PyG 2.0
Advanced Representation Learning on Graphs

Matthias Fey
matthias@pyg.org
https://pyg.org
/pyg-team/pytorch-geometric

conda install pyg -c pyg
The modern deep learning toolbox is designed for sequences and grids.
The modern deep learning toolbox is designed for sequences and grids.

- Arbitrary size and complex topological structure
Motivation

The modern deep learning toolbox is designed for sequences and grids.

- Arbitrary size and complex topological structure
- No fixed node ordering or reference point
Motivation

The modern deep learning toolbox is designed for sequences and grids

• Arbitrary size and complex topological structure
• No fixed node ordering or reference point
• Often dynamic
Why is it Hard?

Networks are complex!

• Arbitrary size and complex topological structure (i.e., no spatial locality like grids)
• No fixed node ordering or reference point
• Often dynamic and have multimodal features

The modern deep learning toolbox is designed for sequences and grids

Motivation

Graph

vs.

Image

Text

• Arbitrary size and complex topological structure
• No fixed node ordering or reference point
• Often dynamic
• Multimodal node and edge features
The modern deep learning toolbox is designed for sequences and grids. This makes implementing Graph Neural Networks challenging!

- Arbitrary size and complex topological structure
- No fixed node ordering or reference point
- Often dynamic
- Multimodal node and edge features
PyG (PyTorch Geometric) is a PyTorch library to enable deep learning on graphs, point clouds and manifolds.
Motivation

PyG (PyTorch Geometric) is a PyTorch library to enable deep learning on graphs, point clouds and manifolds

- simplifies implementing and working with Graph Neural Networks (GNNs)
Motivation

PyG (PyTorch Geometric) is a PyTorch library to enable deep learning on graphs, point clouds and manifolds.

- simplifies implementing and working with Graph Neural Networks (GNNs)
- bundles state-of-the-art GNN architectures and training procedures
Motivation

PyG (PyTorch Geometric) is a PyTorch library to enable deep learning on graphs, point clouds and manifolds.

- simplifies implementing and working with Graph Neural Networks (GNNs)
- bundles state-of-the-art GNN architectures and training procedures
- achieves high GPU throughput on highly sparse data of varying size
PyG (PyTorch Geometric) is a PyTorch library to enable deep learning on graphs, point clouds and manifolds

- simplifies implementing and working with Graph Neural Networks (GNNs)
- bundles state-of-the-art GNN architectures and training procedures
- achieves high GPU throughput on highly sparse data of varying size
- suited for both academia and industry
Design Principles

PyG is PyTorch-on-the-rocks:
PyG is PyTorch-on-the-rocks:

- **PyG** is framework-specific
 - allows us to make use of recently released features right away:
 - *TorchScript* for deployment, *torch.fx* for model transformation
PyG is PyTorch-on-the-rocks:

- PyG is framework-specific

 allows us to make use of recently released features right away: TorchScript for deployment, torch.fx for model transformation

- PyG keeps design principles close to vanilla PyTorch

 If you are familiar with PyTorch, you already know most about PyG
Design Principles

PyG is PyTorch-on-the-rocks:

- **PyG** is framework-specific

 allows us to make use of recently released features right away:

 - *TorchScript for deployment, torch.fx for model transformation*

- **PyG** keeps design principles close to vanilla PyTorch

 *If you are familiar with PyTorch, you already know most about **PyG***

- **PyG** fits nicely into the PyTorch ecosystem

 *Scaling up models via **PyTorch Lightning***

 *Explaining models via **Captum***
Design Principles

PyG is PyTorch-on-the-rocks:

```python
from torch.nn import Conv2d

class CNN(torch.nn.Module):
    def __init__(self):
        self.conv1 = Conv2d(3, 64)
        self.conv2 = Conv2d(64, 64)

    def forward(self, input):
        h = self.conv1(input)
        h = h.relu()
        h = self.conv2(h)
        return h
```
Design Principles

