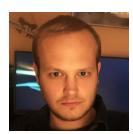


Open Graph Benchmark: Large-Scale Challenge

Weihua Hu

Joint work with Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, Jure Leskovec



Benchmarks are Important

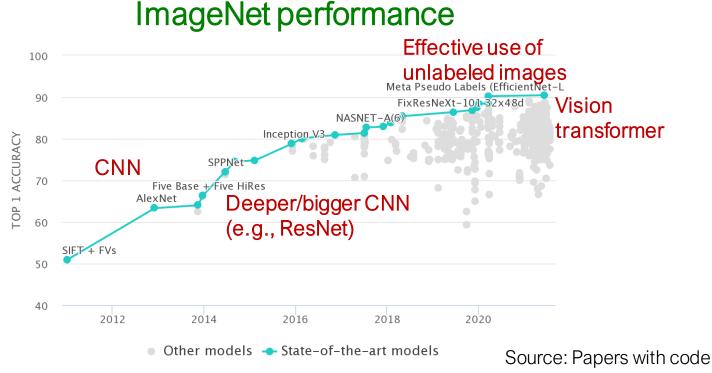
- Historically...
 - Computer vision

GLUE

Natural Language Processing

Benchmarks are Important

 Challenging and realistic benchmark has driven methodological innovation.



Weihua Hu, Stanford University

Evaluating Graph ML

To advance research in graph ML, it is critical for our community to

develop diverse, challenging, and realistic benchmark datasets for machine learning on graphs

Open Graph Benchmark

 In May 2020, we introduced OGB: Realistic and diverse benchmark datasets for graph ML

OPEN GRAPH BENCHMARK

Webpage: <u>https://ogb.stanford.edu/</u> Paper: <u>https://arxiv.org/abs/2005.00687</u> Github: <u>https://github.com/snap-stanford/ogb</u>

Open Graph Benchmark

OGB includes 15 datasets from diverse domains and tasks.

Task							
Domain	Nature	Society	Information				
Small		arxiv					
Medium	proteins	products	mag				
Large		papers100M					
Task	Link property prediction ogbl-						
Domain	Nature	Society	Information				
Small	ddi	collab	biokg				
Medium	рра	citation2	wikikg2				
Large							
Task	Task Graph property prediction						
Domain	Nature	Society	Information				
Small	molhiv						
Medium	molpcba / ppa		code2				
Large							

OGB Python Package

Installation

pip install ogb

Data loading + splitting

from ogb.graphproppred import PygGraphPropPredDataset

```
dataset = PygGraphPropPredDataset(name='ogbg-molhiv')
split_idx = dataset.get_idx_split()
train_idx = split_idx['train']
```

Evaluation

```
from ogb.graphproppred import Evaluator
evaluator = Evaluator(name = 'ogbg-molhiv')
input_dict = {'y_true': y_true, 'y_pred': y_pred}
result_dict = evaluator.eval(input_dict)
```

Leaderboard

Leaderboard for ogbn-arxiv

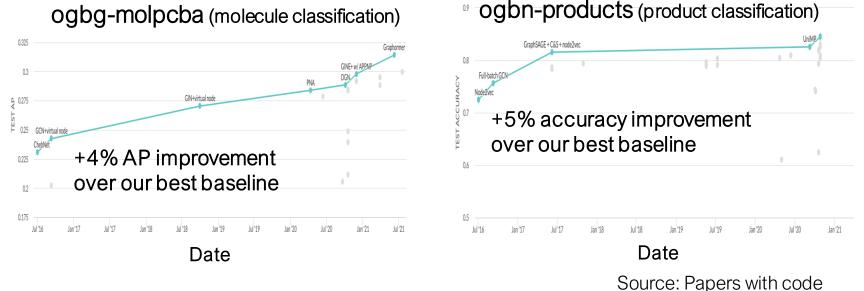
The classification accuracy on the test and validation sets. The higher, the better. Package: >=1.1.1

