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● Graph Neural Networks (GNNs) operate on a 
graph (nodes and edges) and features 
(tensors) for the elements in the graph

○ Message passing performs scatter/gather 
operations on feature tensors, between 
node space and edge space

● Scaling to data larger than GPU VRAM requires 
training on sampled subgraphs instead of the 
entire graph

○ Adds stochasticity, but reduces GPU 
memory requirements to those of the 
sampled subgraphs
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Graph and features stored 
together in CPU DRAM.

Sampled subgraphs and corresponding 
features passed to GPU VRAM.



● Training on sampled subgraphs is great! But it’s often not enough…
○ Acquiring instances with enough CPU DRAM to store a graph and features is hard
○ Data parallelism requires replicating the graph and features in each compute node
○ Graphs and features can easily be much larger than the memory of a single 

machine

● Scalability to very large graphs and features requires moving these data 
structures out-of-core and only processing sampled subgraphs on a compute 
node

○ Features are stored in a key-value feature store, supporting efficient random 
access

○ Graph information is stored in a graph store, supporting efficient sampling
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● Separation of the feature and graph store 
allows for independent scale-out:

○ We are no longer constrained to 
single-node, in-memory datasets

○ The graph and feature stores can be 
independently partitioned, replicated, and 
stored in optimized formats 

● Sampled subgraphs are now computed by 
sampling from the graph store and joining 
samples with features from the feature store

○ Each training node only requires enough 
memory to store sampled data
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1: [0.1, 0.3, 0.9, 4.2, …, 0.3]
2: [0.2, 1.7, 1.4, 2.4, …, 0.6]
3: [0.1, 0.1, 3.9, 2.5, …, 0.1]

        …
n: [0.4, 0.5, 0.2, 1.2, …, 0.1]

Graph Store: nodes and edges. Feature store: node and edge tensors

Sampled subgraph, joined with 
features; all that is necessary for 
GPU forward/backward.

[0.1, 0.1, 3.9, 2.5, …, 0.1]

[0.1, 0.3, 0.9, 4.2, …, 0.3]

[0.2, 1.7, 1.4, 2.4, …, 0.6]

Training Instance

Distributed Storage
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1: [0.1, 0.3, 0.9, 4.2, …, 0.3]
2: [0.2, 1.7, 1.4, 2.4, …, 0.6]
3: [0.1, 0.1, 3.9, 2.5, …, 0.1]

        …
n: [0.4, 0.5, 0.2, 1.2, …, 0.1]

Graph Store: stores all 
edge_index tensors of a graph

Feature store: stores all node and 
edge attributes (x, y, edge_attr, 
etc.)

Sampled subgraph: a Data or 
HeteroData object containing 
sampled edges and features

[0.1, 0.1, 3.9, 2.5, …, 0.1]

[0.1, 0.3, 0.9, 4.2, …, 0.3]

[0.2, 1.7, 1.4, 2.4, …, 0.6]

Training Instance

Distributed Storage

● PyG 2.2 moves towards an 
architecture defining a 
feature store and graph 
store, unified behind a 
common interface

● This architecture is 
extensible, generalizable, 
and integrates seamlessly 
with the PyG you know 
and love

Data(
   edge_index=[2, 3],
   x=[3, 10]
)



● There are four key 
abstractions that enable 
this effort: the feature 
store, graph store, 
sampler, and data loader

● The data loader 
orchestrates feature 
fetching and sampled 
subgraph generation by 
querying relevant stores
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Feature Store. Can be replicated 
and partitioned, invisible to 
application. Requires efficient GET 
and MULTIGET operations.

data/feature_store.py

 

Graph Store. Can be replicated and 
partitioned, invisible to application. 
Requires efficient sample-specific 
operations, defined by the developer.

data/graph_store.py

 

Data Loader. Lives on the accelerator (compute) node. Fetches samples from 
the graph store through the sampler, features for those samples from the feature 
store, and constructs [Hetero]Data objects (like a database JOIN) to pass to 
the accelerator for forward/backward passes.

loader/node_loader.py
loader/link_loader.py

 
Sampler. Developer-defined function 
sampling subgraphs: often directly 
calls a graph store’s sampling op.

sampler/base.py

(1) root nodes, 
sample parameters

(2) sampled 
nodes

(3) sampled 
nodes

(4) features for 
sampled nodes



● A graph store stores graph edge indices in a manner 
conducive to efficient sampling

○ Requires GET, PUT, and sample-specific ops

● A graph sampler operates on a graph store to sample a 
subgraph from root nodes and related parameters

○ Implements logic to sample from a graph store (e.g. calling 
sample-specific ops).

