
Scaling Up PyG

Manan Shah (manan@kumo.ai)
Dong Wang (dong@kumo.ai)

● Graph Neural Networks (GNNs) operate on a
graph (nodes and edges) and features
(tensors) for the elements in the graph

○ Message passing performs scatter/gather
operations on feature tensors, between
node space and edge space

● Scaling to data larger than GPU VRAM requires
training on sampled subgraphs instead of the
entire graph

○ Adds stochasticity, but reduces GPU
memory requirements to those of the
sampled subgraphs

Graph Learning: An Architectural Blueprint

2

Graph and features stored
together in CPU DRAM.

Sampled subgraphs and corresponding
features passed to GPU VRAM.

● Training on sampled subgraphs is great! But it’s often not enough…
○ Acquiring instances with enough CPU DRAM to store a graph and features is hard
○ Data parallelism requires replicating the graph and features in each compute node
○ Graphs and features can easily be much larger than the memory of a single

machine

● Scalability to very large graphs and features requires moving these data
structures out-of-core and only processing sampled subgraphs on a compute
node

○ Features are stored in a key-value feature store, supporting efficient random
access

○ Graph information is stored in a graph store, supporting efficient sampling

Graph Learning: An Architectural Blueprint

3

● Separation of the feature and graph store
allows for independent scale-out:

○ We are no longer constrained to
single-node, in-memory datasets

○ The graph and feature stores can be
independently partitioned, replicated, and
stored in optimized formats

● Sampled subgraphs are now computed by
sampling from the graph store and joining
samples with features from the feature store

○ Each training node only requires enough
memory to store sampled data

Graph Learning: An Architectural Blueprint

4

1: [0.1, 0.3, 0.9, 4.2, …, 0.3]
2: [0.2, 1.7, 1.4, 2.4, …, 0.6]
3: [0.1, 0.1, 3.9, 2.5, …, 0.1]

 …
n: [0.4, 0.5, 0.2, 1.2, …, 0.1]

Graph Store: nodes and edges. Feature store: node and edge tensors

Sampled subgraph, joined with
features; all that is necessary for
GPU forward/backward.

[0.1, 0.1, 3.9, 2.5, …, 0.1]

[0.1, 0.3, 0.9, 4.2, …, 0.3]

[0.2, 1.7, 1.4, 2.4, …, 0.6]

Training Instance

Distributed Storage

Graph Learning: An Architectural Blueprint

5

1: [0.1, 0.3, 0.9, 4.2, …, 0.3]
2: [0.2, 1.7, 1.4, 2.4, …, 0.6]
3: [0.1, 0.1, 3.9, 2.5, …, 0.1]

 …
n: [0.4, 0.5, 0.2, 1.2, …, 0.1]

Graph Store: stores all
edge_index tensors of a graph

Feature store: stores all node and
edge attributes (x, y, edge_attr,
etc.)

Sampled subgraph: a Data or
HeteroData object containing
sampled edges and features

[0.1, 0.1, 3.9, 2.5, …, 0.1]

[0.1, 0.3, 0.9, 4.2, …, 0.3]

[0.2, 1.7, 1.4, 2.4, …, 0.6]

Training Instance

Distributed Storage

● PyG 2.2 moves towards an
architecture defining a
feature store and graph
store, unified behind a
common interface

● This architecture is
extensible, generalizable,
and integrates seamlessly
with the PyG you know
and love

Data(
 edge_index=[2, 3],
 x=[3, 10]
)

● There are four key
abstractions that enable
this effort: the feature
store, graph store,
sampler, and data loader

● The data loader
orchestrates feature
fetching and sampled
subgraph generation by
querying relevant stores

Graph Learning: An Architectural Blueprint

6

Feature Store. Can be replicated
and partitioned, invisible to
application. Requires efficient GET
and MULTIGET operations.

data/feature_store.py

Graph Store. Can be replicated and
partitioned, invisible to application.
Requires efficient sample-specific
operations, defined by the developer.

data/graph_store.py

Data Loader. Lives on the accelerator (compute) node. Fetches samples from
the graph store through the sampler, features for those samples from the feature
store, and constructs [Hetero]Data objects (like a database JOIN) to pass to
the accelerator for forward/backward passes.

loader/node_loader.py
loader/link_loader.py

Sampler. Developer-defined function
sampling subgraphs: often directly
calls a graph store’s sampling op.

sampler/base.py

(1) root nodes,
sample parameters

(2) sampled
nodes

(3) sampled
nodes

(4) features for
sampled nodes

● A graph store stores graph edge indices in a manner
conducive to efficient sampling

○ Requires GET, PUT, and sample-specific ops

● A graph sampler operates on a graph store to sample a
subgraph from root nodes and related parameters

○ Implements logic to sample from a graph store (e.g. calling
sample-specific ops).