Rank	Method	Ext. data	Test Accuracy	Validation Accuracy	Contact	References	#Params	Hardware	Date
1	GIANT-XRT+AGDN+BoT+self-KD	Yes	0.7637 ± 0.0011	0.7719 ± 0.0008	Chuxiong Sun	Paper, Code	1,309,760	Tesla V100 (16GB GPU)	Sep 2, 2022
2	GIANT-XRT+DRGAT+KD	Yes	0.7633 ± 0.0008	0.7725 ± 0.0006	anonymous_zhang(anonymous)	Paper, Code	2,685,527	Tesla P100-PCIE-16GB	Jan 14, 2022
3	GIANT-XRT+AGDN+BoT	Yes	0.7618 ± 0.0016	0.7724 ± 0.0006	Chuxiong Sun	Paper, Code	1,309,760	Tesla V100 (16GB GPU)	Sep 2, 2022
4	GIANT-XRT+RevGAT+KD (use raw text)	Yes	0.7615 ± 0.0010	0.7716 ± 0.0009	Eli Chien (UIUC)	Paper, Code	1,304,912	Tesia T4 (16GB GPU)	Nov 8, 2021
5	GIANT-XRT+DRGAT	No	0.7611 ± 0.0009	0.7716 ± 0.0008	anonymous_zhang(anonymous)	Paper, Code	2,685,527	Tesla P100-PCIE-16GB	Jan 17, 2022
6	GIANT-XRT+RevGAT (use raw text)	Yes	0.7590 ± 0.0019	0.7701 ± 0.0009	Eli Chien (UIUC)	Paper, Code	1,304,912	Tesia T4 (16GB GPU)	Nov 8, 2021
7	GIANT-XRT+GraphSAGE (use raw text)	Yes	0.7435± 0.0014	0.7595± 0.0011	Eli Chien (UIUC)	Paper, Code	546,344	Tesla T4 (16GB GPU)	Nov 8, 2021
8	AGDN+BoT+self-KD+C&S	No	0.7431 ± 0.0014	0.7518 ± 0.0009	Chuxiong Sun	Paper, Code	1,513,294	Tesla V100 (16GB GPU)	Jul 22, 2021

Open Graph Benchmark

Many methods have been developed.

- Over 450 leaderboard submissions
- Drastic accuracy improvement on many datasets



Impact of OGB

• As of Sep 28th, 2022

- 300K+ total dataset downloads
- 350K+ total python package download
- 1.5K Github stars
- 800+ research papers use OGB

Benchmark datasets, data loaders, and evaluators for graph machine learning

か MIT license

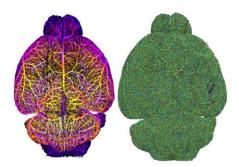
☆ 1.5k stars 🛛 😵 331 forks

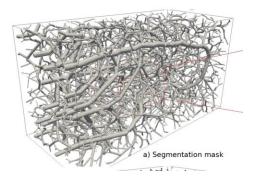
Snap-stanford / ogb Public

[🔗] ogb.stanford.edu

OGB is Expanding

- We actively look for the external dataset contributions
- Recent contribution: ogbl-vessel by Paetzold et al. NeurIPS 2021
 - Link prediction over the incomplete whole brain vessel graph of a mouse.





Pushing Large-Scale Graph ML

- Large-scale graphs are ubiquitous
 - Billions of nodes and edges.
- But they are hard to handle
 - Training GNNs requires sophisticated mini-batching methods.
 - Embedding parameters can be huge.
 - Expensive IO, distributed training.
- We need an ML challenge to push the frontier!

OGB Large-Scale Challenge

 For the ACM KDD Cup 2021, we provided a set of three challenging large-scale graph datasets

Webpage: <u>https://ogb.stanford.edu/docs/lsc</u> Paper: <u>https://arxiv.org/abs/2103.09430</u> Github: <u>https://github.com/snap-stanford/ogb</u>

OGB-LSC Stats

- Attracted huge attention from the community
 - 500+ registrations across the globe.
 - 123 teams submitted to the final test submission.
- Institutions:
 - Academia: 60%, Industry: 40%

OGB-LSC Datasets

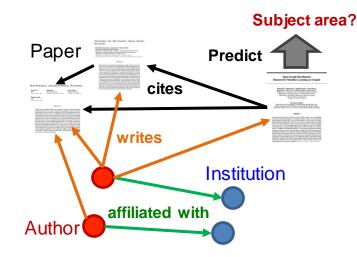
LSC datasets are orders-of-magnitude
 larger than any exiting datasets