PyG is PyTorch-on-the-rocks:

```python
from torch.nn import Conv2d

class CNN(torch.nn.Module):
    def __init__(self):
        self.conv1 = Conv2d(3, 64)
        self.conv2 = Conv2d(64, 64)

    def forward(self, input):
        h = self.conv1(input)
        h = h.relu()
        h = self.conv2(h)
        return h

from torch_geometric.nn import GCNConv

class GNN(torch.nn.Module):
    def __init__(self):
        self.conv1 = GCNConv(3, 64)
        self.conv2 = GCNConv(64, 64)

    def forward(self, input, edge_index):
        h = self.conv1(input, edge_index)
        h = h.relu()
        h = self.conv2(h, edge_index)
        return h
```
Design Principles

Models

User-Defined Models
Pre-Defined Models and Examples

Operators
Message Passing
torch_cluster ➔ Pooling
Normalization
Readout

Storage
Data Loaders
Mini-Batching ➔ Neighbor Sampling ➔ Subgraph Sampling

Data ➔ Transforms
Datasets

Engine

PyTorch ➔ torch.scatter ➔ torch.sparse
Design Principles

Models

User-Defined Models

Pre-Defined Models and Examples

Operators

Message Passing

torch_cluster ➔ Pooling

Normalization

Readout

Storage

Data Loaders

Mini-Batching ➔ Neighbor Sampling ➔ Subgraph Sampling

Data ➔ Transforms ➔ Datasets

Engine

PyTorch ➔ torch_scatter ➔ torch_sparse
Design Principles

Models

User-Defined Models

Pre-Defined Models and Examples

Operators

- Message Passing
- torch_cluster
- Normalization
- Readout

Storage

- Data Loaders
 - Mini-Batching
 - Neighbor Sampling
 - Subgraph Sampling

Data

Transforms

Datasets

Engine

- PyTorch
- torch_scatter
- torch_sparse
Design Principles

Models

- User-Defined Models
- Pre-Defined Models and Examples

Operators
- Message Passing
 - torch_cluster
- Pooling
- Normalization
- Readout

Storage
- Data Loaders
 - Mini-Batching
 - Neighbor Sampling
 - Subgraph Sampling
- Data
- Transforms
- Datasets

Engine
- PyTorch
 - torch_scatter
 - torch_sparse
Message Passing Graph Neural Networks

Given a \textit{sparse} graph $\mathcal{G} = (H^{(0)}, (I, E))$ with

- input node features $H^{(0)} \in \mathbb{R}^{\lvert \mathcal{V} \rvert \times C}$
- edge indices $I \in \{1, ..., \lvert \mathcal{V} \rvert \}^{2 \times \lvert \mathcal{E} \rvert}$
- \textit{optional} edge features $E \in \mathbb{R}^{\lvert \mathcal{E} \rvert \times D}$
Message Passing Graph Neural Networks

Given a sparse graph $G = (H^{(0)}, (I, E))$ with

- input node features $H^{(0)} \in \mathbb{R}^{|V| \times C}$
- edge indices $I \in \{1, ..., |V|\}^{2 \times |E|}$
- optional edge features $E \in \mathbb{R}^{|E| \times D}$

Message Passing Scheme

permutation-invariant aggregation operator, e.g., *sum*, *mean* or *max*

\[
\h^{(\ell+1)}_i = \text{UPDATE}_\theta \left(\h^{(\ell)}_i, \bigoplus_{j \in \mathcal{N}(i)} \text{MESSAGE}_\theta \left(\h^{(\ell)}_j, \h^{(\ell)}_i, e_{j,i} \right) \right)
\]
Message Passing Graph Neural Networks

Flexible implementation via *parallelizable* gather and scatter operations condensed in a general Message Passing interface

\[
 h_i^{(\ell+1)} = \text{UPDATE}_\theta \left(h_i^{(\ell)}, \bigoplus_{j \in \mathcal{N}(i)} \text{MESSAGE}_\theta \left(h_j^{(\ell)}, h_i^{(\ell)}, e_{j,i} \right) \right)
\]
Message Passing Graph Neural Networks