○ We do not define a DSL

● The physical location, replication, partitioning, and other
implementation details of the store are abstracted from PyG.

○ Ex: METIS-partitioned graphs, stores with pre-generated sampled
subgraphs, etc.

The Graph Store and Sampler

7

Graph Store. Can be replicated and
partitioned, invisible to application.
Requires efficient sample-specific
operations, defined by developer.

data/graph_store.py

Sampler. Developer-defined function
sampling subgraphs: often directly
calls a graph store’s sampling op.

sampler/base.py

(1) root nodes,
sample parameters (2) sampled nodes

● A feature store stores features for the nodes and
edges of a graph

○ Feature storage is often a primary storage bottleneck in
graph learning applications, as storing a graph edge
index is relatively cheap

○ Requires PUT and efficient random access GET

● Like the graph store, implementation details of
the feature store are abstracted from PyG
through a CRUD-like interface

The Feature Store

8

Feature Store. Can be replicated
and partitioned, invisible to
application. Requires efficient GET
and MULTIGET operations.

data/feature_store.py

(3) sampled nodes (4) features for
sampled nodes

 Loader. As described in Slide 48.

● A PyG data loader is built upon a sampler, graph store, and feature store. It:
○ Generates a batch of input nodes and requests sampled subgraphs from the sampler, and in turn

the graph store
○ Collates sampled nodes and requests associated node and edge features from the feature store
○ Constructs PyG-native data objects from these data to perform forward/backward and weight

updates

● The PyG data loader handles all interactions between PyG and remote
backends.

○ This includes multi-process data loading, prefetching within each process, and communication
with the feature and graph stores.

○ PyG end users only need to care about the data loader interface; once a feature store, graph
store, and sampler are specified, PyG behaves just as it would on a single node!

The Data Loader

9

Putting it all together in PyG

10

● Adding features to a custom feature store is easy: just define the store, and let PyG
handle the syntactic sugar

● Internally, put_tensor may make an RPC call to store data remotely, invisible to the
user

Putting it all together in PyG

11

● Adding edges is just as simple: specify the edge tensor, type, and layout, and the custom
graph store’s implementation details are abstracted away.

Putting it all together in PyG

12

● Training brings it all together: NodeLoader manages sampling (with a custom sampler),
communication with the feature and graph store, and other implementation details

● PyG’s remote backend abstractions make working with a distributed feature and graph store
no different from single-node modeling:

○ It’s easy to store a graph and features out-of-core, and to switch between in-memory
and remote representations

○ These abstractions support a wide variety of extensions to PyG (e.g. ahead-of-time
sampling), and enable other axes of parallelism (e.g. multi-node DDP without data
replication)

○ Stay tuned: all these features will be publicly launched in PyG 2.2!

● However: performance is critical! Be sure to monitor throughputs of feature fetching,
sampling, and forward/backward when looking for bottlenecks

Putting it all together in PyG

13

● In Memory Graph Store + On Disk Feature Store

○ Fast access
○ Random lookup

○ High data volume
○ High throughput

Building a Feature and Graph Store at Scale

14

Feature Set
A

Feature Set
B …… Feature Set

D

● Optimize Feature Store
○ Features are stored in protobuf.
○ Shared feature configuration.
○ Compact feature representation.

Building a Feature and Graph Store at Scale

15

● Store as a Service
○ Communicate via gRPC.
○ Protobuf to Arrow for columnize

access and feature encoding.
○ No N/A values for zero-copy to

tensors.
○ C++ implementation.

Building a Feature and Graph Store at Scale

16

● Improve Feature Locality

Features are re-ordered based on
neighbors.

Building a Feature and Graph Store at Scale

17
Order in the feature store.

● Result

Building a Feature and Graph Store at Scale

18

Thank you for listening!

