
Joint Learning of Modular Structures
from Multiple Data Types

Elham Azizi
Bioinformatics Program, Department of Biomedical Engineering

Boston University
Boston, MA 02215
elham@bu.edu

Abstract

A commonly used technique for understanding underlying dependency structures
among objects is module networks by Segal et al., which assumes a shared con-
ditional probability distribution for objects within one module. However, learning
structures from object variables alone can lead to spurious dependencies and to
avoid over-fitting, imposing structural assumptions may be required. We propose
an extended model inspired by module networks and stochastic blockmodels for
joint learning of structures from observed object variables (e.g. gene expression
in gene regulatory networks) and relational data among objects (e.g. protein-DNA
interactions). By integrating complementary data types, we avoid additional struc-
tural assumptions. We illustrate theoretical and practical significance of the model
and developed a reversible-jump MCMC learning procedure for learning modules
and model parameters. We demonstrate the accuracy and scalability of our method
for synthetic and genomic datasets.

1 Introduction

There is considerable interest in modeling dependencies between a large number of objects based
on observations in a variety of applications. Examples include reconstructing regulatory relation-
ships from gene expression data in biological networks or identifying influence from purchasing
patterns in social networks. Common approaches for learning dependencies include using Bayesian
networks and factor analysis [13].It can be beneficial to identify groups or modules within these
interaction networks. Modular behavior can be natural and interpretable in some domains such as
gene regulatory networks, which consist of partitions of genes acting in concert under certain envi-
ronmental cues [19].In other domains, e.g. in social networks, communities with similar interests
or affiliations may have similar behavior in communicating messages in response to news-outbreaks
or similar purchases in response to marketing advertisements [14]. Computational advantages of
imposing a modular structure include parameter-sharing of objects in a module. This deals with
under-determination (un-identifiability) of the problem in complex networks, improves statistical
robustness and avoids over-fitting to individual variables, with the assumption of shared parents in
the network.

The work of module networks [21, 22] has been widely used to find dependency structures (e.g.
gene regulation) between groups of objects, denoted as modules, based on measurements of profiles
of measured variables pertaining to objects (e.g. gene expression). However, inferring dependencies
from object variables alone can lead to false positive predictions [17]. For example, a link might be
inferred between two unrelated objects due to correlated behavior. To avoid over-fitting, additional
structural assumptions such as maximum number of modules or maximum number of parents per
module may be required for utilizing this method, which present additional inductive bias. A deter-
ministic optimization algorithm is used by Segal et al. to search simultaneously for a partition of
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objects into modules and a dependency structures for each module, which involves multiple local
optima [12]. Furthermore, searching through the entire set of candidate parents for each module,
introduces arbitrary selections among correlated parents or learns too many parents and solutions
are sensitive to selection of maximum number of modules and parents.

Identifying modules or blocks in networks using interaction (relational) data has been well-studied
in works of stochastic blockmodels [23, 1, 2] in the field of social network modeling [4]. In this
paper, we propose an integrated probabilistic model inspired by module networks and stochastic
blockmodels, to learn dependency structures from observations of individual objects and relational
information between objects. In the biological application, we can integrate gene expression data
with protein-DNA interaction data obtained from ChIP-ChIP or ChIP-Seq technologies, which have
shown to be informative of regulation [9, 16]. Thus, we assign those Transcription Factors (TFs)
that have both physical interaction with genes and predictive power in explaining their expression,
as their regulators. Examples in social networks can include integrating number of posts on face-
book (as object variables) with number of messages sent between friends (relational data) to identify
structures of influence. Incorporating complementary relational information, if available, can im-
prove accuracy by avoiding false assignments of indirect and correlated objects as parents [7]. Also,
it enhances computational tractability and scalability of the method by restricting the space of pos-
sible dependency structures.

Our model captures two types of global and condition-specific relationships between observed vari-
ables for objects and their parents. For estimation of parameters, we use a Gibbs sampler instead
of the optimization method employed by Segal et al. to overcome some of the problems regarding
multi-modality of model likelihood. We also solve the problem of sensitivity to choice of maximum
number of modules using a reversible-jump MCMC method which infers the number of modules and
regulators based on data. The probabilistic framework infers posterior distributions of assignments
of genes to modules, and thus does not face restrictions of non-overlapping modules [2].

