Open Graph Benchmark: Large-Scale Challenge

Weihua Hu

Joint work with
Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, Jure Leskovec
Benchmarks are Important

- Historically...
 - Computer vision
 - ImageNet
 - Natural Language Processing
 - SQuAD
 - GLUE
Benchmarks are Important

- Challenging and realistic benchmark has driven methodological innovation.

ImageNet performance

- Effective use of unlabeled images
- Vision transformer
- Deeper/bigger CNN (e.g., ResNet)

Source: Papers with code

Weihua Hu, Stanford University
Evaluating Graph ML

To advance research in graph ML, it is critical for our community to develop diverse, challenging, and realistic benchmark datasets for machine learning on graphs.
Issues with Existing Graph Benchmark

1. Datasets are **small**
2. Experimental protocol is **not unified**
3. Dataset splits follow **conventional random splits**

Hard to rigorously evaluate graph ML models.
Open Graph Benchmark

- In May 2020, we introduced OGB: Realistic and diverse benchmark datasets for graph ML

Webpage: https://ogb.stanford.edu/
Github: https://github.com/snap-stanford/ogb

Weihua Hu, Stanford University
OGB Datasets are Diverse
Core tasks:

- **Node** property prediction
 - Node label classification
- **Link** property prediction
 - Link existence prediction
 - KG completion
- **Graph** property prediction
 - Molecule property prediction
 - Method naming of code snippets.
OGB Datasets are Diverse

- **Domains:**
 - Natural sciences (chemistry, biology)
 - Social and information networks
 - Knowledge graphs, code
 - **Richness of node/edge features**

- **Dataset size:**
 - Small: rich graphs with 100K nodes.
 - Medium: graphs with 1M to 3M nodes.
 - Large: graphs with more than 100M nodes.
Open Graph Benchmark

- OGB includes 15 datasets from diverse domains and tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Node property prediction</th>
<th>Link property prediction</th>
<th>Graph property prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ognn-</td>
<td>ogbl-</td>
<td>ogbg-</td>
</tr>
<tr>
<td>Small</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Small datasets: arxiv, ddi, molhiv
- Medium datasets: proteins, products, ppa
- Large datasets: papers100M, citation2, molpcba / ppa
Open Graph Benchmark

- Many methods have been developed.
 - Over 300 leaderboard submissions
 - Drastic accuracy improvement on many datasets

ogbg-molpcba (molecule classification)

+4% AP improvement over our best baseline

ogbn-products (product classification)

+5% accuracy improvement over our best baseline

Source: Papers with code
Need for Large-Scale Benchmark

- To yield breakthroughs in graph ML, **we need a large-scale graph benchmark**
- Bigger and advanced models benefit from larger data
 - Deeper and more expressive GNNs can yield performance breakthrough
- **ML on large-scale graphs is challenging and requires innovations:**
 - Training GNNs on large graphs requires non-trivial mini-batch sampling of nodes/edges
For the ACM KDD Cup 2021, we provide a set of three challenging large-scale graph datasets

Webpage: https://ogb.stanford.edu/kddcup2021/
Github: https://github.com/snap-stanford/ogb
OGB-LSC Stats

- Attracted huge attention from the community
 - 500+ registrations across the globe.
 - 143 teams submitted to the initial test submission.
 - 123 teams submitted to the final test submission.

- Institutions:
 - Academia: 60%, Industry: 40%
OGB-LSC Datasets

- LSC datasets are **orders-of-magnitude larger** than any exiting datasets

<table>
<thead>
<tr>
<th>Task type</th>
<th>Dataset</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node-level</td>
<td>MAG240M–LSC</td>
<td>#nodes: 244,160,499</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#edges: 1,728,364,232</td>
</tr>
<tr>
<td>Link-level</td>
<td>WikiKG90M–LSC</td>
<td>#nodes: 87,143,637</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#edges: 504,220,369</td>
</tr>
<tr>
<td>Graph-level</td>
<td>PCQM4M–LSC</td>
<td>#graphs: 3,803,453</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#edges (total): 55,399,880</td>
</tr>
</tbody>
</table>

- Each dataset is **practically relevant**

Weihua Hu, Stanford University
Node-Level: MAG240M

- Heterogeneous academic graph
- **Task**: Predict the subject areas of papers situated in the heterogeneous graph (node classification)
Performance Improvement

Accuracy: The higher, the better.

![Accuracy Chart]
Link-Level: WikiKG90M

- **Knowledge graph**
- **Task**: Impute missing triplets (link prediction)

![Link-level knowledge graph]

Link-level
WikiKG90Mv2-LSC

- Geoffrey Hinton
- Paul Martin
- University of Toronto
- King’s College, Cambridge
- Canada
- Person
- Graduated from
- affiliated with
- located in
- born in
- is a
- graduated from
- Predict
Performance Improvement

MRR: The higher, the better

![MRR Graph]

- **Winners**
- **Best baseline**
Molecular graphs

Task: Predict an important quantum chemistry property, the HOMO-LUMO gap, of a given molecule (graph regression).

Quantum calculation ~hours

Predict << 1s
Performance Improvement

MAE: The lower, the better.

![Graph showing MAE values for different ranks.

Best baseline

Winners]
Overall Observations

- Many novel techniques developed for the OGB-LSC large graphs
 - New mini-batch sampling for heterogeneous graphs
 - New label propagation methods using GNNs.
 - New knowledge graph embedding models
 - New self-supervised learning methods for GNNs
- Deeper, bigger, and more expressive GNNs
Deeper and Bigger GNNs

- On the molecule dataset:
 - Number of GNN layers
 - Our baseline: 5 layers
 - Winners: 11—50 layers
 - Number of parameters (single model)
 - Our baseline: 6.7M
 - Winners: 50M—450M
 - Bigger models indeed perform better!

Weihua Hu, Stanford University
More Expressive GNNs

- The winner uses Transformer-style fully-connected message passing.
Outlook for the Future

- We hope the community will continue to use the OGB-LSC datasets to develop new methods.
- Based on the lessons from the KDD Cup, OGB-LSC datasets will be updated to further facilitate research advances.
- We also hope to facilitate the development of efficient ML systems for large-scale graphs.

Weihua Hu, Stanford University
Conclusions

- Large-scale graphs are ubiquitous in real-world applications but are challenging to handle.
- OGB-LSC provides a set of three unprecedentedly large graph datasets.
- At the ACM KDD Cup 2021, many innovative methods have been developed.