Task type	Dataset	Statistics		
Node-level	MAG240M-LSC	#nodes: #edges:	244,160,499 1,728,364,232	
Link-level	WikiKG90M-LSC	#nodes: #edges:	87,143,637 504,220,369	
Graph-level	PCQM4M-LSC	#graphs: #edges (total):	3,803,453 55,399,880	

Each dataset is practically relevant

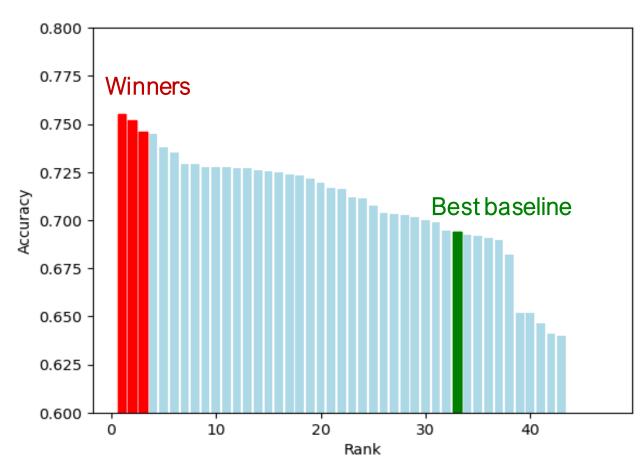
Node-Level: MAG240M

- Heterogeneous academic graph
- Task: Predict the subject areas of papers situated in the heterogeneous graph (node classification)



Performance Improvement

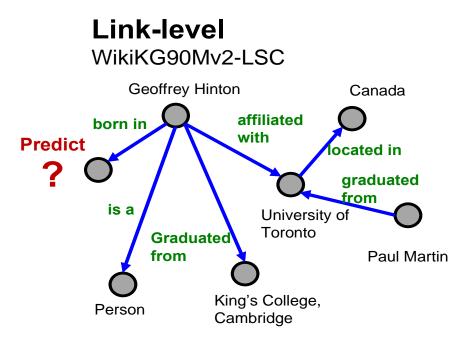
Accuracy: The higher, the better.



Weihua Hu, Stanford University

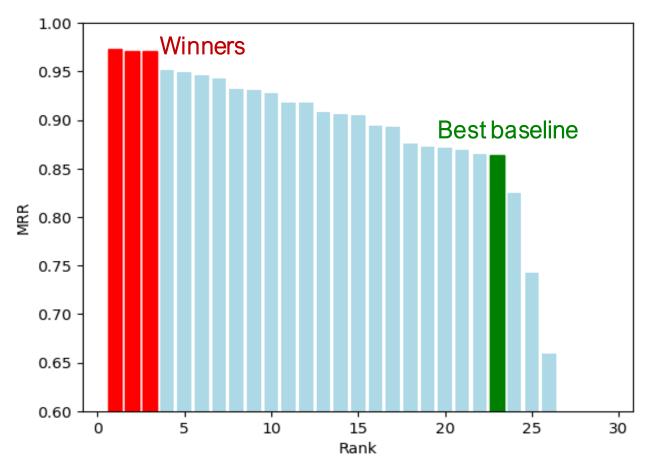
Link-Level: WikiKG90M

- Knowledge graph
- Task: Impute missing triplets (link prediction)