1.1 Related Literature

In terms of joint learning, other works have also proposed integrating different data types, mostly
as prior information, for improvement in learning structures [24, 5], whereas our model considers
relational interactions as data observed from the underlying structure. Also, here we utilize data in-
tegration to identify structures between modules (groups of objects). In terms of improving module
networks, although the framework of our model is similar, our model for observed variables has dif-
ferences in how object variables are related to their parents, giving more interpretable dependencies.
Moreover, the integration of relational data is novel. Regarding the learning procedure, prior work
has been done on improving module network inference by using a Gibbs sampling approach [12].
We take a step further and use a reversible-jump MCMC procedure to learn the number of modules
and parents from data as well as parameter posteriors.

2 Model
In the framework of module networks, dependencies are learned from profiles of measured variables
(e.g. gene expressions) for each object (e.g. gene), as random variables {X1, ..., XN}. The idea is
that a group of objects with common parents (e.g. co-regulated genes) are represented as a module
and have similar probability distributions for their variables conditioned on their shared parents (reg-
ulators). A module assignment function A maps objects {1, ..., N} to K non-overlapping modules.
A dependency structure function S assigns a set of parents Paj from {1, ..., R} known candidate
parents/regulators, which are a subset of the N objects, to module Mj (figure 1.A). In the case of
multiple parents for a module, combinatorial interactions [6] can occur, represented as a regression
tree in which clusters of samples (or conditions) are assigned to one context. Clustering samples or
conditions in addition to variables can guide experimental design for validation of regulations [7].

2.1 Modeling Object Variables

We model all observed variables for objects {1, ..., N} in each condition or sample c ∈ 1, ..., C with
a multivariate normal represented as Xc ∼ N (µc,Σ), where Xc is a N × 1 vector, with N being
the total number of objects. The covariance and mean capture two different aspects of the model
regarding regulatory wiring and context-specific programs, respectively, as described below.

We define the covariance Σ to be independent of conditions and representing the strength of potential
effects of one variable upon another, if the former is assigned as a parent of the module containing the
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Figure 1: (A) Example module network (B) A combinatorial regulatory program is inferred for each
module; example shown for M4.

latter. In the example of gene expressions, Σ may represent the affinity of a Transcription-Factor pro-
tein to a target gene promoter. The modular dependencies between variables imposes a structure on
Σ. To construct this structure, we relate object variables to their parents through a regression Xc =
WXc + ε where ε = N (mc, I). W is a N ×N sparse matrix in which element Wnr is nonzero if
variable r is assigned as a parent of the module containing variable n. Here we assume Wnr has the
same value for ∀n ∈Mk,∀r ∈ Pak, which leads to identifiability of model (as explained in section
3. Then, assuming I−W is invertible, Xc = (I−W )−1ε which implies Σ = (I−W )−T (I−W )−1.
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Figure 2: Graphical representation of
model

Therefore, we impose the modular dependency structure
over Σ through W , which is easier to interpret based on
A,S assignments.

We define variable means µc, based on parents as de-
scribed below. First, based on the modular structure
of genes, we can partition the mean vector as µc =
[µ1
c ...µ

K
c ]T , where each µkc for k = 1, ...,K is a 1×Nk

vector with Nk equal to the number of objects in mod-
ule k. In modules where there is more than one parent
assigned, different states of parents, creating a context,
can lead to different mechanisms of combinatorial regu-
lation. The binary state of parent r ∈ Pak is defined
by comparing its mean to a split-point zrk, corresponding
to a mixture coefficient for that state γrLo or γrHi, as: γrc = γrLoH(zrk − µrc) + γrHiH(µrc − zrk),
where H(·) is a unit step function. The combination of different states are represented as a deci-
sion tree for each module k (figure 1.B). Thus, we represent a context-specific program as a unique
dependency of variable means on parents, such that µkc for module k is a linear mixture of means
for parents of that module: µkc =

∑Rk

r=1 γ
r
cµ

Pak
c where Rk is the number of parents Pak and

γrc are similar for all conditions c occurring in the same context. Thus, in general we can write
µc = Γcµ

R
c , where µRc contains the means of regulators 1, ..., R in condition c. The N × R ma-

trix Γc has identical rows for all variables in one module based on the assignment functions A,S.
The graphical model is summarized in figure 2. Thus the model for object variables would be:
Xc ∼ N (Γcµ

R
c , (I − W )−T (I − W )−1) Given independent conditions, the probability of data

X = [X1, ...,XC] for C conditions given parameters can be written as multiplication of multivari-
ate normal distributions for each condition: P (X|A,S,Θ,Σ, ZS) =

∏C
c=1 P (Xc|A,S, θc,Σ, ZS),

where Θ = {θ1, ..., θC} denotes the set of condition-specific parameters θc = {µRc ,Γc} for
c = 1, ..., C and ZS denoted the set of parent split-points for all modules. Then for each condi-
tion we have: P (Xc|A,S, θc,Σ, ZS) = 1

(2π)N/2|Σ1/2|exp(−
1
2 (Xc − µc)

TΣ−1(Xc − µc)).

