Stanford Graph Learning Workshop

Graphs represent objects and their relationships as nodes and edges

Graphs capture relations, which leads to better models.

Jure Leskovec (@jure), Stanford Universi

Graphs in Many Domains

Often most valuable data are graphs:

Transportation

IT industry

Capital Grou

HSBC

Commerce & Retail

Manufacturing

Finance & Insurance

Friends Prov

Today We are Showing

- Research advancements in Graph ML
- PyG ecosystem and partnerships
- Industrial applications
- How these technologies propel advancements of AI and applications of AI to next wave for science and industry
- We are going to announce new tools and partnerships that power these applications

Thank you!

Thank you to all the researchers, developers and partners who join us to make this event amazing.

Welcome to Stanford Graph Learning Workshop!

Deep Learning for Graphs

Each node defines a computation graph

- Each edge is a message function Msg()
- ⊕ is a message aggregation function

Scarselli et al. 2005. <u>The Graph Neural Network Model</u>. *IEEE Transactions on Neural Networks*. Jure Leskovec (@jure), Stanford University

Graph Neural Networks

Graph Neural Networks (GNNs) can learn patterns and relations on a giant scale and train predictive models:

- 1) GNNs learn to combine features from neighboring nodes
- 2) GNNs learn the graph patterns and relations

Key Benefits of GNNs

- GNNs adapt to local shape of data
 - Other methods assume fixed input (matrix, sequence) while GNNs capture local patterns around each node
- GNNs glue together other Neural Network architectures (CNNs, Transformers) and integrate multimodal data

Key Benefits of GNNs

- GNNs are extremely general: They subsume CNNs and Transformers as special cases:
- Example: CNN layer with 3x3 filter

Many Applications of GNNs

Drug discovery

Recommender systems

Customer 360 journey analysis

Fake news detection

Fraud detection

Supply chain optimization

The hottest subfield in ML

ICLR 2022 Submission Top 50 Keywords

CONFERENCE

Learning on Graphs Conference

9th – 12th December 2022 https://logconference.org

Dynamic Financial Networks

Financial Networks: Describe financial entities and their connections

Tasks: Fraud detection, Anti-money laundering, Anomaly detection

ROLAND: Graph Learning Framework for Dynamic Graphs. Jiaxuan You, Tianyu Du, Jure Leskovec. KDD 2022. Jure Leskovec (@jure), Stanford University

Forecasting Transactions

Central Bank of a European country forecasted financial transactions:

Central Bank was able to process dynamic graphs with tens of millions of transactions:

 Robust performance with changes in transaction pattern

ROLAND: Tool for Dynamic Graphs

We developed <u>ROLAND</u>:

 Easy creation of dynamic GNN from any static GNN

Scalable and adaptive training

Key idea: Recurrently update node embeddings *at each layer,* by injecting a new module to a static GNN:

Input:

- Previous embeddings from the same layer
- Current embeddings from the previous layer

Output: Updated embeddings

https://github.com/snap-stanford/roland

ROLAND: Implementation

ROLAND is built with PyG GraphGym to efficiently explore the GNN design space

Design Space for Graph Neural Networks. Jiaxuan You, Rex Ying, Jure Leskovec. NeurIPS 2020 Jure Leskovec (@jure), Stanford University

PyG provides the state-of-the-art in Graph Representation Learning

- pyg-lib: A low-level GNN engine to further accelerate PyG, joint effort across different partnerships
- Improved GNN design via principled aggregations
- New model milestones: Scalable Link prediction, 1000+ layer deep GNNs, GNNs for heterophily graphs, ...

- PyG is the most used Graph Representation Learning framework
- 80+ GNN architectures
- 200+ benchmark datasets
- Extendable via a message passing interface
- Dedicated sparsity-aware CUDA kernels
- Scalable and easy to use

PyG Powers Products

 AIRBUS
 anomaly and outlier detection

 AstraZeneca
 knowledge graph for drug

 discovery

Spotify recommender system for audio books and podcasts

amazon fraud detection

أرامكو السعودية

fluid simulations

Graph ML Case Studies

Deep Learning on 3D Meshes

A learned solution to node-level classification on irregular graphs via graph neural networks.

Anya Fries lan 25 · 7 min read

Predicting Los Angeles Traffic with Graph Neural Networks

By Julie Wang, Amelia Woodward, Tracy Cai as part of the Stanford CS224W course project.

Amelia Woodward an 15 · 14 min read

Alexa, Queue That Banger!

Recommending Spotify Playlist Tracks with Neural Collaborative Filtering Using Graph Machine Learning

Michał Skreta an 15 · 14 min read

Graph ML Tutorials: https://medium.com/stanford-cs224w

Graph Machine Learning tutorials created by Stanford students of CS224W.

