Progress and Future

Matthias Fey |
matthias@pyg.org
https://pyg.org conda 1nstall pyg -c pyg

0)/pyg-team/pytorch—-geometric

Graph Neural Networks

Message Passing Scheme

. v Generalization of any neural network architecture
v/ Data-dependent computation

A

From CNNs to GNNs From Transformers to GNNs
Message Passing via continuous kernels Message Passing within a fully-connected graph

A new paradigm of how we define neural networks!

lhes

Graph Neural Networks

Implementing Graph Neural Networks is challenging

e Sparsity and irregularity of the underlying data
How can we effectively parallelize irregular data of potentially varying size?

e Heterogeneity of the underlying data
numerical, categorical, image and text features, potentially over different types of data

e [nherently dynamic
It Is hard to find scenarios in which graphs will nhot change over time

e Various different requests on scalability
sparse vs. dense graphs, many small vs. single giant graphs, ...

e Applicability to a set of diverse tasks
node-level vs. link-level vs. graph-level, clustering, pre-training, self-supervision, ...

PyTorch Geometric

& PyG (PyTorch Geometric) is the OPyTorch library to unify

deep learning on graph-structured data

v/ simplifies implementing and working with Graph Neural Networks
v/ bundles state-of-the-art GNN architectures and training procedures
v/ achieves high GPU throughput on sparse data of varying size

v suited for both academia and industry
flexible, comprehensive, easy-to-use

Design Principles

Graph Transformations
& Augmentations

Graph-based Neural
Network Building Blocks

_ v Graph iffusion
Message Passing layers v Missing feature value imputation

Normalization layers v Mesh and Point Cloud support
Pooling & Readout layers

Examples & Tutorials

In-Memory Graph StOrage: v/ Learn practically about GNNs

Datasets & Loaders v Videos, Colabs & Blogs

v/ Application-driven Graph ML Tutorials
v Support for heterogeneous graphs

v 200+ benchmark datasets
v/ 10+ sampling techniques Stanford CS224W Graph ML Tutorials

Design Principles

& PyG is highly modular
dataset = Reddit(root_dir, transform) v/ Access to 200+ datasets and 50+ transforms

loader = NeighborLoader(dataset, num_neighbors=[25, 10]) v Access to a Var/'ety of mini-batch loaders
Node-wise sampling, Subgraph-wise sampling, graph-wise batching
class GNN(torch.nn.Module):

dof init (self): v Access to 80+ GNN layers, normalizations and
self.convl = SAGEConv(F in, F _hidden) readouts as neural network bUIldlng blocks
self.conv2 = SAGEConv(F_hidden, F _out) SAGEConv, GCNConv, GATConv, GINConv, PNAConvy, ...
def forward(x, edge index): and
= self.convl(x, edge index) 20+ pre_defined models
= x.retu() GraphSAGE, GCN. GAT. GIN, PNA SchNet, DimeNet, ...

= self.conv2(x, edge index)
return X

data in loader: v Access to regular OPyTorch loss functions and

data = data.to(device) training routines

out = model(data.x, data.edge index) Classification, Regression, Self-Supervision, ...
loss = criterion(out, data.y) NOde—level, Link—level, Graph—level

loss.backward()

optimizer.step()

Design Principles

& PyG is OPyTorch-on-the-rocks

v & PyG Is framework-specific
allows us to make use of recently released features right away
TorchScript for deployment, torch. fx for model transformations

v & PyG keeps design principles close to vanilla OPyTorch
If you are familiar with PyTorch, you already know most of & PyG

v & PyG fits nicely into the (O PyTorch ecosystem
Scaling up models via @PyTorch Lightning
Explaining models via @ Captum

Ecosystem

The & PyG ecosystem

‘ ‘ PvTo rCh D/ig N Ca=—=(], ’X.X\ Py'l'orch Geometric
) 1ve§ﬁ€c§f:;’raphs ® va

Geometric Temporal PV @ Signed Directed

m Quiver =<PyGOD Grap

... and many more!

