viewpoint, structural equation models (SEMs) pro-
vide a general statistical modeling technique to estimate causal relationships among traits; see
e.g., [12, 24]. These directional effects are often not revealed by standard linear models involv-
ing symmetric associations between random variables, such as those represented by covariances or
correlations, [20], [9], [14]. SEMs are attractive because of their simplicity and ability to capture
edge directionalities. They have been widely adopted in many fields, such as economics, psychomet-
rics [22], social sciences [10], and recently in genetics for static gene regulatory network inference;
see e.g., [5, 18] and references therein. However, SEMs have not been utilized to track the dynamics
of causal effects among interacting nodes. In this context, the present paper proposes a dynamic
SEM to account for time-varying directed networks over which contagions propagate, and describes
how node infection times depend on both topological and external influences. Accounting for ex-
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ternal influences is well motivated by drawing upon examples from online media, where established
news websites depend more on on-site reporting than blog references. External influence data is also
useful for model identifiability, and has been shown necessary to resolve directional ambiguities [3].

Supposing the network varies slowly with time, parameters in the proposed dynamic SEM are es-
timated adaptively by minimizing a sparsity-promoting exponentially-weighted least-squares (LS)
criterion (Section 3). To account for the inherently sparse connectivity of social networks, an ℓ1-
norm regularization term that promotes sparsity on the entries of the network adjacency matrix is
incorporated in the cost function; see also [6, 15, 1]. A novel algorithm to jointly track the network’s
adjacency matrix and the weights capturing the level of external influences is developed in Section
3.1, which minimizes the resulting non-differentiable cost function via a proximal-gradient (PG)
solver; see e.g., [23, 7, 4]. The resulting dynamic iterative shrinkage-thresholding algorithm (ISTA)
is provably convergent, and offers parallel, closed-form, and sparsity-promoting updates per itera-
tion. Numerical tests on synthetic network data demonstrate the superior error performance of the
developed algorithms, and highlight their merits when compared to the sparsity-agnostic approach
in [27]. Experiments in Section 4 involve real temporal traces of popular global events that prop-
agated on news websites and blogs in 2011 [17]. Interestingly, topologies inferred from cascades
associated to the meme “Kim Jong-un” exhibit an abrupt increase in the number of edges following
the appointment of the new North Korean ruler.

Related work. Inference of networks using temporal traces of infection events has recently become
an active area of research. According to the taxonomy in [13, Ch. 7], this can be viewed as a problem
involving inference of association networks. Several prior approaches postulate probabilistic models
and rely on maximum likelihood estimation (MLE) to infer edge weights as pairwise transmission
rates between nodes [26], [21]. However, these methods assume that the network does not change
over time. A dynamic algorithm has been recently proposed to infer time-varying diffusion networks
by solving an MLE problem via stochastic gradient descent iterations [27]. Although successful
experiments on large-scale web data reliably uncover information pathways, the estimator in [27]
does not explicitly account for edge sparsity prevalent in social and information networks. Moreover,
most prior approaches only attribute node infection events to the network topology, and do not
account for the influence of external sources such as a ground crew for a mainstream media website.

Notation. Bold uppercase (lowercase) letters will denote matrices (column vectors), while operators
(·)⊤, λmax(·), and diag(·) will stand for matrix transposition, spectral radius, and diagonal matrix,
respectively. The N ×N identity matrix will be represented by IN , while 0N will denote the N × 1
vector of all zeros, and 0N×P := 0N0⊤

P . The ℓp and Frobenius norms will be denoted by ‖ · ‖p, and
‖ · ‖F , respectively.

2 Network Model and Problem Statement

Consider a dynamic network with N nodes observed over time intervals t = 1, . . . , T , whose ab-
straction is a graph with topology described by an unknown, time-varying, and weighted adjacency
matrix At ∈ R

N×N . Entry (i, j) of At (henceforth denoted by atij) is nonzero only if a directed
edge connects nodes i and j (pointing from j to i) during the time interval t. As a result, one in gen-
eral has atij 6= atji, i.e., matrix At is generally non-symmetric, which is suitable to model directed
networks. Note that the model tacitly assumes that the network topology remains fixed during any
given time interval t, but can change across time intervals.

Suppose C contagions propagate over the network, and the infection time of node i by contagion c is
denoted by ytic. In online media, ytic can be obtained by recording the time when website i mentions
news item c. For uninfected nodes at slot t, ytic is set to an arbitrarily large number. Assume that the
susceptibility xic of node i to external (non-topological) infection by contagion c is known and time
invariant over the observation interval. In the web context, xic can be set to the search engine rank
of website i with respect to (w.r.t.) keywords associated with c.

