Scaling Up PyG

Manan Shah (manan@kumo.ai)
Dong Wang (dong@kumo.ai)

»

L\ Graph Learning: An Architectural Blueprint

e Graph Neural Networks (GNNs) operate on a
graph (nodes and edges) and features
(tensors) for the elements in the graph
o Message passing performs scatter/gather Sraph and foatures stored
operations on feature tensors, between together in CPU DRAM.
node space and edge space

e Scaling to data larger than GPU VRAM requires
training on sampled subgraphs instead of the

entire graph .\I
o Adds stochasticity, but reduces GPU

memory requirements to those of the ,
Sampled subgraphs and corresponding
Samp|ed su bg raphs features passed to GPU VRAM.

Graph Learning: An Architectural Blueprint

Training on sampled subgraphs is great! But it's often not enough...
o Acquiring instances with enough CPU DRAM to store a graph and features is hard

o Data parallelism requires replicating the graph and features in each compute node

o Graphs and features can easily be much larger than the memory of a single
machine

Scalability to very large graphs and features requires moving these data

structures out-of-core and only processing sampled subgraphs on a compute
node

o Features are stored in a key-value feature store, supporting efficient random
access

o Graph information is stored in a graph store, supporting efficient sampling

L\ Graph Learning: An Architectural Blueprint

1:10.1,0.3,0.9, 4.2, ..., 0.3]
e Separation of the feature and graph store 2:102,1.7,1.4,24, ..., 0.6]

3:[0.1,0.1,3.9,25, ..., 0.1]
allows for independent scale-out:
o We are no longer constrained to
single-node, in-memory datasets
o The graph and feature stores can be
independently partitioned, replicated, and Distributed Storage
stored in optimized formats Training Instance

n:[0.4,0.5,0.2,1.2, ..., 0.1]

Graph Store: nodes and edges. Feature store: node and edge tensors

[0.1,0.1,3.9, 2.5, ..., 0.1]

e Sampled subgraphs are now computed by [02,17,14,24,...,06]
sampling from the graph store and joining

. [0.1,0.3,0.9,4.2, ...,0.3]
samples with features from the feature store

o Each training node only requires enough Sampled subgraph, joined with
features; all that is necessary for
memory to store sampled data GPU forward/backward.

Graph Learning:

PyG 2.2 moves towards an
architecture defining a
feature store and graph
store, unified behind a
common interface

This architecture is
extensible, generalizable,
and integrates seamlessly
with the PyG you know
and love

Training Instance

[0.1,0.1,3.9, 25, ..., 0.1]

[0.2,1.7, 1.4, 2.4, ..., 0.6]

An Architectural Blueprint

1:[0.1,0.3,0.9,4.2, ...,0.3]
2:[0.2,1.7,1.4,24, ..., 0.6]
3:[0.1,0.1,3.9, 25, ..., 0.1]

n:[0.4,0.5,0.2,1.2, ..., 0.1]

Graph Store: stores all Feature store: stores all node and
edge_index tensors of a graph edge attributes (x, y, edge attr,
etc.)

Distributed Storage

Data (
edge index=[2, 3],
x=[3, 10]

[0.1,0.3,0.9,4.2, ..., 0.3]

Sampled subgraph: a Data or
HeteroData object containing
sampled edges and features 5

Graph Learning: An Architectural Blueprint

There are four key
abstractions that enable
this effort: the feature
store, graph store,
sampler, and data loader

The data loader
orchestrates feature
fetching and sampled
subgraph generation by
querying relevant stores

Feature Store. Can be replicated
and partitioned, invisible to
application. Requires efficient GET
and MULTIGET operations.

data/feature store.py

(3) sampled
nodes

(1) root nodes,
sample parameters nodes

Graph Store. Can be replicated and
partitioned, invisible to application.
Requires efficient sample-specific

data/graph store.py

operations, defined by the developer.

(2) sampled

(4) features for
sampled nodes

Sampler. Developer-defined function
sampling subgraphs: often directly
calls a graph store’s sampling op.

sampler/base.py

loader/node_ loader.py
loader/link loader.py

Data Loader. Lives on the accelerator (compute) node. Fetches samples from
the graph store through the sampler, features for those samples from the feature
store, and constructs [Hetero] Data objects (like a database JOIN) to pass to
the accelerator for forward/backward passes.

)
N7

The Graph Store and Sampler

A graph store stores graph edge indices in a manner
conducive to efficient sampling
o Requires GET, PUT, and sample-specific ops

A graph sampler operates on a graph store to sample a

subgraph from root nodes and related parameters

o Implements logic to sample from a graph store (e.g. calling
sample-specific ops).
o We do not define a DSL

The physical location, replication, partitioning, and other
implementation details of the store are abstracted from PyG.

o Ex: METIS-partitioned graphs, stores with pre-generated sampled
subgraphs, etc.

