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Benchmarks are Important

▪ Historically…

▪ Computer vision

▪ Natural Language Processing
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Benchmarks are Important

▪ Challenging and realistic benchmark 

has driven methodological innovation.
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Evaluating Graph ML

To advance research in graph ML, it is 

critical for our community to
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develop diverse, challenging, and 

realistic benchmark datasets for 

machine learning on graphs
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Open Graph Benchmark

▪ In May 2020, we introduced OGB:

Realistic and diverse benchmark 

datasets for graph ML
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Webpage: https://ogb.stanford.edu/

Paper: https://arxiv.org/abs/2005.00687

Github: https://github.com/snap-stanford/ogb

Weihua Hu, Stanford University

https://ogb.stanford.edu/
https://arxiv.org/abs/2005.00687
https://github.com/snap-stanford/ogb


Open Graph Benchmark

▪ OGB includes 15 datasets from 

diverse domains and tasks.
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▪ Installation

▪ Data loading + splitting

▪ Evaluation

OGB Python Package
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Leaderboard



Open Graph Benchmark

▪ Many methods have been developed.

▪ Over 450 leaderboard submissions

▪ Drastic accuracy improvement on many 

datasets
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Source: Papers with code

ogbg-molpcba (molecule classification) ogbn-products (product classification)

+4% AP improvement 

over our best baseline

+5% accuracy improvement 

over our best baseline

Date Date



Impact of OGB

▪ As of Sep 28th, 2022

▪ 300K+ total dataset downloads

▪ 350K+ total python package download

▪ 1.5K Github stars

▪ 800+ research papers use OGB
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OGB is Expanding

▪ We actively look for the external 

dataset contributions

▪ Recent contribution: ogbl-vessel by 
Paetzold et al. NeurIPS 2021

▪ Link prediction over the incomplete 

whole brain vessel graph of a mouse.
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Pushing Large-Scale Graph ML

▪ Large-scale graphs are ubiquitous

▪ Billions of nodes and edges.

▪ But they are hard to handle
▪ Training GNNs requires sophisticated 

mini-batching methods.

▪ Embedding parameters can be huge.

▪ Expensive IO, distributed training.

▪ We need an ML challenge to push the 
frontier!
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OGB Large-Scale Challenge

▪ For the ACM KDD Cup 2021, we provided a 

set of three challenging large-scale graph 

datasets
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Webpage: https://ogb.stanford.edu/docs/lsc

Paper: https://arxiv.org/abs/2103.09430

Github: https://github.com/snap-stanford/ogb

https://ogb.stanford.edu/docs/lsc
https://arxiv.org/abs/2103.09430
https://github.com/snap-stanford/ogb


OGB-LSC Stats

▪ Attracted huge attention from the 

community

▪ 500+ registrations across the globe.

▪ 123 teams submitted to the final test 

submission.

▪ Institutions:

▪ Academia: 60%, Industry: 40%
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OGB-LSC Datasets

▪ LSC datasets are orders-of-magnitude 

larger than any exiting datasets

▪ Each dataset is practically relevant
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Node-Level: MAG240M

▪ Heterogeneous academic graph

▪ Task: Predict the subject areas of 

papers situated in the heterogeneous 

graph (node classification)
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Performance Improvement
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Winners

Best baseline

Accuracy: The higher, the better.



Link-Level: WikiKG90M

▪ Knowledge graph

▪ Task: Impute missing triplets (link 

prediction)
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Performance Improvement
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Graph-Level: PCQM4M 

▪ Molecular graphs

▪ Task: Predict an important quantum 

chemistry property, the HOMO-LUMO 

gap, of a given molecule (graph 

regression).
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Performance Improvement
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Overall Observations

▪ Many novel techniques developed for the OGB-

LSC large graphs

▪ New mini-batch sampling techniques for hetero-
generous graphs

▪ New label propagation methods using GNNs.

▪ New knowledge graph embedding models

▪ New self-supervised learning methods for GNNs

▪ Deeper, bigger, and more expressive GNNs

▪ More details are in our OGB-LSC paper: 

https://arxiv.org/abs/2103.09430
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2nd OGB-LSC

▪ The 2nd iteration of OGB-LSC happening 
at the NeurIPS 2022.

▪ Webpage: 
https://ogb.stanford.edu/neurips2022/

▪ Winners and their solutions (code and 
technical report) will be announced on 
late November.
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https://ogb.stanford.edu/neurips2022/


2nd OGB-LSC

▪ Uses the similar three datasets as the 1st

OGB-LSC @ KDD Cup 2021. 

▪ Helps keep track of the progress every 

year 

▪ Similar to the annual ImageNet 

challenge.

▪ Some datasets have been updated to 

be more challenging and realistic.

Jure Leskovec, Stanford University 23



Updates in 2nd OGB-LSC (1)

▪ No candidate sets for link prediction
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all entities (~90M nodes)



Updates in 2nd OGB-LSC (2)

▪ 3D molecular graph provided for 

training molecules 
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Conclusions

▪ We presented OGB and OGB-LSC to 

accelerate research in graph ML.

▪ OGB is expanding with external dataset 

contributions.

▪ We are organizing 2nd OGB-LSC at NeurIPS

2022 to push large-scale graph ML!
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