Flexible implementation via parallelizable gather and scatter operations condensed in a general MessagePassing interface

\[
\mathbf{h}_i^{(\ell+1)} = \text{UPDATE}_\theta \left(\mathbf{h}_i^{(\ell)}, \bigoplus_{j \in \mathcal{N}(i)} \text{MESSAGE}_\theta \left(\mathbf{h}_j^{(\ell)}, \mathbf{h}_i^{(\ell)}, e_{j,i}^{(\ell)} \right) \right)
\]
Flexible implementation via parallelizable gather and scatter operations condensed in a general MessagePassing interface.
Flexible implementation via \textit{parallelizable} gather and scatter operations condensed in a general \texttt{MessagePassing} interface

\[
\begin{align*}
\mathbf{h}_i^{(\ell+1)} &= \text{UPDATE}_\theta \left(\mathbf{h}_i^{(\ell)}, \bigoplus_{j \in \mathcal{N}(i)} \text{MESSAGE}_\theta \left(\mathbf{h}_j^{(\ell)}, \mathbf{h}_i^{(\ell)}, e_{j,i} \right) \right)
\end{align*}
\]
PyG covers a large number of state-of-the-art GNN layers and architectures, and can easily be extended to fit to a specific use-case.
PyG covers a large number of state-of-the-art GNN layers and architectures, and can easily be extended to fit to a specific use-case.

GNN layers:

- Cheby
- GCN
- SAGE
- PointNet
- MoNet
- MPNN
- GAT
- SuperGAT
- SplineCNN
- AGNN
- EdgeCNN
- S-GCN
- R-GCN
- PointCNN
- ARMA
- APPNP
- GIN
- GIN-E
- CG
- GatedGCN
- NMF
- TAG
- DNA
- Signed-GCN
- PPFNet
- FeaST
- Hyper-GCN
- GravNet
- PDN
- WL
- ResGatedGCN
- SparseTransformer
- DGCNN
- FeaST
- EG
- LeCNN
- PNA
- GEN
- GCN2
- PAN
- FiLM
- SuperGAT
- FA
- HGT
PyG covers a large number of state-of-the-art GNN layers and architectures, and can easily be extended to fit to a specific use-case.

<table>
<thead>
<tr>
<th>GNN layers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheby</td>
</tr>
<tr>
<td>SplineCNN</td>
</tr>
<tr>
<td>ARMA</td>
</tr>
<tr>
<td>Signed-GCN</td>
</tr>
<tr>
<td>ResGatedGCN</td>
</tr>
<tr>
<td>PNA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GNN models:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAE</td>
</tr>
<tr>
<td>GeniePath</td>
</tr>
</tbody>
</table>
Not all GNN operators need to explicitly materialize the edge parallel space.

In this case, PyG can fuse message and aggregation computation for better memory efficiency: $\mathcal{O}(|\mathcal{V}|)$.
Not all GNN operators need to explicitly materialize the edge parallel space.

In this case, PyG can fuse message and aggregation computation for better memory efficiency: $\mathcal{O}(|\mathcal{V}|)$.
PyG supports mini-batching on many small graphs

\[G_1 = (H_1, A_1) \]
\[G_2 = (H_2, A_2) \]

\[\begin{aligned}
&\text{GNN} \\
\begin{pmatrix}
A_1 & H_1 \\
A_2 & H_2
\end{pmatrix}
= \\
\begin{pmatrix}
H_1' \\
H_2'
\end{pmatrix}
\end{aligned} \]
PyG supports mini-batching on many small graphs

\[G_1 = (H_1, A_1) \]
\[G_2 = (H_2, A_2) \]

no GNN modifications needed
no memory/computation overhead
supports examples of varying size
Minibatching in GNNs

PyG supports minibatching on many small graphs

\[G_1 = (H_1, A_1) \Rightarrow GNN \begin{pmatrix} A_1 & H_1 \\ A_2 & H_2 \end{pmatrix} = \begin{pmatrix} H'_1 \\ H'_2 \end{pmatrix} \]

✓ no GNN modifications needed
✓ no memory/computation overhead
✓ supports examples of varying size

```python
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DataLoader

dataset = TUDataset(name='IMDB-BINARY')
loader = DataLoader(dataset, batch_size=128)
```
PyG supports mini-batching on single giant graphs.
Mini-Batching in GNNs

PyG supports mini-batching on single giant graphs

Graph Neural Networks

Each node defines a computation graph

Each edge in this graph is a transformation/aggregation function

Scarselli et al. 2005. The Graph Neural Network Model.

