

Scaling Up PyG

Manan Shah (manan@kumo.ai)

Dong Wang (dong@kumo.ai)

- Graph Neural Networks (GNNs) operate on a graph (nodes and edges) and features (tensors) for the elements in the graph
 - Message passing performs scatter/gather operations on feature tensors, between node space and edge space
- Scaling to data larger than GPU VRAM requires training on sampled subgraphs instead of the entire graph
 - Adds stochasticity, but reduces GPU memory requirements to those of the sampled subgraphs

Sampled subgraphs and corresponding features passed to GPU VRAM.

- Training on sampled subgraphs is great! But it's often not enough...
 - Acquiring instances with enough CPU DRAM to store a graph and features is hard
 - Data parallelism requires replicating the graph and features in each compute node
 - Graphs and features can easily be much larger than the memory of a single machine
- Scalability to very large graphs and features requires moving these data structures out-of-core and only processing sampled subgraphs on a compute node
 - Features are stored in a <u>key-value feature store</u>, supporting efficient random access
 - Graph information is stored in a <u>graph store</u>, supporting efficient sampling

- Separation of the feature and graph store allows for independent scale-out:
 - We are no longer constrained to single-node, in-memory datasets
 - The graph and feature stores can be independently partitioned, replicated, and stored in optimized formats
- Sampled subgraphs are now computed by sampling from the graph store and joining samples with features from the feature store
 - Each training node only requires enough memory to store sampled data

Graph Store: nodes and edges.

1: [0.1, 0.3, 0.9, 4.2, ..., 0.3] 2: [0.2, 1.7, 1.4, 2.4, ..., 0.6] 3: [0.1, 0.1, 3.9, 2.5, ..., 0.1]

n: [0.4, 0.5, 0.2, 1.2, ..., 0.1]

Feature store: node and edge tensors

Distributed Storage

Training Instance

Sampled subgraph, joined with features; all that is necessary for GPU forward/backward.

- PyG 2.2 moves towards an architecture defining a feature store and graph store, unified behind a common interface
- This architecture is extensible, generalizable, and integrates seamlessly with the PyG you know and love

Graph Store: stores all edge_index tensors of a graph

1: [0.1, 0.3, 0.9, 4.2, ..., 0.3] 2: [0.2, 1.7, 1.4, 2.4, ..., 0.6] 3: [0.1, 0.1, 3.9, 2.5, ..., 0.1] ... n: [0.4, 0.5, 0.2, 1.2, ..., 0.1]

Feature store: stores all node and edge attributes (x, y, edge_attr, etc.)

Distributed Storage

Training Instance

Sampled subgraph: a Data or HeteroData object containing sampled edges and features

- There are four key
 abstractions that enable
 this effort: the feature
 store, graph store,
 sampler, and data loader
- The data loader
 orchestrates feature
 fetching and sampled
 subgraph generation by
 querying relevant stores

The Graph Store and Sampler

- A <u>graph store</u> stores graph edge indices in a manner conducive to efficient sampling
 - Requires GET, PUT, and sample-specific ops
- A graph sampler operates on a graph store to sample a subgraph from root nodes and related parameters
 - Implements logic to sample from a graph store (e.g. calling sample-specific ops).
 - We do not define a DSL
- The physical location, replication, partitioning, and other implementation details of the store are abstracted from PyG.
 - Ex: METIS-partitioned graphs, stores with pre-generated sampled subgraphs, etc.

Graph Store. Can be replicated and partitioned, invisible to application. Requires efficient sample-specific operations, defined by developer.

data/graph_store.py

(1) root nodes, sample parameters

(2) sampled nodes

Sampler. Developer-defined function sampling subgraphs: often directly calls a graph store's sampling op.

sampler/base.py

The Feature Store

- A <u>feature store</u> stores features for the nodes and edges of a graph
 - Feature storage is often a primary storage bottleneck in graph learning applications, as storing a graph edge index is relatively cheap
 - Requires PUT and efficient random access GET
- Like the graph store, implementation details of the feature store are abstracted from PyG through a CRUD-like interface

The Data Loader

- A PyG data loader is built upon a sampler, graph store, and feature store. It:
 - Generates a batch of input nodes and requests sampled subgraphs from the sampler, and in turn the graph store
 - Collates sampled nodes and requests associated node and edge features from the feature store
 - Constructs PyG-native data objects from these data to perform forward/backward and weight updates
- The PyG data loader handles all interactions between PyG and remote backends.
 - This includes multi-process data loading, prefetching within each process, and communication with the feature and graph stores.
 - PyG end users only need to care about the data loader interface; once a feature store, graph store, and sampler are specified, PyG behaves just as it would on a single node!


```
feature_store = MyFeatureStore() # or HeteroData, if in-memory

paper_features = ... # [num_papers, num_features_paper]
author_features = ... # [num_authors, num_features_author]

# Add the features, specifying node type and attribute name. This # calls MyFeatureStore.put_tensor(...):
feature_store['paper', 'x', None] = paper_features
feature_store['author', 'x', None] = author_features
```

- Adding features to a custom feature store is easy: just define the store, and let PyG
 handle the syntactic sugar
- Internally, put_tensor may make an RPC call to store data remotely, invisible to the user


```
graph_store = MyGraphStore() # or HeteroData, if in-memory
paper_to_author = ... # [2, num_edges_writes]
paper_to_paper = ... # [2, num_edges_cites]
graph_store.put_edge_index(
    paper_to_author,
    edge type=('author', 'writes', 'paper'),
    layout='coo'
graph_store.put_edge_index(
    paper_to_paper,
    edge_type=('paper', 'cites', 'paper'),
    layout='coo'
```

• Adding edges is just as simple: specify the edge tensor, type, and layout, and the custom graph store's implementation details are abstracted away.


```
feature_store = ... # as previous
graph_store = ... # as previous
graph sampler = MyGraphSampler(num neighbors=[10, 20])
loader = NodeLoader(
   data=(feature_store, graph_store),
   node sampler=graph sampler,
   batch size=20,
    input nodes='paper',
for batch in loader:
```

Training brings it all together: NodeLoader manages sampling (with a custom sampler), communication with the feature and graph store, and other implementation details

- PyG's remote backend abstractions make working with a distributed feature and graph store no different from single-node modeling:
 - It's easy to store a graph and features out-of-core, and to switch between in-memory and remote representations
 - These abstractions support a wide variety of extensions to PyG (e.g. ahead-of-time sampling), and enable other axes of parallelism (e.g. multi-node DDP without data replication)
 - Stay tuned: all these features will be publicly launched in PyG 2.2!
- However: performance is critical! Be sure to monitor throughputs of feature fetching, sampling, and forward/backward when looking for bottlenecks

• In Memory Graph Store + On Disk Feature Store

- Fast access
- Random lookup

- High data volume
- High throughput

- Optimize Feature Store
 - Features are stored in protobuf.
 - Shared feature configuration.
 - Compact feature representation.

Store as a Service

- Communicate via gRPC.
- Protobuf to Arrow for columnize access and feature encoding.
- No N/A values for zero-copy to tensors.
- C++ implementation.

Improve Feature Locality

Features are re-ordered based on neighbors.

Result

Thank you for listening!