

PyG Progress and Future

Matthias Fey
matthias@pyg.org
https://pyg.org

//pyg-team/pytorch-geometric

Graph Neural Networks

Message Passing Scheme

- Generalization of any neural network architecture
- Data-dependent computation

A new paradigm of how we define neural networks!

From CNNs to GNNs
Message Passing via continuous kernels

From Transformers to GNNs

Message Passing within a fully-connected graph

Graph Neural Networks

Implementing Graph Neural Networks is challenging

- Sparsity and irregularity of the underlying data
 How can we effectively parallelize irregular data of potentially varying size?
- Heterogeneity of the underlying data numerical, categorical, image and text features, potentially over *different* types of data
- Inherently dynamic
 it is hard to find scenarios in which graphs will not change over time
- Various different requests on scalability sparse vs. dense graphs, many small vs. single giant graphs, ...
- Applicability to a set of *diverse* tasks node-level *vs.* link-level *vs.* graph-level, clustering, pre-training, self-supervision, ...

PyTorch Geometric

PyG (PyTorch Geometric) is the OpyTorch library to unify deep learning on graph-structured data

- simplifies implementing and working with Graph Neural Networks
- ✓ bundles state-of-the-art GNN architectures and training procedures
- achieves high GPU throughput on sparse data of varying size
- suited for both academia and industry flexible, comprehensive, easy-to-use

Design Principles

Graph-based Neural Network Building Blocks

- Message Passing layers
- ✓ Normalization layers
- Pooling & Readout layers
- **/** ...

In-Memory Graph Storage, Datasets & Loaders

- ✓ Support for heterogeneous graphs
- ✓ 200+ benchmark datasets
- ✓ 10+ sampling techniques

Graph Transformations & Augmentations

- Graph iffusion
- Missing feature value imputation
- Mesh and Point Cloud support

Examples & Tutorials

- Learn practically about GNNs
- ✓ Videos, Colabs & Blogs
- Application-driven Graph ML Tutorials

Stanford CS224W Graph ML Tutorials

Design Principles

```
dataset = Reddit(root_dir, transform)
loader = NeighborLoader(dataset, num_neighbors=[25, 10])
class GNN(torch.nn.Module):
    def __init__(self):
        self.conv1 = SAGEConv(F_in, F_hidden)
        self.conv2 = SAGEConv(F_hidden, F_out)
    def forward(x, edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        x = self.conv2(x, edge_index)
        return x
for data in loader:
    data = data.to(device)
    out = model(data.x, data.edge_index)
    loss = criterion(out, data.y)
    loss.backward()
    optimizer.step()
```

PyG is highly modular

- Access to 200+ datasets and 50+ transforms
- Access to a variety of mini-batch loaders
 Node-wise sampling, Subgraph-wise sampling, graph-wise batching
- Access to 80+ GNN layers, normalizations and readouts as neural network building blocks SAGEConv, GCNConv, GATConv, GINConv, PNAConv, ...

and

20+ pre-defined models
GraphSAGE, GCN, GAT, GIN, PNA, SchNet, DimeNet, ...

Access to regular OPyTorch loss functions and training routines

Classification, Regression, Self-Supervision, ... Node-level, Link-level, Graph-level

Design Principles

PyG is OPyTorch-on-the-rocks

- ✓ ❤️ PyG is framework-specific allows us to make use of recently released features right away TorchScript for deployment, torch.fx for model transformations
- ✓ W PyG keeps design principles close to vanilla O PyTorch
 If you are familiar with PyTorch, you already know most of W PyG
- ✓ ❤️ PyG fits nicely into the ☼ PyTorch ecosystem
 Scaling up models via ઐ PyTorch Lightning
 Explaining models via ⑨ Captum

Ecosystem

The PyG ecosystem

... and *many* more!

PyG
Progress and Future

Timeline

FAST GRAPH REPRESENTATION
LEARNING WITH
PYTORCH GEOMETRIC

- Stanford Partnership
 - **Heterogeneous** GNNs
- Principled Aggregations
- Scalable Link Prediction
- ✓ Temporal Samplers
- **/** ...

- Accelerations
- Scalability
- **/** ...

Paper Release
March'19

PyG 2.0 Release Sep'21

PyG 2.1 Release
Aug'22

PyG 2.2 Release
Nov'22

Open-Sourced Nov'17

Partnership Acquisition '21

✓ Kumo.Al Partnership

✓ **NVIDIA** Partnership

✓ Intel Partnership

Announcements

Major Architecture Change

A new GNN engine: pyg-lib

Joint effort across many different partners

New Optimizations

Improved GNN design via
principled aggregations

Improved scalability

and

pluggable graph
backend support

Announcements

Major Architecture Change

A new GNN engine: pyg-lib

Joint effort across many different partners

New Optimizations

Improved GNN design via
principled aggregations

Improved scalability

and

pluggable graph
backend support

Accelerating PyTorch Geometric

pyg-lib: A unified GNN engine for optimized low-level graph routines

n/pyg-team/pyg-lib

- ✓ Joint effort of Kumo, Intel & OPyTorch
- Accelerating graph sampling routines
- Accelerating heterogeneous GNNs
- Accelerating sparse aggregations
- ✓ Speed-ups with no line of code change

Accelerating Heterogeneous GNNs

PyG 2.0 integrated heterogeneous graph and GNN support

- HeteroData: in-memory storage
- Metapath transformations
- Heterogeneous graph samplers
- Heterogeneous GNN layers
- Lazy initialization to elegantly support feature dimensions of varying size
- to_hetero(): A principled way to bring
 recent advancements of GNNs to
 heterogeneous graphs right away

Accelerating Heterogeneous GNNs

to_hetero() is a powerful tool but lacks parallelism across edge types

- pyg-lib supports concurrent
 type-dependent transformations via
 NVIDIA CUTLASS integration
- Flexible to implement most heterogeneous GNN operators with
- Efficient, even on sparse types or on a large number of types

Find out more in the Accelerating PyG with NVIDIA GPUs talk later!