Graph Store. Can be replicated and
partitioned, invisible to application.
Requires efficient sample-specific
operations, defined by developer.

data/graph store.py

(1) root nodes,

sample parameters (2) sampled nodes

Sampler. Developer-defined function
sampling subgraphs: often directly
calls a graph store’s sampling op.

sampler/base.py

The Feature Store

A feature store stores features for the nodes and
edges of a graph

o Feature storage is often a primary storage bottleneck in
graph learning applications, as storing a graph edge
index is relatively cheap

o Requires PUT and efficient random access GET

Like the graph store, implementation details of
the feature store are abstracted from PyG
through a CRUD-like interface

Feature Store. Can be replicated
and partitioned, invisible to
application. Requires efficient GET
and MULTIGET operations.

data/feature store.py

(4) features for

(3) sampled nodes sampled nodes

Loader. As described in Slide 48.

‘(ﬁh The Data Loader

e A PyG data loader is built upon a sampler, graph store, and feature store. It:

o Generates a batch of input nodes and requests sampled subgraphs from the sampler, and in turn
the graph store

Collates sampled nodes and requests associated node and edge features from the feature store

Constructs PyG-native data objects from these data to perform forward/backward and weight
updates

e The PyG data loader handles all interactions between PyG and remote
backends.
o This includes multi-process data loading, prefetching within each process, and communication
with the feature and graph stores.

o PyG end users only need to care about the data loader interface; once a feature store, graph
store, and sampler are specified, PyG behaves just as it would on a single node!

Putting it all together in PyG

feature_store = MyFeatureStore()

paper_features = ...
author_features = ...

feature_store['paper', 'x', None] = paper_features
feature_store['author', 'x', None] = author_features

Adding features to a custom feature store is easy: just define the store, and let PyG
handle the syntactic sugar

Internally, put tensor may make an RPC call to store data remotely, invisible to the
user

10

Putting it all together in PyG

@]
graph_store = MyGraphStore()

paper_to_author = ...
paper_to_paper = ...

graph_store.put_edge_index(
paper_to_author,

edge_type=(‘'author', 'writes', 'paper'),
layout="'coo'

)

graph_store.put_edge_index(
paper_to_paper,
edge_type=('paper', 'cites', 'paper'),
layout="coo'

Adding edges is just as simple: specify the edge tensor, type, and layout, and the custom
graph store’s implementation details are abstracted away.

11

Putting it all together in PyG

feature_store
graph_store = ...

graph_sampler = MyGraphSampler(num_neighbors=[10, 20])

loader = Nodeloader(
data=(feature_store, graph_store),
node_sampler=graph_sampler,
batch_size=20,
input_nodes='paper',

for batch in loader:

Training brings it all together: NodeLoader manages sampling (with a custom sampler),
communication with the feature and graph store, and other implementation details

12

‘(ija Putting it all together in PyG

e PyG’s remote backend abstractions make working with a distributed feature and graph store
no different from single-node modeling:

o It's easy to store a graph and features out-of-core, and to switch between in-memory
and remote representations

o These abstractions support a wide variety of extensions to PyG (e.g. ahead-of-time
sampling), and enable other axes of parallelism (e.g. multi-node DDP without data
replication)

o Stay tuned: all these features will be publicly launched in PyG 2.2!

e However: performance is critical! Be sure to monitor throughputs of feature fetching,
sampling, and forward/backward when looking for bottlenecks

13

Building a Feature and Graph Store at Scale

In Memory Graph Store + On Disk Feature Store

— ///j\\\
R g2/

© High data volume

A B D

14

Building a Feature and Graph Store at Scale

Optimize Feature Store

O

O

O

Features are stored in protobuf.
Shared feature configuration.
Compact feature representation.

feature {
key: “age”
value { float_list {
value: 29.0

B

}

feature {
key: “name”
value { string_list {
value: “Dreamer”

B
}\/

config {
feature {
name: “age”,
type: FLOAT,

il

feature {
name: “name”,
type: STRING,

|

feature {
float_features {

29.0,1.0,23, ...
'# b }

string_features {
..., ‘Dreamer”

}
}

\/

15

Building a Feature and Graph Store at Scale

Store as a Service

O

O

Communicate via gRPC.
Protobuf to Arrow for columnize
access and feature encoding.
No N/A values for zero-copy to
tensors.

C++ implementation.

Server: features in Protobuf Client: features in Arrow
name age email salary name age email salary
-
J
|
I::>
date loan state date loan state

16

{(é?i‘,‘ Building a Feature and Graph Store at Scale

e |mprove Feature Locality

Features are re-ordered based on
neighbors.

Circle

Triangle

Square

Order in the feature store.

Building a Feature and Graph Store at Scale

e Result
Convert Raw Features to Tensors Speedups Throughput vs Normalized Data Size
4 == Optimized == Basic

Speed up

3

2

—

0.25 0.5 1 2 4

Original Compact Protobuf Zero Copy

®

18

Thank you for listening!