IEEE Transactions on Neural Networks
Mini-Batching in GNNs

PyG supports mini-batching on single giant graphs

```
from torch_geometric.datasets import Reddit
from torch_geometric.loader import NeighborLoader

data = Reddit('data/Reddit')[0]
loader = NeighborLoader(data, batch_size=128,
                        num_neighbors=[25, 10])

for batch in loader:
    model(batch.inputs, batch.edge_index)
```
Mini-Batching in GNNs

PyG supports mini-batching on single giant graphs

Scalability support:
- NeighborSampling
- ClusterGCN
- GraphSAINT
- ShaDow
- SGC
- SIGN
- Correct&Smooth
- GNNAutoScale

```python
from torch_geometric.datasets import Reddit
from torch_geometric.loader import NeighborLoader

data = Reddit('data/Reddit')[0]
loader = NeighborLoader(data, batch_size=128,
    num_neighbors=[25, 10])

for batch in loader:
    model(batch.inputs, batch.edge_index)
```
PyG can handle standard graph learning tasks with ease...
PyG can handle standard graph learning tasks with ease...

Node-level Predictions

Predict the class of a node

\[\phi(G, v) \in [0, 1]^C \]
PyG can handle standard graph learning tasks with ease ...

Node-level Predictions
Predict the class of a node
\[\phi(G, v) \in [0, 1]^C \]

Link-level Predictions
Predict the class of a link
\[\phi(G, v, w) \in [0, 1]^C \]
Graph Machine Learning Toolkit

PyG can handle standard graph learning tasks with ease ...

Node-level Predictions
Predict the class of a node
\[
\phi(G, v) \in [0, 1]^C
\]

Link-level Predictions
Predict the class of a link
\[
\phi(G, v, w) \in [0, 1]^C
\]

Graph-level Predictions
Predict the class of a graph
\[
\phi(G) \in [0, 1]^C
\]
Graph Machine Learning Toolkit

PyG can handle standard graph learning tasks with ease...

Node-level Predictions
Predict the class of a node

\[\phi(G, v) \in [0, 1]^C \]

Link-level Predictions
Predict the class of a link

\[\phi(G, v, w) \in [0, 1]^C \]

Graph-level Predictions
Predict the class of a graph

\[\phi(G) \in [0, 1]^C \]

... but is not limited to those:
PyG can handle standard graph learning tasks with ease...

Node-level Predictions
Predict the class of a node
\[\phi(G, v) \in [0, 1]^C \]

Link-level Predictions
Predict the class of a link
\[\phi(G, v, w) \in [0, 1]^C \]

Graph-level Predictions
Predict the class of a graph
\[\phi(G) \in [0, 1]^C \]

... but is not limited to those:

Unsupervised Learning Self-Supervised Learning
Few/Zero-Shot Learning Pre-Training Explainability ...
Graph Machine Learning Toolkit

PyG can handle standard graph learning tasks with ease ...

Node-level Predictions
Predict the class of a node
\[\phi(G, v) \in [0, 1]^C \]

Link-level Predictions
Predict the class of a link
\[\phi(G, v, w) \in [0, 1]^C \]

Graph-level Predictions
Predict the class of a graph
\[\phi(G) \in [0, 1]^C \]

... but is not limited to those:

Unsupervised Learning Self-Supervised Learning
Few/Zero-Shot Learning Pre-Training Explainability ...

PyG provides over 80 examples with access to over 200 benchmark datasets to get familiar with the latest trends in graph machine learning
Additional Features
Additional Features

TorchScript

Convert pure Python GNN model to an optimized and standalone program

class GNN(torch.nn.Module):
 def __init__(self):
 self.conv1 = GCNConv(...).jitable()
 self.conv2 = GCNConv(...).jitable()

model = torch.jit.script(GNN())
1. Choose a GNN model
2. Setup a trainer
 (#GPUs, accelerator type)
3. Call trainer.fit()
Additional Features