The infection time of node i during interval t is modeled according to the following dynamic struc-
tural equation model (SEM)

ytic =
∑

j 6=i

atijy
t
jc + btiixic + etic (1)
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where btii captures the time-varying level of influence of external sources, and etic accounts for
measurement errors and unmodeled dynamics. It follows from (1) that if atij 6= 0, then ytic is

affected by the value of ytjc. With Bt := diag(b11, . . . , bNN ), collecting observations for the entire
network and all C contagions yields the dynamic matrix SEM

Yt = AtYt +BtX+Et (2)

where Yt := [ytic], X := [xic], and Et := [etic] are all N × C matrices. A single network topology
At is adopted for all contagions, which is suitable e.g., when information cascades are formed
around a common meme or trending (news) topic in the Internet; see also the data in Section 4.

Given {Yt}Tt=1
and X adhering to (2), the goal is to track the underlying network topology {At}Tt=1

and the effect of external influences {Bt}Tt=1
. To this end, the algorithm developed in the next

section assumes slow time variation of the network topology and leverages the inherent sparsity of
edges that is typical of social networks.

3 Topology Tracking Algorithm

To estimate {At,Bt} in a static setting, one can solve the following regularized LS problem

{Â, B̂} = arg min
A,B

1

2

T
∑

t=1

‖Yt −AYt −BX‖2F + λ‖A‖1

s. to aii = 0, bij = 0, ∀i 6= j (3)

where ‖A‖1 :=
∑

i,j |aij | is a sparsity-promoting regularization, and λ > 0 controls the sparsity

level of Â. Absence of a self-loop at node i is enforced by the constraint aii = 0, while having

bij = 0, ∀i 6= j, ensures that B̂ is diagonal as in (2). The batch estimator (3) yields single estimates

{Â, B̂} that best fit the data {Yt}Tt=1
and X over the whole measurement horizon t = 1, . . . , T ,

and as such (3) neglects potential network variations across time intervals.

Exponentially-weighted LS estimator. In practice, measurements are typically acquired in a se-
quential manner and the sheer scale of social networks calls for estimation algorithms with minimum
storage requirements. Recursive solvers enabling sequential inference of the underlying dynamic
network topology are thus preferred.

For t = 1, . . . , T , consider the sparsity-regularized exponentially-weighted LS estimator (EWLSE)

{Ât, B̂t} = arg min
A,B

1

2

t
∑

τ=1

βt−τ‖Yτ −AYτ −BX‖2F + λt‖A‖1

s. to aii = 0, bij = 0, ∀i 6= j (4)

where β ∈ (0, 1] is the forgetting factor that forms estimates {Ât, B̂t} using all measurements
acquired until time t. Whenever β < 1, past data are exponentially discarded thus enabling tracking
of dynamic network topologies. The first summand in the cost corresponds to an exponentially-
weighted moving average (EWMA) of the squared model residuals norms. The EWMA can be seen
as an average modulated by a sliding window of equivalent length 1/(1 − β), which clearly grows
as β → 1. In the infinite-memory setting whereby β = 1, (4) boils down to the batch estimator (3).

Selection of the (possibly time-varying) tuning parameter λt is an important aspect of regularization
methods such as (4), because λt controls the sparsity level of the inferred network and how its
structure may change over time. For sufficiently large values of λt one obtains the trivial solution

Ât = ON×N , while increasingly more dense graphs are obtained as λt → 0. An increasing λt

will be required for accurate estimation over extended time-horizons, since for β ≈ 1 the norm
of the LS term in (4) grows due to noise accumulation. This way the effect of the regularization
term will be downweighted unless one increases λt at a suitable rate, for instance proportional to√
σ2t as suggested by large deviation tail bounds when the errors are assumed etic ∼ N (0, σ2),

and the problem dimensions N,C, T are sufficiently large [20, 19, 1]. In the topology tracking
experiments of Section 4, a time-invariant value of λ is adopted and typically chosen via trial and
error to optimize the performance. This is justified since smaller values of β are selected for tracking
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network variations, which also implies that past data (and noise) are discarded faster, and the norm
of the LS term in (4) remains almost invariant. As future research it would be interesting to delve
further into the choice of λt using model selection techniques such as cross-validation [5], Bayesian
information criterion (BIC) scores [14], or the minimum description length (MDL) principle [25],
and investigate how this choice relates to statistical model consistency in a dynamic setting.

