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ABSTRACT
Web spam detection is an important problem in Web search.

Since Web spam pages tend to have a lot of spurious links, many

Web spam detection algorithms exploit the hyperlink structure be-

tween the Web pages to detect the spam pages. Anti-TrustRank

algorithm is a well-known link-based spam detection algorithm

which follows the principle that spam pages are likely to be refer-

enced by other spam pages. Since a real-world Web graph involves

tens of billions of nodes, it is crucial to develop work-efficient Web

spam detection algorithms. In this paper, we develop asynchro-

nous Anti-TrustRank algorithms which allow us to significantly

reduce the number of arithmetic operations compared to the tradi-

tional synchronous Anti-TrustRank algorithm without degrading

the performance in detecting Web spams. We theoretically prove

the convergence of the asynchronous Anti-TrustRank algorithms,

and conduct experiments on a real-world Web graph indexed by

NAVER which is the most popular search engine in Korea.
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1 INTRODUCTION
Web spam detection is one of the most important tasks in Web

search. Given a Web graph with a set of nodes and edges where a

node indicates a Web document and an edge indicates a hyperlink

between documents, search engines rank the documents based on

the link structure, e.g., [3], [9], and [11]. Web spams refer to the

Web documents that have a lot of spurious links (e.g., creating link

farms [21]) to mislead the search engines [7]. Therefore, it is critical

for a search engine to correctly detect the Web spams to provide

reliable search results.
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A number of Web spam detection methods have been proposed

over the years including link-based spam detection and content-

based spam detection [17]. In particular, link analysis has been

considered to be an important feature of a good spam detection

method [1]. For example, [6] measures the impact of link spamming

on a page’s rank, and [4] provides a way to detect nepotistic links.

TrustRank [7] is one of the well-known link-based spam detec-

tion methods. The main idea of the TrustRank method is that good

pages tend to point to other good pages, which leads to comput-

ing TrustRank scores of the nodes. Similarly, the Anti-TrustRank

algorithm [10] has also been proposed with an intuition that spam

pages tend to be pointed by other spam pages. It has been shown

that Anti-TrustRank is able to achieve a higher precision than the

TrustRank method. A method of propagating both trust and dis-

trust values also has been considered [22]. Indeed, computing the

TrustRank or Anti-TrustRank scores can be interpreted as comput-

ing a personalized PageRank [8] (also called as a biased PageRank)

on theWeb graph with a set of carefully selected seeds. A number of

variations of PageRank have been proposed to accelerate PageRank

computations including [2], [13], [23], and [5]. In particular, [20]

has proposed a multi-threaded data-driven PageRank algorithm.

Since a Web graph usually involves tens of billions of nodes,

it is crucial to develop a work-efficient algorithm for Web spam

detection. In this paper, we design asynchronous Anti-TrustRank

algorithms which are able to significantly reduce the number of

arithmetic operations compared to the traditional synchronous

Anti-TrustRank method while achieving the same accuracy. We

theoretically prove the convergence of the asynchronous Anti-

TrustRankmethods. On a real-worldWeb graph provided byNAVER

corporation which is the largest search engine company in Korea,

we empirically observe that our residual-based asynchronous Anti-

TrustRank algorithm allows us to compute the Anti-TrustRank

scores with only 10% of the arithmetic operations required for

the synchronous Anti-TrustRank method without degrading the

performance in detecting Web spams.

2 ANTI-TRUSTRANK ALGORITHM
The principle behind the Anti-TrustRank [10] algorithm is that

spam pages are likely to be referred by other spam pages. Given

a graph G = (V, E), the Anti-TrustRank method first selects a set

of seeds which consists of manually examined spam documents.

An Anti-TrustRank (ATR) score is assigned to each document such

that a document with a high ATR score is considered as a spam
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Algorithm 1: Synchronous ATR
Input: G′ = (V, E′), S, α , ϵ
Output: ATR vector x
1: Initialize x = (1 − α )es
2: while true do
3: for i ∈ V do
4: if i ∈ S then
5: xnewi = α

∑
j∈Qi

x j
|Tj |
+ (1 − α )

6: else
7: xnewi = α

∑
j∈Qi

x j
|Tj |

8: end if
9: δi = |xnewi − xi |
10: end for
11: x = xnew
12: if ∥δ ∥∞ < ϵ then
13: break;

14: end if
15: end while
16: x =

x
∥x∥1

Algorithm 2: Asynchronous ATR
Input: G′ = (V, E′), S, α , ϵ
Output: ATR vector x
1: Initialize x = (1 − α )es
2: for i ∈ V do
3: worklist.push(i)
4: end for
5: while !worklist.isEmpty do
6: i = worklist.pop()
7: if i ∈ S then
8: xnewi = α