Stanford Graph ML Videos

Stanford CS224W: Machine Learning with Graphs on YouTube

https://youtube.com/playlist?list=PLoROMvodv4rPLKxlpqhjhPgdQy7imNkDn

Over 700,000 views

Jure Leskovec (@jure), Stanford University

PYG.ORG:

- ~1600 research papers written using I PyG
- ~100K monthly downloads
- ~300 external contributors/developers
- ~3k members on Slack (Join us: <u>https://data.pyg.org/slack.html</u>)

team@pyg.org https://pyg.org team/pytorch-geometric

Scaling-up Graph Learning

- In real-world applications graph sizes easily reach billions of nodes and edges
- Now with PyG we can learn deep learning models at a giant scale and train a predictive model for a graph

- Graphs contain both the wireframe and rich features on its nodes.
- Scaling up requires distributing this information out-of-core.

Graph	Store:	nodes	and	edges.
-------	--------	-------	-----	--------

Distributed Storage

1: [0.1, 0.3, 0.9, 4.2,, 0.3] 2: [0.2, 1.7, 1.4, 2.4,, 0.6] 3: [0.1, 0.1, 3.9, 2.5,, 0.1]
 n: [0.4, 0.5, 0.2, 1.2,, 0.1]

Feature store: node and edge tensors

 New PyG graph store and PyG feature store abstractions enable modular scalability.

Sampled subgraph, joined with features; all that is necessary for GPU forward/backward.

Partnership with NVIDIA

NVIDIA joins as an official partner to accelerate GPU needs:

- GPU-accelerated neighbor sampling via cugraph integration
- GPU-accelerated heterogeneous GNN execution via typed matrix multiply

Partnership with Intel

Intel joins as an official partner to accelerate CPU needs:

- Accelerated inference of GNNs on the CPU
- Accelerated neighbor sampling techniques (up to 20x speed-ups)

OGB-LSC-2

In 2021 we run OGB-LSC with over

500+ participating teams

 Huge leap forward on model performance

Knowledge Graphs

Knowledge Graph stores facts as triples (h, r, t)

- ('Mona Lisa', 'created_by', 'Leonardo da Vinci')
- ('Fulvestrant', 'causes', 'Migrane')
- ('Fulvestrant', 'treats', 'Breast Neoplasm')

Predictive Queries over KGs

[Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. Ren, et al., ICLR 2020]

KG Reasoning with SMORE

SMORE: Scalable framework for multihop Knowledge Graph reasoning

Scales to full Freebase KG: 86M nodes, 338M edges

https://github.com/google-research/smore

Jure Leskovec (@jure), Stanford University

Graphs & Language Models

Knowledge graphs help train more effective large language models.

Jure Leskovec (@jure), Stanford University

https://arxiv.org/abs/2203.15827

Conclusion

- Today we announce new advances in research, new tools and platforms and exciting partnerships and updates to the PyG ecosystem
- We have an exciting program for you with talks from brightest minds in science and industry

09:30 - 10:00	Matthias Fey, PyG – What's New in PyG	
10:00 - 10:20	Ivaylo Bahtchevanov, PyG – Building PyG Open Source Community	
10:20 - 10:40	Manan Shah & Dong Wang, Kumo.ai – Scaling-up PyG	
11:00 - 11:20	Rishi Puri, Nvidia – Accelerating PyG with Nvidia GPUs	
11:20 - 11:40	Ke Ding, Intel – Accelerating PyG with Intel CPUs	
11:40 - 12:00	Andreas Damianou, Spotify – Podcast Recommendations Spotify	
12:00 - 12:20	Hema Raghavan, Kumo.ai – Query the Future using PyG	
12:20 - 12:30	Joseph Huang, Stanford – Stanford CS LINXS Summer Program	
13:30 - 13:50	Marinka Zitnik, Harvard – Graph AI to Enable Precision Medicine	
13:50 - 14:10	Bryan Perozzi, Google – Challenges and Solutions for GNNs at Google	
14:10 - 14:30	Srijan Kumar, GaTech –GNNs for Web Safety and Integrity	
14:30 - 14:50	Luna Dong, Meta – Graph Mining for Intelligent Assistants	
14:50 - 15:10	Michi Yasunaga, Stanford – Graph Learning in NLP Applications	
 15:30 - 15:50 Weihua Hu, Stanford – Learning Backward Compatible Embeddings 15:50 - 16:10 Hongyu Ren, Stanford – Multi-hop Reasoning in Knowledge Graphs 16:10 - 17:00 Panel – Challenges and Opportunities for Graph Learning •Naren Chittar, JPMorgan Chase (moderator) •Evan Feinberg, Genesis Therapeutics •Yunyao Li, Apple •Neil Shah, Snap •Karthik Subbian, Amazon 		

Logistics

- Q&A: Subscribe to PyG Slack: <u>https://data.pyg.org/slack.html</u> and join <u>#workshop-2022</u>
- Live stream: <u>https://youtu.be/GYW286H3SKw</u>

Thank you!!

Thank you for attending!

Thank you Stanford Data Science Initiative for organizing:

Joseph Huang

Malwana Adalat

Rok Sosic

Ivaylo Buhtchevanov (PyG)