TorchScript

Convert pure Python GNN model to an optimized and standalone program

```python
class GNN(torch.nn.Module):
    def __init__(self):
        self.conv1 = GCNConv(...).jittable()
        self.conv2 = GCNConv(...).jittable()
    model = torch.jit.script(GNN())
```

PyTorch Lightning

1. Choose a GNN model
2. Setup a trainer (#GPUs, accelerator type)
3. Call `trainer.fit()`

```python
data = Reddit('data/Reddit')
model = GraphSAGE(in_channels, out_channels)
trainer = Trainer(gpus=2, accelerator='ddp')
trainer.fit(model, data)
trainer.test()
```

Captum

Explain GNN predictions out-of-the-box

```python
from captum.attr import IntegratedGradients
ig = IntegratedGradients(model)
ig.attribute(input, edge_index, target=0)
```
Success Stories

- ~700 research papers using PyG
- ~2M weekly wheel downloads
- ~180 external contributors
- ~600 members on Slack

Yann LeCun
@ylecun

A fast & nice-looking PyTorch library for geometric deep learning (NN on graphs and other irregular structures).

Thomas Kipf
@thomaskipf

PyTorch Geometric has been growing into a fantastic library for graph neural nets and related methods.
Success Stories

- ~700 research papers using PyG
- ~2M weekly wheel downloads
- ~180 external contributors
- ~600 members on Slack

PyG already has its own ecosystem:

- PyTorch Geometric Temporal
- DiveIntoGraphs
- Open Catalyst Project
- DeepGCNs

A fast & nice-looking PyTorch library for geometric deep learning (NN on graphs and other irregular structures).

PyTorch Geometric has been growing into a fantastic library for graph neural nets and related methods.
OGB provides a variety of realistic and large-scale graph benchmark datasets.

Data loaders are compatible with PyG.

Dive-in examples are utilizing PyG.

```python
from ogb import PygGraphPropPredDataset
from torch_geometric.loader import DataLoader

dataset = PygGraphPropPredDataset('ogbg-molhiv')
loader = DataLoader(dataset, batch_size=128)
```
Success Stories

Competition on three large-scale graph datasets, e.g.:

- ~240M nodes across three node types
- ~1.7B edges across three edge types
Success Stories

Competition on three large-scale graph datasets, e.g.:

- ~240M nodes across three node types
- ~1.7B edges across three edge types

We used PyG to benchmark GNNs:

<table>
<thead>
<tr>
<th>Model</th>
<th>#Params</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>0.5M</td>
<td>52.67</td>
<td>52.73</td>
</tr>
<tr>
<td>LABELPROP</td>
<td>0.7M</td>
<td>65.82</td>
<td>65.29</td>
</tr>
<tr>
<td>SGC</td>
<td>3.8M</td>
<td>66.64</td>
<td>66.09</td>
</tr>
<tr>
<td>SIGN</td>
<td>4.9M</td>
<td>66.98</td>
<td>66.18</td>
</tr>
<tr>
<td>MLP+C&S</td>
<td>4.9M</td>
<td>67.15</td>
<td>66.80</td>
</tr>
<tr>
<td>R-GraphSAGE (NS)</td>
<td>12.2M</td>
<td>69.86</td>
<td>68.94</td>
</tr>
<tr>
<td>R-GAT (NS)</td>
<td>12.3M</td>
<td>70.02</td>
<td>69.42</td>
</tr>
</tbody>
</table>
Joining Forces

We have build a larger team for the future development of PyG, in close collaboration with

tu dortmund university Stanford University

✓ ensure longevity of PyG
✓ integrate tools from both parties into a unified package
✓ keep up with integrating latest trends in academic research
✓ extend its scope to better support real-world use-cases
✓ make it (even) easier to use for both academia and industry
✓ make it (even) more scalable

https://pyg.org
Joining Forces

We have built a larger team for the future development of PyG, in close collaboration with

documents by https://pyg.org

We start with this by introducing ...

✓ ensure longevity of PyG
✓ integrate tools from both parties into a unified package
✓ keep up with integrating latest trends in academic research
✓ extend its scope to better support real-world use-cases
✓ make it (even) easier to use for both academia and industry
✓ make it (even) more scalable
PyG 2.0
Advanced Representation Learning on Graphs
Overview

Heterogeneous Graphs

Subject area?