e —

—o

Progress and Future

N N

Timeline

Principled Aggregations
Scalable Link Prediction v Accelerations

FAST GRAPH REPRESENTATION

@ g Sl
[HARNING WITH v @ Stanford Partnership Temporal Samplers v Scalability
PyTORCH GEOMETRIC v Heterogeneous GNNSs v
Paper Release & PyG 2.0 Release & PyG 2.1 Release & PyG 2.2 Release
March'19 Sep'21 Aug'22 Nov'22
Open-Sourced OB Collaboration Partnership Acquisition
Nov'17 Feb'20 ‘21

v Po Kumo.Al Partnership
v <4 NVIDIA Partnership

v B Intel Partnership

10

Announcements

Major Architecture Change

A new GNN engine: & pyg-11b

Joint effort across many different partners

New Optimizations

Improved scalability
and
pluggable graph
backend support

Improved GNN design
E

principled aggregations

Announcements

Major Architecture Change

A new GNN engine: & pyg-11b

Joint effort across many different partners

(O PyTorch
& pyg-1ib

& PyG

zs
{ Y
IS,
\ /

Accelerating PyTorch Geometric

& pyg—1ib: A unified GNN engine for
optimized low-level graph routines

O /pyg-team/pyg-1lib

v Joint effort of
P Kumo, <ANVIDIA, B Intel & OPyTorch

v/ Accelerating graph sampling routines
v/ Accelerating heterogeneous GNNs
v/ Accelerating sparse aggregations

v/ Speed-ups with no line of code change

13

Accelerating Heterogeneous GNNs

& PyG 2.0 integrated heterogeneous graph and GNN support

v/ HeteroData: in-memory storage
v Metapath transformations

v Heterogeneous graph samplers
v/ Heterogeneous GNN layers

v Lazy initialization to elegantly support
feature dimensions of varying size

v to_hetero(): A principled way to bring
recent advancements of GNNs to
heterogeneous graphs right away

to hetero(model)

Duplicate message passing modules

GNN layer GNN layer GNN layer

oI o i@
edge type 1 I edge type 2 I edge type 3
Group output by destination type

14

Accelerating Heterogeneous GNNs

to_hetero() is a powerful tool but lacks parallelism across edge types

& pyg—1ib supports concurrent

2
type-dependent transformations via)
<4 NVIDIA CUTLASS integration £ 1.5
CC)
v Flexible to implement most g 1 -
heterogeneous GNN operators with £ 0.5 8 -lib
v Efficient, even on sparse types or 0

on a large number of types 128 256 512 1024
#node types

Find out more in the Accelerating & PyG with <<3 NVIDIA GPUs talk /ater!

15

Accelerating Graph Samplers

& pyg—-1ib leverages a variety of
techniques to further accelerate
neighbor sampling routines

v’ Pre-allocation of random numbers

v Vector-based mapping of nodes
for smaller node types

v Faster hashmap implementation

v 10x to 15x speed-ups

Find out more in the Accelerating

P —
i
-

DIMACS10 CiteSeer
100
o 80
E
- 60
O
*g 40
>
w20
0 [] []] I |]
512 1024 2048 512 1024 2048
batch size batch size

W PyG M pyg-1ib

PyG with [Intel CPUs talk /ater!

16

Announcements

New Optimizations

Improved GNN design

via
principled aggregations

Choice of neighborhood aggregation is a central topic in Graph ML research

W W - -
- T~
® O *e &> . >
W W W W
Input sum - multiset mean - distribution

Xu et al.: How Powerful Are Graph Neural Networks?

max - set

Permutation (SoftMaxSum
Invariant SoftMax
Aggregators Su Mean Max o Min

PowerMean

@rMeanSum

Li et al.: Deeper-GCN: All You Need to Train Deeper GCNs

Performance

Principled Aggregations

O
\ /Omumpue

ampllflcatlon
attenuation

O aggregators scalers MLP Q
mean [identity

/\
Qo

Corso et al.: Principal Neighborhood Aggregation for Graph Nets

ogbn—-proteins ogbn—products

-

”
-
"
-

’f
”
-

(D)

