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1 INTRODUCTION
Our systems today are vulnerable to Sybil attacks, in which an at-
tacker injects multiple fake accounts into the system [6]. Recently,
the increasing popularity of online social networks has made them
attractive targets for Sybil attacks. The attacker can leverage Sybil
accounts to disrupt democratic election and influence financial mar-
ket via spreading fake news [9, 10], as well as compromise system
security and privacy via propagating social malware, carrying out
phishing attacks, and learning users’ private data [1, 11].

An important thread of research proposes to mitigate Sybil at-
tacks using social network-based trust relationships. The key in-
sight is in a network where edges represent strong trust relation-
ships, it is hard for the attacker to connect to benign users. As a
result, the number of edges between benign users and Sybils (i.e.,
attack edges) is limited. Schemes such as SybilGuard [16], Sybil-
Limit [15], SybilInfer [5], SybilRank [4], CIA [14], SybilBelief [8],
and SybilSCAR [13] rely on such strong trust assumption and sepa-
rate the benign and Sybil regions by identifying communities [12].
Íntegro [2] extends SybilRank by incorporating victim prediction
(i.e., benign accounts that connect to Sybils) in random walks.

While these schemes have pioneered the use of social network
structure for Sybil defenses, the actual deployment of these ideas
in real-world networks remains controversial. First, real-world
social networks do not necessarily have strong trusts. Previous
works [1, 3] showed that Sybils could befriend benign users on
Facebook at a large scale. Ghosh et al. [7] showed that on Twitter,
a link farming phenomenon is widespread, in which certain benign
accounts blindly follow back to accounts who follow them. On
such weak trust social networks, the number of attack edges can be
larger than what is typically considered in previous works, making
it challenging to separate the benign region from the Sybil region.
Second, Íntegro relies on the strong assumption that the number of
victims is small and that the victims can be accurately predicted,
which may not hold on certain real-world topologies like Twitter.
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2 THE SYBILFUSE FRAMEWORK
In this work, we propose SybilFuse, a defense-in-depth framework
that leverages heterogeneous sources of information to perform
robust Sybil detection. Different from existing approaches that
assume strong trust networks [4, 5, 8, 13–16] or assume strong
victim prediction [2], SybilFuse overcomes these limitations by
adopting a collective classification scheme. Given social network
data as input, SybilFuse first leverages local attributes to train local
classifiers. Local node classifier predicts a trust score for each node,
which indicates the probability of that node to be benign. Local edge
classifier predicts a trust score for each edge, which indicates the
probability of that edge to be a non-attack edge. These local trust
scores are then combinedwith the global structure throughweighted
trust score propagation. Existing approaches do not leverage rich
local information and treat edges equally, thus do not work well
when the number of attack edges exceeds their assumption. In
contrast, SybilFuse captures local account information in node trust
scores, and propagates these scores through the global structure.
During the score propagation, SybilFuse utilizes edge trust scores
to enforce unequal weights, so that attack edges will have reduced
impact on the propagation. After propagation completes, final trust
scores of accounts are used for Sybil classification and ranking.

Given a social graph G = (V ,E), we denote Sv as the trust score
of nodev ∈ V , which quantifies the probability thatv is benign. We
denote Su,v as the trust score of edge (u,v ) ∈ E, which quantifies
the probability that node u and node v take the same label (i.e.,
homophily strength). The computation of Sv can be done through
training local node classifiers (e.g., SVM, Logistic Regression) using
various attributes (e.g., degree, clustering coefficient). The compu-
tation of Su,v can be done through training local edge classifiers
or measuring the similarity between linked nodes using various
similarity metrics (e.g., Cosine, Jaccard, Adamic-Adar).