Paper

cites

writes

Institution

affiliated with

Author
Overview

(Nearly) all real-world graphs are heterogeneous!

Heterogeneous Graphs
(Nearly) all real-world graphs are heterogeneous!

Heterogeneous Graphs

GraphGym
Overview

(Nearly) all real-world graphs are heterogeneous!

Heterogeneous Graphs

- Half-Precision Support
- *.profile for benchmarking runtimes and memory consumptions of GNNs
- A variety of new operators, models, datasets and examples

GraphGym

Intra-layer Design: 4 dims
- Linear
- BatchNorm
- Dropout
- Activation
- Aggregation

Inter-layer Design: 4 dims
- MLP Layer
- GNN Layer
- GNN Layer
- GNN Layer

Subject area?

Nearly all real-world graphs are heterogeneous!
Heterogeneous graph learning is notoriously challenging
Heterogeneous graph learning is notoriously challenging

- Different input feature distributions across node and edge types
- Necessity of learning node/edge type dependent representations
 - non-shared weights across different node and edge types
 - bipartite message passing
- Heterogeneous scalability approaches
 - Relational-wise neighborhood sampling
- Complicated implementation
 - requires sequentially iterating over different node and edge types
 - involves keeping track of different input feature dimensionalities
Heterogeneous graph learning is notoriously challenging

- Different input feature distributions across node and edge types
- Necessity of learning node/edge type dependent representations
 - Non-shared weights across different node and edge types
 - Bipartite message passing
- Heterogeneous scalability approaches
 - Relational-wise neighborhood sampling
- Complicated implementation
 - Requires sequentially iterating over different node and edge types
 - Involves keeping track of different input feature dimensionalities

PyG makes working with heterogeneous graphs a breeze
Heterogeneous Graph Support

Data Storage

Holds information about different node and edge types in individual containers

Edge types are described by a triplet of source node, relation and destination node type

Transformations enhance the graph for message passing, e.g., by adding reverse edges

```python
from torch_geometric.data import HeteroData

data = HeteroData()

data['user'].x = ...  # User node feature matrix
data['product'].x = ...  # Product node feature matrix

# Connecting user and product nodes via "buys" relation:
data['user', 'buys', 'product'].edge_index = ...  # [2, num_edges]

# Adding reverse edges:
from torch_geometric.transforms import ToUndirected

data = ToUndirected()(data)
```
Heterogeneous Graph Support

Data Storage

Holds information about different node and edge types in individual containers.

Edge types are described by a triplet of source node, relation and destination node type.

Transformations enhance the graph for message passing, e.g., by adding reverse edges.

We provide a full example for loading raw *.csv files in the documentation.
Heterogeneous Graph Neural Networks

A homogeneous GNN can be converted to a heterogeneous one by learning distinct parameters for each individual edge type:

\[
\mathbf{h}_i^{(\ell+1)} = \sum_{r \in \mathcal{R}} \text{GNN}_\theta^{(r)} \left(\mathbf{h}_i^{(\ell)}, \{\mathbf{h}_j^{(\ell)} : j \in \mathcal{N}^{(r)}(i)\} \right)
\]

A custom GNN for each relation

The number of relations

Relational-wise neighborhood
Heterogeneous Graph Support

Heterogeneous Graph Neural Networks

Rapid growth in the number of parameters \(w.r.t \) number of relations may lead to overfitting on rare relations.

Basis-decomposition for regularization

A custom GNN for each basis

\[
 h_i^{(\ell+1)} = \sum_{r \in \mathcal{R}} \sum_{b=1}^{B} \text{GNN}^{(b)}_{\theta} \left(h_i^{(\ell)}, \{ a_{r,b} \cdot h_j^{(\ell)} : j \in \mathcal{N}(i) \} \right)
\]

The number of bases

Relational-depend trainable coefficients

24
PyG can automatically convert homogeneous GNNs to heterogeneous ones

```python
from torch_geometric.nn import GAT, to_hetero
model = GAT(in_channels=-1, hidden_channels=64, out_channels=72, num_layers=2)
model = to_hetero(model, (node_types, edge_types))
out = model(data.x_dict, data.edge_index_dict)
```
Heterogeneous Graph Support