○ We do not define a DSL

● The physical location, replication, partitioning, and other 
implementation details of the store are abstracted from PyG.

○ Ex: METIS-partitioned graphs, stores with pre-generated sampled 
subgraphs, etc.

The Graph Store and Sampler
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Graph Store. Can be replicated and 
partitioned, invisible to application. 
Requires efficient sample-specific 
operations, defined by developer.

data/graph_store.py

 
Sampler. Developer-defined function 
sampling subgraphs: often directly 
calls a graph store’s sampling op.

sampler/base.py

(1) root nodes, 
sample parameters (2) sampled nodes



● A feature store stores features for the nodes and 
edges of a graph

○ Feature storage is often a primary storage bottleneck in 
graph learning applications, as storing a graph edge 
index is relatively cheap

○ Requires PUT and efficient random access GET

● Like the graph store, implementation details of 
the feature store are abstracted from PyG 
through a CRUD-like interface

The Feature Store
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Feature Store. Can be replicated 
and partitioned, invisible to 
application. Requires efficient GET 
and MULTIGET operations.

data/feature_store.py

(3) sampled nodes (4) features for 
sampled nodes

 Loader. As described in Slide 48.



● A PyG data loader is built upon a sampler, graph store, and feature store. It:
○ Generates a batch of input nodes and requests sampled subgraphs from the sampler, and in turn 

the graph store
○ Collates sampled nodes and requests associated node and edge features from the feature store
○ Constructs PyG-native data objects from these data to perform forward/backward and weight 

updates

● The PyG data loader handles all interactions between PyG and remote 
backends.

○ This includes multi-process data loading, prefetching within each process, and communication 
with the feature and graph stores. 

○ PyG end users only need to care about the data loader interface; once a feature store, graph 
store, and sampler are specified, PyG behaves just as it would on a single node!

The Data Loader
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Putting it all together in PyG
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● Adding features to a custom feature store is easy: just define the store, and let PyG 
handle the syntactic sugar

● Internally, put_tensor may make an RPC call to store data remotely, invisible to the 
user



Putting it all together in PyG
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● Adding edges is just as simple: specify the edge tensor, type, and layout, and the custom 
graph store’s implementation details are abstracted away.
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● Training brings it all together: NodeLoader manages sampling (with a custom sampler), 
communication with the feature and graph store, and other implementation details



● PyG’s remote backend abstractions make working with a distributed feature and graph store 
no different from single-node modeling:

○ It’s easy to store a graph and features out-of-core, and to switch between in-memory 
and remote representations

○ These abstractions support a wide variety of extensions to PyG (e.g. ahead-of-time 
sampling), and enable other axes of parallelism (e.g. multi-node DDP without data 
replication)

○ Stay tuned: all these features will be publicly launched in PyG 2.2!

● However: performance is critical! Be sure to monitor throughputs of feature fetching, 
sampling, and forward/backward when looking for bottlenecks

Putting it all together in PyG
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● In Memory Graph Store + On Disk Feature Store

○ Fast access
○ Random lookup

○ High data volume
○ High throughput

Building a Feature and Graph Store at Scale
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Feature Set 
A

Feature Set 
B …… Feature Set 

D



● Optimize Feature Store
○ Features are stored in protobuf.
○ Shared feature configuration.
○ Compact feature representation.

Building a Feature and Graph Store at Scale
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● Store as a Service
○ Communicate via gRPC.
○ Protobuf to Arrow for columnize 

access and feature encoding.
○ No N/A values for zero-copy to 

tensors.
○ C++ implementation.

Building a Feature and Graph Store at Scale
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● Improve Feature Locality

Features are re-ordered based on 
neighbors.

Building a Feature and Graph Store at Scale
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Order in the feature store.



● Result

Building a Feature and Graph Store at Scale
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Thank you for listening!