Accelerating Graph Samplers

pyg-lib leverages a *variety* of techniques to further accelerate neighbor sampling routines

- ✓ Pre-allocation of random numbers
- Vector-based mapping of nodes for smaller node types
- Faster hashmap implementation
- \checkmark 10x to 15x speed-ups

Find out more in the Accelerating PyG with Intel CPUs talk later!

Announcements

Major Architecture Change

A new GNN engine: pyg-lib

Joint effort across many different partners

New Optimizations

Improved GNN design via
principled aggregations

Improved scalability

and

pluggable graph
backend support

Principled Aggregations

Choice of neighborhood aggregation is a central topic in Graph ML research

Xu et al.: How Powerful Are Graph Neural Networks?

Corso et al.: Principal Neighborhood Aggregation for Graph Nets

Li et al.: Deeper-GCN: All You Need to Train Deeper GCNs

Principled Aggregations

```
# Simple aggregations:
mean_aggr = aggr.MeanAggregation()
max_aggr = aggr.MaxAggregation()
# Advanced aggregations:
median_aggr = aggr.MedianAggregation()
# Learnable aggregations:
softmax_aggr = aggr.SoftmaxAggregation(learn=True)
powermean_aggr = aggr.PowerMeanAggregation(learn=True)
# Exotic aggregations:
lstm_aggr = aggr.LSTMAggregation()
sort_aggr = aggr.SortAggregation(k=4)
# Use within message passing:
conv = MyConv(aggr=[median_agr, lstm_aggr])
# Use for global pooling:
h_graph = sort_aggr(h_node, batch)
```

PyG makes the concept of aggregations a first-class principle

- Access to all kinds of simple, advanced, learnable and exotic aggregations Median, Softmax, Attention, LSTM, ...
- Fully-customize and combine aggregations within MessagePassing or for global pooling
- Aggregations will pick up the best format to accelerate computation scatter reductions, degree bucketing, ...
- ✓ Further optimization via fusion possible (TBD)

Principled Aggregations

The different flavors of implementing aggregations

$$\mathbf{A}^{ op}$$
 @ $=$ $|\mathcal{V}|$

Gather & Scatter

- very flexible 😄
- fast for sparse graphs 🤐
- memory-inefficient 6

Sparse MatMul

- less flexible 📦
- very fast
- memory-efficient 😄

Degree Bucketing

- any aggregation
- memory-inefficient 6
- padding/seq. iteration 😭

Individual Kernel

- not flexible at all 60
- memory-efficient 😂
- very fast

Announcements

Major Architecture Change

A new GNN engine: pyg-lib

Joint effort across many different partners

New Optimizations

Improved GNN design via
principled aggregations

Improved scalability

and

pluggable graph
backend support

Scalable Link Prediction

PyG simplifies implementing scalable link prediction tasks

```
data = Reddit(root_dir)
train_data, _, _ = RandomLinkSplit(data)
train_loader = LinkNeighborLoader(
    train_data, num_neighbors=[25, 10])
for train_data in train_loader:
    h = model.encode(train_data.x, train_data.edge_index)
    pred = model.decode(h, train_data.edge_label_index)
    loss = criterion(pred, train_data.edge_label)
```

- Separation between message passing edges edge_index and supervision edges edge_label_index
- Only minor changes required to auto-scale your link prediction model
- Sampler creates a unified subgraph by sampling from both endpoints

Out-of-Memory and Distributed Backend Support

Previously, PyG was limited to single-node in-memory datasets

```
class MyFeatureStore(FeatureStore):
   def get_tensor(self, attr):
        pass # Implement feature access
class MyGraphStore(GraphStore):
   def sample_from_nodes(self, index):
        pass # Implement node-wise sampling
   def sample_from_edges(self, index):
        pass # Implement edge-wise sampling
```

With PyG, we aim to support any backend by providing FeatureStore and GraphStore abstractions

- Disentangles feature fetching from graph sampling routines
- Allows for distributed server/client architectures
- Allows for out-of-memory backends, e.g., via memory-mapped I/O or by connecting to graph databases

Find out more in the Scaling-up PyG talk later!

Additional Highlights

Automatic Mixed Precision

```
with torch.*.amp.autocast():
   out = model(data.x, data.edge_index)
```

Temporal Graph Samplers

```
loader = NeighborLoader(
   data, num_neighbors=[25, 10], time=...)
```

Explainability

Explain predictions across any GNN model, dataset, and task out-of-the-box

Model Milestones

- ✓ Deep GNNs with 1000+ layers
 Li et al.: Training Graph Neural Networks with 1000 Layers
- ✓ GNNs on heterophily graphs

 Lim et al.: Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
- ... and many more!

Conclusion

PyG bundles the state-of-the-art in Graph Representation Learning

- ✓ 80+ GNN architectures
- ✓ 200+ benchmark datasets
- √ 50+ graph transformations
- Dedicated sparsity-aware CUDA kernels
- Multi-GPU support
- Support for scalability techniques
- Heterogeneous graph support
- GNN Design Space Exploration

We are constantly encouraged to make **PyG** even better!

team@pyg.org

https://pyg.org

O/pyg-team/pytorch-geometric

license MIT

PRs welcome

conda install pyg -c pyg