Heterogeneous Graph Samplers

Scaling up heterogeneous GNNs to large-scale graphs with ease via relational neighbor sampling

Only requires a few lines of code change!

```python
from torch_geometric.datasets import OGB_MAG
from torch_geometric.loader import NeighborLoader

data = OGB_MAG(path)[0]

loader = NeighborLoader(
    data,
    num_neighbors={key: [15, 10] for key in data.edge_types},
    batch_size=128,
    input_nodes='paper'
)

for batch in loader:
    model(batch.x_dict, batch.edge_index_dict)
```
Heterogeneous Graph Support

Heterogeneous Graph Samplers

Scaling up heterogeneous GNNs to large-scale graphs with ease via relational neighbor sampling

Only requires a few lines of code change!

from torch_geometric.datasets import OGB_MAG
from torch_geometric.loader import NeighborLoader

data = OGB_MAG(path)[0]
loader = NeighborLoader(
 data,
 num_neighbors={key: [15, 10] for key in data.edge_types},
 batch_size=128,
 input_nodes='paper')

for batch in loader:
 model(batch.x_dict, batch.edge_index_dict)
Heterogeneous Graph Support

✓ A tutorial introducing all newly released heterogeneous graph features
✓ A tutorial showcasing how to load heterogeneous graphs from raw *.csv files
✓ Heterogeneous graph transformations
✓ Conversion from heterogeneous graphs to homogeneous "typed" graphs
✓ A generic wrapper (HeteroConv) for computing heterogeneous graph convolution via different message passing operators
✓ Lazy initialization (−1) for all message passing operators in PyG
✓ A variety of heterogeneous GNN examples, including an example for scaling heterogeneous graph models via PyTorch Lightning
✓ Dedicated heterogeneous graph operators (HGTConv) and samplers (HGTLoader)

https://pytorch-geometric.readthedocs.io
@email/pyg-team/pytorch-geometric/releases
Design Space Exploration with GraphGym

Which GNN is the best for your given task?

GraphGym aims to design and train GNNs from configurations, using a modularized pipeline:

- Standardized GNN implementation/evaluation
- Design space exploration via simple interfaces to try out thousands of GNN architectures in parallel
- Hyper-parameter search and visualizations
Future Plans
Temporal Graphs

- *(Nearly)* all real-world graphs are inherently dynamic
- Support for addition and removal of nodes and edges
- Integration of temporal Graph Neural Networks
- Real-Time In-Stream Inference
Future Plans

Temporal Graphs
• (Nearly) all real-world graphs are inherently dynamic
• Support for addition and removal of nodes and edges
• Integration of temporal Graph Neural Networks
• Real-Time In-Stream Inference

Distributed Data
• While distributed training is possible, distributing data is currently a user task
• Scaling to billions of nodes via distributing input data
• Partitioning input node and edge features
Future Plans

Temporal Graphs
- *(Nearly)* all real-world graphs are inherently dynamic
- Support for addition and removal of nodes and edges
- Integration of temporal Graph Neural Networks
- Real-Time In-Stream Inference

Distributed Data
- While distributed training is possible, distributing data is currently a user task
- Scaling to billions of nodes via distributing input data
- Partitioning input node and edge features

Auto-Scaling
- 🌍 **PyG** should automatically determine the best scalability approach for the given task
- Write GNNs in full-batch mode and let 🌍 **PyG** figure out the rest
- **GNNAutoScale** *(ICML 2021)*
PyG bundles the state-of-the-art in Graph Representation Learning

- 50+ GNN architectures
- 200+ benchmark datasets
- Dedicated sparsity-aware CUDA kernels
- Multi-GPU support
- Half-Precision support
- Support for scalability techniques
- Heterogeneous graph support
- GNN Design Space Exploration

We are constantly encouraged to make **PyG** even better!

![tu dortmund univeristy](https://pyg.org)
![Stanford University](https://pyg.org)

team@pyg.org
https://pyg.org
/pyg-team/pytorch-geometric

conda install pyg -c pyg