∑
j∈Qi

x j
|Tj |
+ (1 − α )

9: else
10: xnewi = α

∑
j∈Qi

x j
|Tj |

11: end if
12: if |xnewi − xi | ≥ ϵ then
13: xi = xnewi
14: for j ∈ Ti do
15: if j is not in worklist then
16: worklist.push(j)
17: end if
18: end for
19: end if
20: end while
21: x =

x
∥x∥1

Algorithm 3: Residual-based Asynchronous ATR
Input: G′ = (V, E′), S, α , ϵ
Output: ATR vector x
1: Initialize x = (1 − α )es
2: Initialize r = (1 − α )αP T es
3: for i ∈ V do
4: worklist.push(i)
5: end for
6: while !worklist.isEmpty do
7: i = worklist.pop()
8: xnewi = xi + ri
9: for j ∈ Ti do
10: roldj = r j

11: r j = r j +
riα
|Ti |

12: if r j ≥ ϵ and roldj < ϵ then
13: worklist.push(j)
14: end if
15: end for
16: ri = 0

17: end while
18: x =

x
∥x∥1

document. The ATR scores of the seed spam documents are initial-

ized to be one whereas the ATR scores of the rest of the nodes are

initialized to be zero. From the seeds, the ATR scores are propagated

to incoming neighbors of the nodes so that the documents having

links to the spam documents end up with having high ATR scores.

2.1 Selecting Seeds
It is important to select good seeds in the Anti-TrustRank al-

gorithm since the ATR scores are propagated from the selected

seeds. One way to select good seed nodes is to consider PageRank

scores [7], [10] because nodes with high PageRank scores are likely

to be highly ranked by search engines, and it is critical to filter

out spam documents which otherwise can be potentially exposed

to users. Thus, we compute PageRank scores of the nodes, and

select top-ranked nodes. Let L denote the set of selected nodes.

Then, human experts classify the nodes in L into two classes: spam

documents or normal documents. Let S denote the set of spam

documents among the nodes in L. Note that S is a subset of L.

2.2 Synchronous Anti-TrustRank
Themechanism of how to compute the ATR scores is very similar

to that of the personalized PageRank computation [8] [14]. The

difference is that the ATR scores are propagated backward along

with incoming links. Let G ′ = (V, E ′) denote a graph with reverse

edges, i.e., if an edge {i, j} ∈ E then {j, i} ∈ E ′
. Also, let A denote

the adjacency matrix of G ′
. Then, computing ATR is identical to

computing the personalized PageRank on A with the personalized

vector such that the positions of the seed spam documents (i.e., the

nodes in S) have ones and other values are zeros. Let Qi denote the

set of incoming neighbors of node i on G ′
, and Ti denote the set of

outgoing neighbors of node i on G ′
. Let x denote a vector of the

ATR scores, and es denote a vector with ones for the positions of

the seed spam documents and zeros for other positions. Also, let α
denote the damping factor (we use α = 0.85 throughout the paper),

and ϵ denote the tolerance. We assume that there is no self-loop in

the graph, i.e., the diagonal elements ofA are all zeros. Algorithm 1

is a synchronous Anti-TrustRank algorithm where the ATR scores

are updated only after all the nodes re-compute the ATR scores.

3 ASYNCHRONOUS ANTI-TRUSTRANK
We design asynchronous Anti-TrustRank algorithms by consid-

ering the Gauss-Seidel method. Instead of updating the ATR scores

of all the nodes at every iteration, we maintain a worklist which
contains a set of nodes whose ATR scores need to be updated. Ini-

tially, the worklist contains the entire vertices, and whenever we

process a node from the worklist, we add the outgoing neighbors

of the processed node (on G ′
) to the worklist. Indeed, for the

global PageRank problem [3], a scalable data-driven PageRank algo-

rithm [20] has been considered in a multi-threaded programming

environment [16]. We extend this idea to the ATR computation

which is shown in Algorithm 2.

3.1 Convergence of Asynchronous ATR
By extending the analysis of [15], we show the convergence of

Algorithm 2.

Theorem 1. In Algorithm 2, when x (k)i is updated to x (k+1)i , the
total residual is decreased at least by ri (1 − α).

Proof. The ATR vector x is computed as follows:

x = αPT x + (1 − α)es
where P is defined as P ≡ D−1A (D is the degree diagonal matrix)

and es is the personalized vector. This is the linear system of

(I − αPT )x = (1 − α)es
and the residual is defined to be

r = (1 − α)es − (I − αPT )x = αPT x + (1 − α)es − x.

