Scaling Up PyG

Manan Shah (manan@kumo.ai)
Dong Wang (dong@kumo.ai)
Graph Neural Networks (GNNs) operate on a graph (nodes and edges) and features (tensors) for the elements in the graph
 - Message passing performs scatter/gather operations on feature tensors, between node space and edge space

- Scaling to data larger than GPU VRAM requires training on sampled subgraphs instead of the entire graph
 - Adds stochasticity, but reduces GPU memory requirements to those of the sampled subgraphs
● Training on sampled subgraphs is great! But it’s often not enough…
 ○ Acquiring instances with enough CPU DRAM to store a graph and features is hard
 ○ Data parallelism requires replicating the graph and features in each compute node
 ○ Graphs and features can easily be much larger than the memory of a single machine

● Scalability to very large graphs and features requires moving these data structures out-of-core and only processing sampled subgraphs on a compute node
 ○ Features are stored in a key-value feature store, supporting efficient random access
 ○ Graph information is stored in a graph store, supporting efficient sampling
Separation of the feature and graph store allows for independent scale-out:
- We are no longer constrained to single-node, in-memory datasets
- The graph and feature stores can be independently partitioned, replicated, and stored in optimized formats

Sampled subgraphs are now computed by sampling from the graph store and joining samples with features from the feature store:
- Each training node only requires enough memory to store sampled data

Graph Store: nodes and edges.
Feature store: node and edge tensors

Training Instance

Sampled subgraph, joined with features; all that is necessary for GPU forward/backward.
- PyG 2.2 moves towards an architecture defining a **feature store** and **graph store**, unified behind a common interface.

- This architecture is **extensible, generalizable**, and integrates seamlessly with the PyG you know and love.
There are four key abstractions that enable this effort: the feature store, graph store, sampler, and data loader.

The data loader orchestrates feature fetching and sampled subgraph generation by querying relevant stores.
The Graph Store and Sampler

- A **graph store** stores graph edge indices in a manner conducive to efficient sampling
 - Requires GET, PUT, and sample-specific ops

- A **graph sampler** operates on a graph store to sample a subgraph from root nodes and related parameters
 - Implements logic to sample from a graph store (e.g. calling sample-specific ops).
 - We do not define a DSL

- The physical location, replication, partitioning, and other implementation details of the store are abstracted from PyG.
 - Ex: METIS-partitioned graphs, stores with pre-generated sampled subgraphs, etc.
A feature store stores features for the nodes and edges of a graph
- Feature storage is often a primary storage bottleneck in graph learning applications, as storing a graph edge index is relatively cheap
- Requires PUT and efficient random access GET

Like the graph store, implementation details of the feature store are abstracted from PyG through a CRUD-like interface

Feature Store. Can be replicated and partitioned, invisible to application. Requires efficient GET and MULTIGET operations.

data/feature_store.py

Loader. As described in Slide 48.
A PyG data loader is built upon a sampler, graph store, and feature store. It:

- Generates a batch of input nodes and requests sampled subgraphs from the sampler, and in turn the graph store
- Collates sampled nodes and requests associated node and edge features from the feature store
- Constructs PyG-native data objects from these data to perform forward/backward and weight updates

The PyG data loader handles all interactions between PyG and remote backends.

- This includes multi-process data loading, prefetching within each process, and communication with the feature and graph stores.
- PyG end users only need to care about the data loader interface; once a feature store, graph store, and sampler are specified, PyG behaves just as it would on a single node!
Putting it all together in PyG

- Adding features to a custom feature store is easy: just define the store, and let PyG handle the syntactic sugar.
- Internally, `put_tensor` may make an RPC call to store data remotely, invisible to the user.
Putting it all together in PyG

```python
graph_store = MyGraphStore()  # or HeteroData, if in-memory
paper_to_author = ...  # [2, num_edges_writes]
paper_to_paper = ...  # [2, num_edges_cites]

graph_store.put_edge_index(
    paper_to_author,
    edge_type=('author', 'writes', 'paper'),
    layout='coo'
)

graph_store.put_edge_index(
    paper_to_paper,
    edge_type=('paper', 'cites', 'paper'),
    layout='coo'
)
```

- Adding edges is just as simple: specify the edge tensor, type, and layout, and the custom graph store’s implementation details are abstracted away.
Training brings it all together: **NodeLoader** manages sampling (with a custom sampler), communication with the feature and graph store, and other implementation details.
PyG’s remote backend abstractions make working with a distributed feature and graph store no different from single-node modeling:
 ○ It’s easy to store a graph and features out-of-core, and to switch between in-memory and remote representations
 ○ These abstractions support a wide variety of extensions to PyG (e.g. ahead-of-time sampling), and enable other axes of parallelism (e.g. multi-node DDP without data replication)
 ○ Stay tuned: all these features will be publicly launched in PyG 2.2!

However: performance is critical! Be sure to monitor throughputs of feature fetching, sampling, and forward/backward when looking for bottlenecks
In Memory Graph Store + On Disk Feature Store

- Fast access
- Random lookup
- High data volume
- High throughput
● Optimize Feature Store
 ○ Features are stored in protobuf.
 ○ Shared feature configuration.
 ○ Compact feature representation.
Building a Feature and Graph Store at Scale

- **Store as a Service**
 - Communicate via gRPC.
 - Protobuf to Arrow for columnize access and feature encoding.
 - No N/A values for zero-copy to tensors.
 - C++ implementation.
Building a Feature and Graph Store at Scale

- Improve Feature Locality

Features are re-ordered based on neighbors.

Order in the feature store.
Result
Thank you for listening!