Score propagation is done through either weighted random walk
or weighted loopy belief propagation. In weighted random walk,
the update equation is: S (i ) (v ) =

∑
(u,v )∈E S

(i−1) (u)
Su,v∑

(u,w )∈E Su,w
,

where initial scores S (0) (v ) are set to be local node scores Sv . After
d = O (logn) steps of power iteration (n is the number of nodes),
we obtain the final node score: SFv = S (d ) (v ). In weighted loopy
belief propagation, a pairwise Markov Random Field model is con-
structed by initializing node potentials (ψv (Xv )) and edge poten-
tials (ψu,v (Xu ,Xv )) with local trust scores. The message update
equation is then adopted for d = 5 ∼ 10 iterations to update belief
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(a) Random walk-based approaches
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(b) LBP-based approaches and ensemble methods
Fig. 1: Fraction of Sybils among top K nodes of all evaluated methods.

scores belv (Xv = xv ). The final node scores are then obtained by
normalizing belv (Xv = xv ): SFv =

belv (Xv=1)
belv (Xv=1)+belv (Xv=−1) .

3 LABELED TWITTER EVALUATION
We evaluate SybilFuse against existing approaches in a real-world,
labeled Twitter network obtained from [14]. Since it is easy for
the attacker to manipulate one-way directed edges, we preprocess
the original directed network to an undirected one by retaining an
undirected edge if both directions exist. After preprocessing, the
network consists of 8,167 nodes and 54,146 edges, with verified 7,358
benign nodes and 809 Sybil nodes. We observe that: (1) the number
of attack edges is large (40,001), with around 49 attack edges on
average per Sybil. (2) the number of victims is large (5,546), which
takes more than 75% of benign nodes. Thus, the assumptions that
previous approaches require are not satisfied.

We compute three discriminative node features using the original
directed network: (1) incoming requests accepted ratio: Reqin (v ) =
|In (v )∩Out (v ) |
|In (v ) | , where In(v ) (Out (v )) represents the set of all in-

coming (outgoing) edges of v ; (2) outgoing requests accepted ratio:
Reqout (v ) =

|In (v )∩Out (v ) |
|Out (v ) | ; (3) local cluster coefficient: CC (v ) =

| {(i, j ):i, j ∈Nei (v ), (i, j )∈E } |
|Nei (v ) |( |Nei (v ) |−1) ), whereNei (v ) represents the set of neigh-

bors of v . We map these features to the corresponding nodes in
the undirected network. We randomly sample 50 benign and Sybil
nodes and train a SVM classifier with RBF kernel using LIBSVM.
We then output probabilistic estimates as local node scores. Since
extracting discriminative edge features from this dataset is difficult,
we set local edge scores to be 0.9 by default to model homophily.
Evaluated Approaches: For SybilFuse, we propagate local scores
through weighted random walks and loopy belief propagation (de-
noted by SF(RW), SF(LBP)). We evaluate the following existing
approaches: (1) node classification: SVM; (2) structure-based ap-
proaches: SybilRank (SR), CIA(CIA), SybilBelief (SB), SybilSCAR
(SS); (3) extended random walks with victim prediction: Íntegro,
Íntegro_PF (i.e., Íntegro under perfect victim prediction with 100%
accuracy); (4) ensemble approaches: EnC_SR, EnC_CIA, EnC_SB,
EnC_SS. We combine local SVM scores with structure propagation
scores in a standard voting scheme; (5) random guess: RG.
Evaluation Results: We evaluate the ranking performance of
these approaches by ranking all nodes in an ascending order of
final scores. Better approaches will rank more Sybil nodes upfront.
Fig. 1 shows the fraction of Sybils among top K nodes. We observe

that: (1) SF(RW) achieves the best performance among all random
walk-based approaches; (2) SF(LBP) achieves the best performance
among all evaluated approaches (> 98% Sybil ranking up to top 400
nodes). By combining local attributes with global structure, Sybil-
Fuse significantly outperforms existing approaches, and a better
way of combination is through weighted loopy belief propagation.

4 CONCLUSION
In this work, we propose SybilFuse, a framework for robust Sybil de-
tection. Experiments on a real-world Twitter network demonstrate
that SybilFuse outperforms existing approaches significantly.
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