3.1 Proximal gradient algorithm

Proximal gradient (PG) algorithms have been popularized for ℓ1-norm regularized linear regres-
sion problems, through the class of iterative shrinkage-thresholding algorithms (ISTA); see e.g., [7]
and [23] for a comprehensive tutorial treatment. The main advantage of ISTA over off-the-shelf
interior point methods is its computational simplicity. Iterations boil down to matrix-vector multi-
plications involving the regression matrix, followed by a soft-thresholding operation [11, p. 93].

In the sequel, an ISTA algorithm is developed for the sparsity regularized dynamic SEM formulation
(4) at time t. Based on this module, a (pseudo) real-time algorithm for tracking the dynamically-
evolving network topology over the horizon t = 1, . . . , T is obtained as well. The algorithm’s
memory storage requirement and computational cost per sample {Yt,X} does not grow with t.

Solving (4) for a single time interval t. Introducing the optimization variable V := [AB], observe

that the gradient of f(V) := 1

2

∑t
τ=1

βt−τ‖Yτ − AYτ − BX‖2F is Lipschitz continuous with

a Lipschitz constant Lf = λmax(
∑t

τ=1
βt−τ [(Yτ )⊤ (X)⊤]⊤[(Yτ )⊤ (X)⊤]), i.e., ‖∇f(V1) −

∇f(V2)‖ ≤ Lf‖V1 −V2‖, ∀V1, V2 in the domain of f . The Lipschitz constant is time varying,
but the dependency on t is kept implicit for notational convenience. Instead of directly optimizing
the cost in (4), PG algorithms minimize a sequence of overestimators evaluated at judiciously chosen
points (typically the current iterate, or a linear combination of the two previous iterates).

With k = 1, 2, . . . denoting iterations and upon defining g(V) := λt‖A‖1, PG algorithms iterate

V[k] := argmin
V

{

Lf

2
‖V−G(V[k − 1])‖2F + g(V)

}

(5)

where G(V[k−1]) := V[k−1]−(1/Lf)∇f(V[k−1]) corresponds to a gradient-descent step taken
from V[k−1], with step-size equal to 1/Lf . The optimization problem (5) is known as the proximal
operator of the function g/Lf evaluated at G(V[k−1]), and is denoted as proxg/Lf

(G(V[k−1])).

Henceforth adopting the notation G[k − 1] := G(V[k − 1]) for convenience, the PG iterations can
be compactly rewritten as V[k] = proxg/Lf

(G[k − 1]).

A key element to the success of PG algorithms stems from the possibility of efficiently evaluating
the proximal operator (cf. (5)). Specializing to (4), note that (5) decomposes into

A[k] := argmin
A

{

Lf

2
‖A−GA[k − 1]‖2F + λt‖A‖1

}

= Sλt/Lf
(GA[k − 1]) (6)

B[k] := argmin
B

{

‖B−GB[k − 1]‖2F
}

= GB[k − 1] (7)

subject to the constraints in (4) which so far have been left implicit, and G := [GA GB]. Letting
Sµ(M) with (i, j)-th entry given by sign(mij)max(|mij | − µ, 0) denote the soft-thresholding op-
erator, it follows that proxλt‖·‖1/Lf

(·) = Sλt/Lf
(·), e.g., [7, 11]. Because there is no regularization

on the matrix B, the corresponding update (7) boils-down to a simple gradient-descent step.

What remains now is to obtain expressions for the gradient of f(V) with respect to A and B, which
are required to form the matrices GA and GB . To this end, note that by incorporating the constraints
aii = 0 and bij = 0, ∀j 6= i, i = 1, . . .N, one can simplify the expression of f(V) as

f(V) :=
1

2

t
∑

τ=1

N
∑

i=1

βt−τ‖(yτ
i )

⊤ − a⊤−iY
τ
−i − biix

⊤
i ‖2F (8)

where (yτ
i )

⊤ and x⊤
i denote the i-th row of Yτ and X, respectively; while a⊤−i denotes the 1×(N−

1) vector obtained by removing entry i from the i-th row of A, and likewise Yτ
−i is the (N −1)×C

matrix obtained by removing row i from Yτ . It is apparent from (8) that f(V) is separable across

4



the trimmed row vectors a⊤−i, and the diagonal entries bii, i = 1, . . . , N . The sought gradients are