PPt O

ek e TE T S

- ol é e -
/'/ qg \\\\\\ '’
A sum & | A Sum)
- . Mean . Mean
@ Max @ Vax

% PowerMean _ * PowerMean

Number of layers Number of Iayers

18

Principled Aggregations

& PyG makes the concept of
aggregations a first-class principle

mean_aggr = aggr.MeanAggregation()
max_aggr = aggr.MaxAggregation()
v/ Access to all kinds of simple, advanced,

learnable and exotic aggregations

median_aggr = aggr.MedianAggregation() .]
Median, Softmax, Attention, LSTM, ...

softmax_aggr = aggr.SoftmaxAggregation(learn=True) v Fully-customize and combine aggregations
powermean_aggr = aggr.PowerMeanAggregation(learn=True) within MessagePassing or for global pooling

v/ Aggregations will pick up the best format

to accelerate computation
scatter reductions, degree bucketing, ...

lstm_aggr = aggr.LSTMAggregation()
sort_aggr = aggr.SortAggregation(k=4)

oy o [veemasmnedion aae, st aaaell v/ Further optimization via fusion possible (TBD)

h egraph = sort aggr(h_node, batch)

Principled Aggregations

The different flavors of implementing aggregations

A'@ =
V| v V D -V V| V| V|
Gather & Scatter Sparse MatMul Degree Bucketing Individual Kernel
» very flexible & e less flexible @ e any aggregation & « not flexible at all @
o fast for sparse graphs & e« very fast & e memory-inefficient @ o memory-efficient &
e memory-inefficient @ « memory-efficient @ e padding/seq. iteration @ « very fast &

& PyG >=0.1 & PyG >=1.6 & PyG >=2.1 & PyG >=2.2

Announcements

New Optimizations

Improved scalability
and
pluggable graph

backend support

Scalable Link Prediction

& PyG simplifies implementing scalable link prediction tasks

® v/ Separation between message passing
edges edge_1index and supervision

data = Reddit(root dir) edges edge label index

train_data, _, _ = RandomLinkSplit(data) , ,
v/ Only minor changes required to

train_loader = LinkNeighborLoader(auto-scale your link prediction model

train_data, num_neighbors=[25, 10])

v/ Sampler creates a unified subgraph by
for train data 1n train loader: Sampling from both endpoints

h = model.encode(train data.x, train_data.edge _index)
pred = model.decode(h, train_data.edge label _index)

loss = criterion(pred, train_data.edge label)

-
-
-
-
-
-
-
-

Supervision
Message Passing

Out-of-Memory and Distributed Backend Support

Previously, & PyG was limited to single-node in-memory datasets

class MyFeatureStore(FeatureStore):
def get_tensor(self, attr):
Pass

class MyGraphStore(GraphStore):

def sample_from_nodes(self, index):

PDAsSs

def sample_from_edges(self, index):

With & PyG, we aim to support any
backend by providing FeatureStore
and GraphStore abstractions

v/ Disentangles feature fetching from
graph sampling routines

v Allows for distributed server/client
architectures

v/ Allows for out-of-memory backends,
e.g., Via memory-mapped I/O or by
connecting to graph databases

23

Additional Highlights

Automatic Mixed Precision

with torch.*.amp.autocast():
out = model(data.x, data.edge_index)

Explainability

©) Captum

Explain predictions across any
GNN model, dataset, and task
out-of-the-box

Temporal Graph Samplers

loader = NeighborLoader(
data, num_neighbors=[25, 10], time=...

Model Milestones

v Deep GNNs with 7000+ layers

Li et al.: Training Graph Neural Networks with 1000 Layers

v/ GNNs on heterophily graphs

Lim et al.: Large Scale Learning on Non-Homophilous Graphs: New
Benchmarks and Strong Simple Methods

v/ ... and many more!

)

24

o
<F
\ 7/

AN N O N N NN

Conclusion

80+ GNN architectures

200+ benchmark datasets

50+ graph transformations

Dedicated sparsity-aware CUDA kernels
Multi-GPU support

Support for scalability techniques
Heterogeneous graph support

GNN Design Space Exploration

We are constantly encouraged

to make & PyG even better!

conda 1install pyg -c pysg

I 4

PyG bundles the state-of-the-art in Graph Representation Learning

s tu R < [

team@pyg.org
https://pyg.org
¢)/pyg-team/pytorch—geometric

license M

vV

PRs welcome