Hence, this model provides interpretations for two types of influences of parents. By relating the
distribution mean for variables in each module and in each condition to means of their assigned par-
ents (figure 1.B), we model condition-specific effects of parents. Based on the states of regulators in
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different contexts (partitions of conditions), this leads to a bias or large signal variations in observed
variables. Whereas, small signal changes (linear term) are modeled through the covariance matrix Σ
which is independent of condition and is only affected by the global wiring imposed by dependency
structures.

2.2 Modeling Relational Data

Relational data between a parent r ∈ {1, ..., R} and object n ∈ Mk, when the r is assigned as a
parent of the module r ∈ Pak is defined as a directed link Br→n where

P (Br∈Pak→n∈Mk
|A,S, πrk) ∼ Bernoulli(πrk) (1)

The parameter πrk defines the probability of parent r interacting (and influencing) moduleMk (figure
2). In the gene regulation example, an interaction between a Transcription Factor protein binding
to a motif sequence, upstream of target genes, which is common in all genes of a module can be
observed using ChIP-ChIP or ChIP-Seq technologies. Therefore, directed interactions from parents
to all objects in a module would be P (BMk

|A,S,πk) =
∏
r∈Pak

∏
n∈Mk

P (Br→n|A,S, πrk),
where πk is the vector of πrk for all r ∈ Pak and for all objects we have:

P (B|A, S,π) =

K∏
k=1

∏
r∈Pak

∏
n∈Mk

P (Br→n|A,S, πrk) (2)

=

K∏
k=1

∏
r∈Pak

(πrk)srk(1− πrk)|Mk|−srk
∏

r′ 6∈Pak

(π0)sr′k(1− π0)|Mk|−sr′k (3)

with π = {π1, ...,πK} and srk =
∑
n∈Mk

(Br→n) is the sufficient statistic for the relational data
model and |Mk| is the number of objects in module k and π0 is the probability that any non-parent
can have interaction with a module. In gene regulatory networks, π0 can be interpreted as basal level
of physical binding that may not necessarily effect gene transcription and thus regulate a gene. In the
context of stochastic blockmodels, the group of parents assigned to each module can be considered
as an individual block and thus our model can represented as overlapping blocks of objects.

The likelihood of the joint modelM = {A,S,Θ,Σ, ZS ,π} given the integration of variable and
interaction data is: P (X,B|M) = P (X|A,S,Θ,Σ, ZS)P (B|A,S,π). With priors for parameters
M the posterior likelihood is: P (M|X,B) ∝ P (M)P (X,B|M).

3 Theory: Identifiability of Joint Model

Our method uses relational data to avoid extra structural assumptions. In this section we formalize
this idea through the identifiability of the proposed model. This property is important for inter-
pretability of learned modules. Module networks and generally multivariate normal models for
object variables can be un-identifiable, and imposing extra structural assumptions is necessary to
overcome this. Here, we illustrate that the joint learning proposed in this paper resolves the un-
identifiability issue. First, we show that modeling object variable alone is identifiable only under
very specific conditions. Then, we will restate some results from [15] on the identifiability of over-
lapping block models. Using this result we show the identifiability of the joint model under some
reasonable conditions.
Lemma 1. Variable data Model: For the model of observed variables X, if we have:
P (X|{A,S}′,Θ′,Σ′) = P (X|{A,S},Θ,Σ)

1. Then, we can conclude: µ′ = µ and Σ′ = Σ.
2. If we further assume {A,S} = {A,S}′ and that each module has at least two non parent

objects and
∑
k |Pak| < N and the covariance matrix Σ is invertible, we can conclude:

Θ = Θ′, W = W ′ (Proof sketch in Appendix).