∇a
−i
f(V) = Σt

−ia−i + Ȳt
−ixibii − σ

t
−i (9)

∇biif(V) = a⊤−iȲ
t
−ixi +

1− βt

1− β
bii‖xi‖22 − (ȳτ

i )
⊤xi. (10)

where (ȳt
i)

⊤ denotes the i-th row of Ȳt :=
∑t

τ=1
βt−τYτ , and Ȳt

−i :=
∑t

τ=1
βt−τYτ

−i. Sim-

ilarly, σt
−i :=

∑t
τ=1

βt−τYτ
−iy

τ
i and Σt

−i is obtained by removing the i-th row and i-th column

from Σt :=
∑t

τ=1
βt−τYτ (Yτ )⊤. From (6)-(7) and (9)-(10), the parallel ISTA iterations

∇a
−i
f [k] = Σt

−ia−i[k] + Ȳt
−ixibii[k]− σ

t
−i (11)

∇biif [k] = a⊤−i[k]Ȳ
t
−ixi +

(1− βt)

1− β
bii[k]‖xi‖22 − (ȳt

i)
⊤xi (12)

a−i[k + 1] = Sλt/Lf

(

a−i[k]− (1/Lf)∇a
−i
f [k]

)

(13)

bii[k + 1] = bii[k]− (1/Lf)∇biif [k] (14)

are provably convergent to the globally optimal solution {Ât, B̂t} of (4), as per the general conver-
gence results available for PG methods and ISTA in particular [7, 23].

Computation of the gradients in (11)-(12) requires one matrix-vector mutiplication by Σt
−i and one

by Ȳt
−i, in addition to three vector inner-products, plus a few (negligibly complex) scalar and vector

additions. Both the update of bii[k + 1] as well as the soft-thresholding operation in (13) entail
negligible computational complexity. All in all, the simplicity of the resulting iterations should be
apparent. Per iteration, the actual rows of the adjacency matrix are obtained by zero-padding the
updated a−i[k], namely setting

a⊤i [k] = [a−i,1[k] . . . a−i,i−1[k] 0 a−i,i[k] . . . a−i,N [k]]. (15)

This way, the desired SEM parameter estimates at time t are given by Ât = [a⊤
1
[k], . . . , a⊤N [k]]⊤

and B̂t = diag(b11[k], . . . , bNN [k]), for k large enough so that convergence has been attained.

Solving (4) over the entire time horizon t = 1, . . . , T . To track the dynamically-evolving network
topology, one can go ahead and solve (4) sequentially for each t = 1, . . . , T as data arrive, using
(11)-(14). (The procedure can also be adopted in a batch setting, when all {Yt}Tt=1

are available
in memory.) Because the network is assumed to vary slowly across time, it is convenient to warm-

restart the ISTA iterations, that is, at time t initialize {A[0],B[0]} with the solution {Ât−1, B̂t−1}.
This way, for smooth network variations one expects convergence to be attained after few iterations.

To obtain the new SEM parameter estimates via (11)-(14), it suffices to update (possibly) λt and
the Lipschitz constant Lf , as well as the data-dependent EWMAs Σt, and Ȳt. Interestingly, the

potential growing-memory problem in storing the entire history of data {Yt}Tt=1
can be avoided by

performing the recursive updates

Σt = βΣt−1 +Yt(Yt)⊤, Ȳt = βȲt−1 +Yt. (16)

The complexity in evaluating the Gram matrix Yt(Yt)⊤ dominates the per-iteration computational
cost of the algorithm. To circumvent the need of recomputing the Lipschitz constant per time in-
terval, the step-size 1/Lf in (13)-(14) can be selected by a line search [23]. One choice is the

backtracking step-size rule [4], for which convergence to {Ât, B̂t} can be established as well.

Algorithm 1 summarizes the steps outlined in this section for tracking the dynamic network topol-
ogy, given temporal traces of infection events {Yt}Tt=1

and susceptibilities X. It is termed pseudo
real-time ISTA, since in principle one needs to run multiple (inner) ISTA iterations till convergence
per time interval t = 1, . . . , T . This will in turn incur an associated delay, that may (or may not)
be tolerable depending on the specific network inference problem at hand. Nevertheless, numerical
tests indicate that in practice 5-10 inner iterations suffice for convergence; see also the extended
journal version of this paper [2].