Let x
(k )
i denote the k-th update of xi . Since we initialize x as

x = (1 − α)es , the initial residual r(0) can be written as follows:

r(0) = (1 − α)es − (I − αPT )(1 − α)es = (1 − α)αPT es ≥ 0. (1)

For each node i from the worklist, we update its ATR value as

follows:
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[Case 1] i ∈ S

x
(k+1)
i = (1 − α) + α

∑
j ∈Qi

x
(k )
j

|Tj |
,

x
(k+1)
i = x

(k )
i + (1 − α) − x

(k )
i + α[PT x(k )]i︸                              ︷︷                              ︸
r (k )i

= x
(k)
i + r

(k )
i .

[Case 2] i < S

x
(k+1)
i = α

∑
j ∈Qi

x
(k )
j

|Tj |
,

x
(k+1)
i = x

(k )
i − x

(k )
i + α[PT x(k )]i︸                ︷︷                ︸

r (k )i

= x
(k )
i + r

(k )
i .

Thus, we see that

x
(k+1)
i = x

(k )
i + r

(k )
i . (2)

Also, after such an update, we can show that r(k+1) ≥ 0. Let

γ = r(k)i .

x(k+1) = x(k) + γei
r(k+1) = (1 − α)es − (I − αPT )x(k+1)

r(k+1) = (1 − α)es − (I − αPT )(x(k ) + γei )
r(k+1) = r(k) − γ (I − αPT )ei (3)

Note that the i-th component of r(k+1) goes to zero, and we

only add positive values to the other components. Since the initial

residual is positive shown in (1), we can see that r(k+1) ≥ 0.

Now, by multiplying eT in (3), we get:

eT r(k+1) =

{
eT r(k) − r

(k )
i (1 − α) : Ti , ∅

eT r(k) − r
(k )
i : Ti = ∅

This implies that when a node i’s ATR value is updated, its residual

ri becomes zero, and αri/|Ti | is added to each of its outgoing neigh-

bors’ residuals (0 < α < 1). Thus, any step decreases the residual

by at least γ (1 − α), and moves x closer to the solution. □

Theorem 2. Algorithm 2 guarantees ∥r∥∞ < ϵ when it is con-
verged.

Proof. Whenever a node’s ATR is updated, the residual of each

of its outgoing neighbors is increased. Thus, if we ever change a

node’s ATR, we need to add its outgoing neighbors to the worklist
to verify that their residual is sufficiently small. This is what Algo-

rithm 2 does. □

3.2 Residual-based Asynchronous ATR
Based on the analysis in Theorem 1, we note that the new ATR

score of a node can be updated by just adding its current ATR score

and its current residual by (2). To update the ATR scores in this

way, we need to explicitly maintain the residual value for each node.

Note that the residual of a node can be updated by (3). We design the

residual-based asynchronous ATR algorithm shown in Algorithm 3

which is similar to the push-based data-driven PageRank in [20].

Let us compare Algorithm 3 and Algorithm 2. Whenever a node’s

ATR score is updated, all of its outgoing neighbors (on G ′
) are

Table 1: Real-world Web graph

No. of normal documents 437,386 (74.88%)

No. of spam documents 45,641 (7.81%)

No. of unlabeled documents 101,065 (17.30%)

No. of total documents 584,092

No. of links 2,470,557

pushed into the worklist in Algorithm 2. On the other hand, since

we explicitly maintain the residual of each node in Algorithm 3, we

can decide whether a node should be pushed to the worklist or not
based on its residual. This can significantly reduce the unnecessary

repeated computations.

4 EXPERIMENTAL RESULTS
We get a real-world Web graph from NAVER corporation which

operates the most popular search engine called NAVER in Korea.

We extract a subgraph of the entire Web graph using a variation

of the forest fire graph sampling method [12]. Table 1 shows the

basic statistics of the dataset. Among the 584,092 Web documents,

483,027 documents (82.7%) are labeled by human experts, i.e., those

documents are manually classified into ‘spam’ or ‘normal’.

We first test the performance of the Anti-TrustRank algorithm in

terms of detecting spam documents. Let sync denote Algorithm 1,

async denote Algorithm 2, and rasync denote Algorithm 3. As

described in Section 2.1, human experts are supposed to manually

label a subset of the nodes denoted by L. Usually, the size of L
is assumed to be very small since labeling requires human efforts.

Among the nodes in L, the set of spam documents S is consid-

ered to be the seed nodes in the Anti-TrustRank algorithm. In our

experiments, we assume that p portion of the nodes can have la-

bels among the entire vertex set V . That is, the number of labeled

documents |L| = p |V|.
When we finish the Anti-TrustRank computation, we order the

documents in descending order according to the Anti-TrustRank

scores. A document with a high ATR score indicates that the doc-

ument is likely to be a spam document. When we pick topm doc-

uments, those documents are considered to be spam documents.