The above lemma provides identifiability for the case where the structure {A,S} is assumed to be
known. However, in the case that we don’t have the structure, the parameterizations of multivariate
normal (µ and Σ) can be written in multiple ways in terms of Θ and {A,S}. This is due to existence
of multiple decompositions for the covariance matrix. In following, we will use a theorem for
identifiability of overlapping block models from [15] which is an extension of the results in [3]. The
results provide conditions for overlapping stochastic block models to be identifiable.
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Theorem 1. Relational data Model: If we have P (B|{A, S},π) = P (B|{A, S}′,π′), then:
{A, S} = {A, S}′ with a permutation and π = π′ (except in a set of parameters which have a null
Lebesgue measure) (Proof sketch in Appendix).

Using the above Theorem and Lemma 1 we can have the following Theorem for the identifiability
of the joint model.

Theorem 2. Identifiability of the joint model: If we have: P (B|{A, S},π) = P (B|{A, S}′,π′)
and P (X|{A,S}′,Θ′,Σ′) = P (X|{A,S},Θ,Σ) with assuming that each module has at least two
non-parent objects and

∑
k |Pak| < N and the covariance matrix Σ is invertible, then: {A, S} =

{A, S}′ with a permutation, π = π′ , Θ = Θ′ and W = W ′ (except in a set of parameters which
have a null Lebesgue measure) (Proof sketch in Appendix).

This Theorem, states the theoretical effect of joint modeling on identifiability of modular structures,
given that commonly the sum of number of parents are less than the number of objects (as in gene
regulatory networks).

4 Reversible Jump MCMC for Parameter Estimation

We use a Gibbs sampler to obtain the joint posterior distributionP (M|X,B) and design Metropolis-
Hastings samplers for each of the parameters Θ,Σ,π conditioned on the other parameters and data
X,B. We use reversible-jump MCMC [11] for sampling from conditional distributions of the as-
signment and structure parameters A,S.

4.1 Learning Parameters Θ,Σ, ZS ,π

To update the means, we only need to sample one value for means of regulators assigned to
the same module. This set of distint regulator means µR

c are sampled with a normal proposal
Qµ(µR(i+1)

c |µR(i)

c ) ∼ N (µR(i)

c , I). The means of all variables µ
(i+1)
c and Θ(i+1) are then com-

puted accordingly. Similarly we sample the parameters γrc , z
r
k and πrk, corresponding to parent

r ∈ Pak of module k, from normal distributions. To update covariance Σ, each distinct element
of the regression matrix W corresponding to a module k, denoted as wk, is updated also through a
normal proposal. Due the symmetric proposal distribution, the proposal is accepted with probability
Pmh = min{1, P (M(i+1)|X,B)

P (M(i)|X,B)
} whereM(i) = {A,S,Θ,Σ, ZSπ}(i).

4.2 Learning Module Assignment A
Learning the assignment of each object to a module, involves learning the number of modules.
Changing the number of modules however, changes dimensions of the parameter space and there-
fore, densities will not be comparable. Thus, to sample from P (A|S,Θ,Σ, , ZSπ,X,B), we use
the Reversible-Jump MCMC method [11], an extension of the Metropolis-Hastings algorithm that
allows moves between models with different dimensionality. In each proposal, we consider three
close move schemes on assignment function A : increasing or decreasing the number of modules
by one, or not changing the total number. For increasing the number of modules, a random object is
moved to a new module and for decreasing the number, two modules are merged. In the third case,
an object is randomly moved from one module to another module. We design transformation of
parameters using Green’s method to extend model dimensions (Algorithm 1) The acceptance ratio

for the split move is Psplit = min{1, P (M(i+1)|X,B)
P (M(i)|X,B)

×
1

K+1
1
K

× p+1

p−1
× 1
p(u)p(u′) ×J(i)→(i+1)} where

J(i)→(i+1) is the Jacobian of the transformation from the previous state to the proposed state, and the

acceptance ratio for the merge move is Pmerge = min{1, P (M(i+1)|X,B)
P (M(i)|X,B)

×
1

K−1
1
K

× p−1

p+1
×J(i)→(i+1)}.

4.3 Learning Dependency Structure S
To sample from the dependency structure (assignment of parents) P (S|A,Θ,Σ, ZSπ,X,B), we
also implement a Reversible-Jump method, as the number of parents for each module needs to be
determined. Two proposal moves are considered for S which include increasing or decreasing the
number of parents for each module, by one (Algorithm 2). In the case of addition of a parent to
a module, we propose mixture coefficients γ and interaction parameters π for the added regulator,
based on its learned values in another module, where it has already been assigned as a parent, with an
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Algorithm 1 RJMCMC to update A
1: Find K: number of distinct modules in A(i)

2: Propose move ν from {−1, 0,+1} with probabili-
ties p−1, p0, p+1, respectively.