4 Numerical Tests

Performance of Algorithm 1 is assessed in this section via simulations using both synthetically-
generated network data, and real traces of information cascades collected from the web [17].
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Algorithm 1 Pseudo real-time ISTA for topology tracking

Require: {Yt}Tt=1
, X, β.

1: Initialize Â0 = 0N×N , B̂0 = Σ0 = IN , Ȳ0 = 0N×C , λ0.
2: for t = 1, . . . , T do
3: Update λt, Lf and Σt, Ȳt via (16).

4: Initialize A[0] = Ât−1, B[0] = B̂t−1, and set k = 0.
5: while not converged do
6: for i = 1 . . .N (in parallel) do
7: Compute Σt

−i and Ȳt
−i.

8: Form gradients at a−i[k] and bii[k] via (11)-(12).
9: Update a−i[k + 1] via (13).

10: Update bii[k + 1] via (14).
11: Update ai[k + 1] via (15).
12: end for
13: k = k + 1.
14: end while
15: return Ât = A[k], B̂t = B[k].
16: end for
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Figure 1: (Left) Nonsmooth variation of synthetically-generated edge weights of the time-varying
network. (Center) MSE versus time for different edge evolution patterns. (Right) MSE performance
comparison between Algorithm 1 and InfoPath [27].

Synthetic data generation. Numerical tests on synthetic network data are conducted here to eval-
uate the tracking ability of Algorithm 1 1. A random graph of N = 100 nodes was generated
using the Barabási-Albert model [16] allowing each new node to attach itself to at most 2 exist-
ing nodes. The resulting nonzero edge weights of At were allowed to vary over T = 1, 000
intervals under 3 settings: i) i.i.d. Bernoulli(0.5) random variables; ii) random selection of the
edge-evolution pattern uniformly from a set of four smooth functions: aij(t) = 0.5 + 0.5sin(0.1t),
aij(t) = 0.5 + 0.5cos(0.1t), aij(t) = e−0.01t, and aij(t) = 0; and iii) random selection of the
edge-evolution pattern uniformly from a set of four nonsmooth functions shown in Fig. 1 (left).

The number of contagions was set to C = 150, and X was formed with i.i.d. entries uniformly
distributed over [0, 3]. Matrix Bt was set to diag(bt), where bt ∈ R

N is a standard Gaussian
random vector. During time interval t, infection times were generated synthetically as Yt = (IN −
At)−1(BtX+Et), where Et is a standard Gaussian random matrix.

Performance evaluation. With β = 0.98, Algorithm 1 was run after initializing the relevant vari-
ables as described in the algorithm table (cf. Section 3.1), and setting λ0 = 140. In addition,
λt = λ0 for t = 1, . . . , T as discussed in Section 3. Fig. 1 (center) shows the evolution of the
mean-square error (MSE),

∑

i,j(â
t
ij − atij)

2/N2. As expected, the best performance was obtained

when the temporal evolution of edges followed smooth functions. Even though the Bernoulli evo-
lution of edges resulted in the highest MSE, Algorithm 1 still tracked the underlying topology with
reasonable accuracy as depicted in the heat maps of the inferred adjacency matrices; see Fig. 2 (left).

1The Matlab implementation of Algorithm 1 used here can handle networks of several thousand nodes. Still
a smaller network is analyzed since results are still representative of the general behavior, and offers better
visualization of the results in e.g., the adjacency matrices in Fig. 2.
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Figure 2: (Left) Actual adjacency matrix At and corresponding estimate Ât obtained at time inter-
vals t = 450 and t = 900. (Right) Actual adjacency matrix at t = 450 compared with the inferred
adjacency matrices with λt = λ for all t and λ = 0, λ = 75, and λ = 140.

To illustrate the importance of leveraging sparsity of the edge weights, Fig. 2 (right) depicts
heatmaps of the adjacency matrices inferred at t = 450, with λ set to 0, 75, and 140 for all time
intervals. Comparisons with the actual adjacency matrix reveal that increasing λ progressively re-
fines the network estimates by driving erroneously detected nonzero edge weights to 0. Indeed, the
value λ = 140 in this case appears to be just about right, while smaller values markedly overestimate
the support set associated with the edges present in the actual network.