Since the Anti-TrustRank algorithm computes a biased PageRank

with the set S, the Anti-TrustRank scores are propagated from

the seed set S. Thus, the number of documents associated with

non-zero Anti-TrustRank scores is proportional to the size of S.
We pick top q |S| documents (i.e., m = q |S|) and count the

number of spam documents, normal documents, and unlabeled

documents among the retrieved documents. Table 2 shows the re-

sults with different p and q values. We set the tolerance parameter

ϵ = 10
−8
, and notice that all the three methods, sync, async, and

rasync, return the identical results for classifying the retrieved

documents. We see that most of the retrieved documents are cor-

rectly classified into spam. This shows that in our dataset, the spam

documents tend to be referred by other spam documents, which

enables the Anti-TrustRank algorithm to work reasonably well.

Now, we investigate the computational cost of the sync, async,

and rasync methods. By varying ϵ and p, we count the number of

ATR updates and the number of arithmetic operations required to

make each method converge. Table 3 shows the results.
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Table 2: Accuracy of the retrieved documents

q = 1 q = 2 q = 3 q = 4 q = 5

p = 0.01 No. of spam documents 1,367 (100%) 2,732 (99.927%) 4,099 (99.951%) 5,466 (99.963%) 6,833 (99.971%)

No. of normal documents 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

No. of unlabeled documents 0 (0%) 2 (0.073%) 2 (0.049%) 2 (0.037%) 2 (0.029%)

p = 0.02 No. of spam documents 3,083 (100%) 6,030 (97.794%) 9,113 (98.530%) 12,196 (98.897%) 15,279 (99.117%)

No. of normal documents 0 (0%) 107 (1.735%) 107 (1.157%) 107 (0.868%) 107 (0.694%)

No. of unlabeled documents 0 (0%) 29 (0.470%) 29 (0.314%) 29 (0.235%) 29 (0.188%)

p = 0.03 No. of spam documents 3910 (100%) 7,683 (98.248%) 11,593 (98.832%) 15,503 (99.124%) 19,413 (99.299%)

No. of normal documents 0 (0%) 107 (1.368%) 107 (0.912%) 107 (0.684%) 107 (0.547%)

No. of unlabeled documents 0 (0%) 30 (0.384%) 30 (0.256%) 30 (0.192%) 30 (0.154%)

Table 3: No. of ATR updates and arithmetic operations

p = 0.01 p = 0.02 p = 0.03

ϵ sync async rasync sync async rasync sync async rasync

10
−8

No. of ATR updates 2,336,368 20,361 20,361 2,336,368 20,625 20,625 2,336,368 20,628 20,628

No. of arithmetics 24,442,660 8,424,970 2,516,097 24,449,524 10,715,238 2,703,627 24,452,832 10,716,065 2,703,630

10
−10

No. of ATR updates 2,336,368 20,427 20,427 2,336,368 20,999 20,999 2,336,368 21,002 21,002

No. of arithmetics 24,442,660 14,164,081 2,982,452 24,449,524 17,591,721 3,262,017 24,452,832 17,592,548 3,262,020

10
−12

No. of ATR updates 2,920,460 39,483 39,483 2,920,460 39,801 39,801 2,920,460 39,804 39,804

No. of arithmetics 30,553,325 17,845,604 3,284,207 30,561,905 25,816,773 3,932,402 30,566,040 25,817,600 3,932,405

We first notice that the asynchronous algorithms, async and

rasync, make much fewer ATR updates than the synchronous algo-

rithm, sync. This is because the asynchronous algorithms maintain

a working set to selectively process the nodes whose ATR scores

need to be updated while the synchronous algorithm processes all

the nodes at every iteration. The number of ATR updates made

in async and rasync should be the same because these methods

follow the same rule to update the ATR scores.

In terms of the number of arithmetic operations, the asynchro-

nous algorithms also save much computation compared to the

synchronous algorithm. When we compare async and rasync,

we see that the residual-based asynchronous algorithm (rasync)

significantly reduces the number of arithmetic computations. As

described in Section 3.2, rasync is able to effectively reduce the

size of the working set by exploiting the problem structure, which

results in filtering out unnecessary computations.

5 CONCLUSIONS & FUTUREWORK
We develop asynchronous Anti-TrustRank algorithms which

are shown to be effective in reducing the number of computa-

tions compared to the synchronous Anti-TrustRank algorithm on

a real-world Web graph. While achieving the same precision with

the synchronous Anti-TrustRank method for Web spam detection,

the asynchronous Anti-TrustRank algorithms require much fewer

Anti-TrustRank updates as well as arithmetic operations than the

synchronous method. We plan to investigate the distinguishing

characteristics of Web spams to incorporate them into the spam

ranking system. Also, we intend to apply the idea of the asynchro-

nous personalized PageRank computation to other graph mining

applications such as community detection [19] and clustering [18].
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