3: switch (ν)
4: case +1:
5: Select random object n ∈Mk uniformly
6: Assign n to new module MK+1

7: Assign parents PaK+1 = Pak
8: Draw vectors u,u′ ∼ N (0, 1)
9: Propose parameters:

10: π
PaK+1

k1 = πPakk − u, πPakk2 = πPakk + u

11: γ
PaK+1

k1 = γPakk − u′, γPakk2 = γPakk + u′

12: Compute {Θ,Σ,π}
13: Accept A(i+1) with Psplit
14: case −1:
15: Select two random modules Mk1 and Mk2
16: Merge into one module Mk1
17: Assign parents Pak1 = Pak1 ∪ Pak2
18: for ∀r ∈ Pak1 ∩ Pak2 do
19: Propose πrk1 = (πrk1 + πrk2)/2
20: and γrk1 = (γrk1 + γrk2)/2
21: end for
22: Compute {Θ,Σ,π}
23: Accept A(i+1) with Pmerge
24: case 0:
25: Select two random modules Mk1 , Mk2
26: Move a random object n from Mk1 to Mk2
27: Compute {Θ,Σ,π}
28: Accept A(i+1)(n) = k2 with Pmh
29: end switch

Algorithm 2 RJMCMC to update S
1: Set pS
2: for module k = 1 to K do
3: Propose ν from {+1,−1} with pS
4: switch (ν)
5: case +1:
6: Add a random parent r ∈ 1, ..., R

to Pak
7: Draw u,u′ ∼ Unif(0, 1)
8: if r is also a parent of another

module Pak′ then
9: Propose πrk = πrk′ + u, γrkc =

γ
rk′
c + u′(c) for all c ∈
{1, ..., C}

10: else
11: Propose πrk = u,γrkc = u′(c)

for all c
12: end if
13: Compute {Θ,Σ,π}
14: Accept S(i+1) with Padd
15: case −1:
16: Remove a random parent r from

Pak
17: Compute {Θ,Σ,π}
18: Accept S(i+1) with Prem
19: end switch
20: end for

additional noise term. The acceptance ratio for the add proposal is Padd = min{1, P (M(i+1)|X,B)
P (M(i)|X,B)

×
1

Rk+1
1

R−Rk

× pS
1−pS ×

1
p(u)p(u′) × J(i)→(i+1)} where Rk is the number of parents for module k in the

i−th state, and the acceptance ratio for the remove proposal is Prem = min{1, P (M(i+1)|X,B)
P (M(i)|X,B)

×
1

R−Rk+1
1

Rk

× 1−pS
pS
× J(i)→(i+1)}.

5 Results

5.1 Synthetic Data
We first tested our method on synthetic variable and interaction data generated from the proposed
model. A dataset was generated forN = 200 objects inK = 4 modules with C = 50 conditions for
each object variable. Parents were assigned from a total of R = 10 number of candidate regulators.
Parameters π, γ and W were chosen randomly, preserving parameter sharing of modules. The
inference procedure was run for 20,000 samples. Exponential prior distributions were used for
number of parents assigned to each module, to avoid over-fitting. Figure 3 shows the autocorrelation
for samples expression mean µnc for an example gene. The samples become independent after a
lag and thus we removed the first 10, 000 iterations as burn-in period. Samples from posteriors,
including the number of modules K, exhibit standard MCMC movements around the actual value
(actual K = 4). We also calculated the true positive rate and false positive rates based on actual
regulatory links. We repeated the estimation of true positive and false positive rates for 100 random
datasets with the same size as mentioned and computed the average ROC for the integrative model
(figure 3). As comparison, for each generated dataset, we also tested the sub-model for variable
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data (excluding the model for interaction data) to infer regulatory links (figure 3). We performed
bootstrapping on sub-samples with size 1000 to compute variance of AUC (area under curve) and
paired t-tests confirmed improved performance of integrative model compared to the expression
sub-model (p < 0.05).

The parameter sharing property in modular structures allows parallel sampling of parameterswk and
γr(k), z

r
k,πrk for each module k, in each iteration and in different conditions. We used Matlab-MPI

for this implementation. It takes an average of 36±8 seconds to generate 100 samples forN = 200,
C = 50, R = 10 on an i5 3.30GHz Intel(R). For further enhancement, module assignments were
initialized by k-means clustering of variables.