Comparison with [27]. Algorithm 1 is compared here to the method of [27], which does not
explicitly account for external influences and edge sparsity. To this end, the stochastic-gradient
descent algorithm (a.k.a. “InfoPath”) developed in [27] is run using the generated synthetic data with
non-smooth edge variations. Postulating an exponential transmission model, the dynamic network
is tracked by InfoPath by performing MLE of the edge transmission rates (see [27] for details of
the model and the algorithm). Note that the postulated model therein differs from (2), used here
to generate the network data. Fig. 1 (right) depicts the MSE performance of “InfoPath” compared
against ISTA. Apparently, there is an order of magnitude reduction in MSE by explicitly modeling
external sources of influence and leveraging the attribute of sparsity.

Real dataset description. The real data used was collected during a prior study by monitoring
blog posts and news articles for memes (popular textual phrases) appearing within a set of over
3.3 million websites [27]. Traces of information cascades were recorded over a period of one year,
from March 2011 till February 2012; the data is publicly available from [17]. The time when each
website mentioned a specific news item was recorded as a Unix timestamp in hours (i.e., the number
of hours since midnight on January 1, 1970). Specific globally-popular topics during this period
were identified and cascade data for the top 5, 000 websites that mentioned memes associated with
them were retained. The real-data tests that follow focus on the topic “Kim Jong-un”, the current
leader of North Korea whose popularity rose after the death of his father and predecessor, during the
observation period.

Data was first pre-processed and filtered so that only (significant) cascades that propagated to at least
7 websites were retained. This reduced the dataset significantly to the 360 most relevant websites
over which 466 cascades related to “Kim Jong-un” propagated. The observation period was then
split into T = 45 weeks, and each time interval was set to one week. In addition, the observation
time-scale was adjusted to start at the beginning of the earliest cascade.

Matrix Yt was constructed by setting ytic to the time when website i mentioned phrase c if this
occurred during the span of week t. Otherwise ytic was set to a large number, 100tmax, where
tmax denotes the largest timestamp in the dataset. Typically the entries of matrix X capture prior
knowledge about the susceptibility of each node to each contagion. For instance, the entry xic could
denote the online search rank of website i for a search keyword associated with contagion c. In the
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Figure 3: (Left) Visualization of the estimated networks obtained by tracking those information
cascades related to the topic “Kim Jong-un”. (Right) Evolution of total number of inferred edges.

absence of such real data, the entries of X were generated randomly from a uniform distribution
over the interval [0, 0.01].

Experimental results. Algorithm 1 was run on real data with β = 0.9 and λt = 100. Fig. 3 (left)
depicts drawings of the inferred network at t = 10 and t = 40 weeks. Little was known about Kim
Jong-un during the first 10 weeks of the observation period. However, speculation about the possible
successor of the dying North Korean ruler, Kim Jong-il, rose until his death on December 17, 2011
(week 38). He was succeeded by Kim Jong-un on December 30, 2011 (week 40). The network vi-
sualizations show an increasing number of edges over the 45 weeks, illustrating the growing interest
of international news websites and blogs in the new ruler. Unfortunately, the observation horizon
does not go beyond T = 45 weeks. A longer span of data would have been useful to investigate at
what rate did the global news coverage on the topic eventually subside.

Fig. 3 (right) depicts the time evolution of the total number of edges in the inferred dynamic net-
work. Of particular interest are the weeks during which: i) Kim Jong-un was appointed as the vice
chairman of the North Korean military commission; ii) Kim Jong-il died; and iii) Kim Jong-un
became the ruler of North Korea. These events were the topics of many online news articles and
political blogs, an observation that is reinforced by the experimental results shown in the plot.

5 Concluding Summary

A dynamic SEM was proposed in this paper for network topology inference, using timestamp data
for propagation of contagions typically observed in social networks. The model explicitly captures
both topological influences and external sources of information diffusion over the unknown network.
Exploiting the inherent edge sparsity typical of large networks, a computationally-efficient proximal
gradient algorithm with well-appreciated convergence properties was developed to minimize a suit-
able sparsity-regularized exponentially-weighted LS estimator. A number of experiments conducted
on both synthetically-generated as well as real data demonstrated the effectiveness of the proposed
algorithms in tracking dynamic and sparse networks.

The present work opens up multiple directions for exciting follow-up research. Future and ongoing
research includes: i) investigating the conditions for identifiability of sparse and dynamic SEMs,
as well as their statistical consistency properties tied to the selection of λt; ii) generalizing the
SEM using kernels or suitable graph similarity measures to capture nonlinear dependencies and also
enable network topology forecasting; and iii) exploiting the algorithm’s parallel structure to devise
MapReduce/Hadoop implementations scalable to million-node graphs.
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