5.2 Mycobacterium tuberculosis Gene Regulatory Network
We applied our method to identify regulatory modules for Mycobacterium tuberculosis (MTB).
MTB is the causative agent of the tuberulosis disease in humans and the mechanisms underlying its
ability to persist inside the host are only partially known [8]. We used interaction data identified
from ChIP-Seq of 50 MTB transcription factors and expression data for different induction levels of
the same factors in 87 experiments, from a recent study by Galagan et al. [9]. We tested our method
on 3072 MTB genes which had binding from at least one of the factors and performed 100,000
number of iterations on the combination of the two datasets. Out of the total genes, 815 could be
assigned as a member of a module with high confidence (posterior probability of assignment> 0.9).

Figure 4(left) shows one of the identified modules, with an interesting regulatory program involving
two MTB hypoxic adaptation regulators: Rv3133c (DosR) and Rv0081. Adaptation of MTB to
hypoxia, i.e. oxygen deprivation is known to be an important factor for its persistense [8, 9]. DosR
is well known to activate the initial response of MTB in hypoxic coniditions [18], and Rv0081 has
recently been identified as a major hub in the MTB ChIP-Seq network [9]. The inferred regulatory
program for this module predicts induction of the module in conditions where both of these factors
are expressed (context (c) in figure 4). Rv0081 itself is also regulated by DosR, which creates a feed-
forward loop structure driving this module (see figure 4). The genes assigned to this module include
regulators known to be induced in later time points (after 24 hours) in hypoxia and this prediction
illustrates the significance of Rv0081 in mediating the enduring response. Figure 4 (right) shows
the global regulatory structures between the largest identified modules highlighting major MTB
regulators. For modules with a single regulator, activation or repression signs were inferred based
on estimated coefficients γr. We also found functional enrichment of largest modules using Gene
Ontology (GO) terms and COG category annotations from the TBDB database [10, 20] in table 1.

As comparison, we applied the module networks method on the above expression data. We set the
maxmimum number of modules to 10 and candidate pool of regulators to the 50 ChIPped regulators
only. The method identified 2401 TF-gene interactions, out of which only 215 (8.9%) had ChIP
evidence for binding to upstream or genic regions of genes and only 18.53% of genes had binding
from at least one of the regulators assigned to their module. For a fair comparison of models without
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ID Module
Regulators

Enriched COG Catergories (p < 0.05) Enriched GO terms (p < 0.05)

A Rv0081
(Repressor)

Energy production and conversion; Translation, riboso-
mal structure and biogenesis; Amino acid transport and
metabolism; Replication, recombination and repair

NADH dehydrogenase activity; extracel-
lular region; growth; nitrate reductase
activity; plasma membrane; cell wall

B Rv0081
(Activator)

Cell wall/membrane/envelope biogenesis; Secondary
metabolites biosynthesis, Carbohydrate transport and
metabolism;

sulfolipid biosynthetic process; growth

C DosR,
Rv0081

Inorganic ion transport and metabolism; Transcription growth

D DosR Posttranslational modification, protein turnover, chaper-
ones; Signal transduction mechanisms

cellular response to nitrosative stress

E Rv3249 Carbohydrate transport and metabolism; Coenzyme
transport and metabolism; Translation, ribosomal
structure and biogenesis; Amino acid transport and
metabolism

plasma membrane; extracellular region

F KstR Secondary metabolites biosynthesis, transport and
catabolism; Lipid transport and metabolism

cytosol

Table 1: Enrichment of functional annotations for largest identified modules in MTB network

the effect of interaction data, we also applied our model for expression data only. As a result, 4264
interactions were identified, out of which 739 (17.33%) had binding evidence, and 32.76% of genes
had binding from at least one of the regulators assigned to their module. Thus, module networks and
in general models based on co-expression data infer mostly indirect (or correlated) regulators and
these results clarify the significance of using interaction data and tools for integrating interaction
data with expression data (or other complementary data types), for inference of direct regulatory
relationships.

6 Conclusion

We proposed a model for learning dependency structures between modules of objects, by joint learn-
ing from relational data and object variable data. This integration improves accuracy and avoids
over-fitting. We presented a reversible-jump inference procedure for learning model posterior which
can be interpreted based on context. Our results showed high performance on both synthetic and
genetic data. The framework allows integration of other data types, including expert knowledge by
imposing prior distributions.
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