Performance Improvement

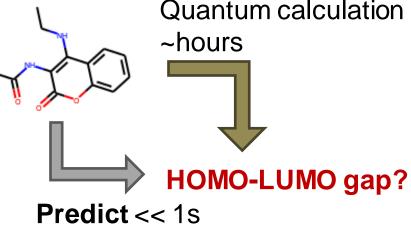
MRR: The higher, the better



Weihua Hu, Stanford University

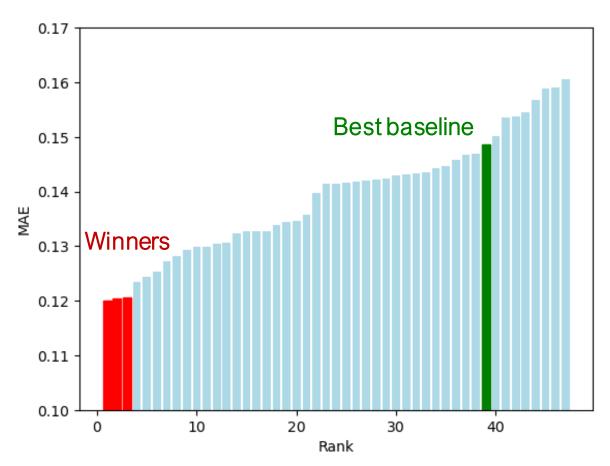
Graph-Level: PCQM4M

- Molecular graphs
- Task: Predict an important quantum chemistry property, the HOMO-LUMO gap, of a given molecule (graph regression).



Performance Improvement

MAE: The lower, the better.



Weihua Hu, Stanford University

Overall Observations

- Many novel techniques developed for the OGB-LSC large graphs
 - New mini-batch sampling techniques for heterogenerous graphs
 - New label propagation methods using GNNs.
 - New knowledge graph embedding models
 - New self-supervised learning methods for GNNs
 - Deeper, bigger, and more expressive GNNs
- More details are in our OGB-LSC paper: <u>https://arxiv.org/abs/2103.09430</u>

2nd OGB-LSC

OGB-LS© @ NeurIPS 2022

— Large – Scale Challenge —

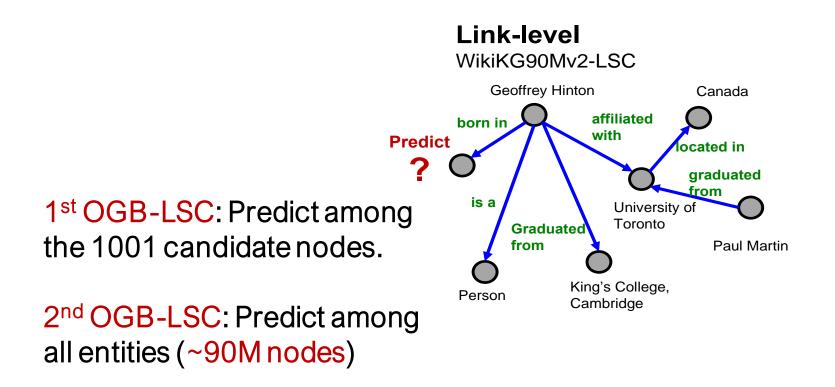
- The 2nd iteration of OGB-LSC happening at the NeurIPS 2022.
- Webpage: <u>https://ogb.stanford.edu/neurips2022/</u>
- Winners and their solutions (code and technical report) will be announced on late November.

2nd OGB-LSC

- Uses the similar three datasets as the 1st OGB-LSC @ KDD Cup 2021.
 - Helps keep track of the progress every year
 - Similar to the annual ImageNet challenge.
- Some datasets have been updated to be more challenging and realistic.

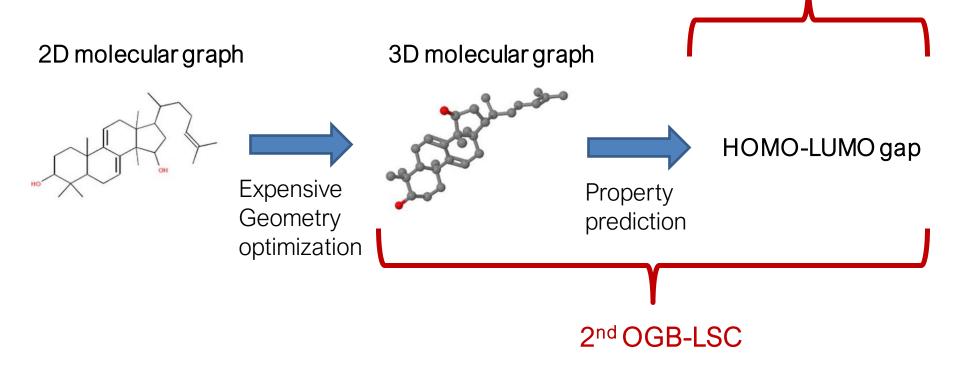
Updates in 2nd OGB-LSC (1)

No candidate sets for link prediction



Updates in 2nd OGB-LSC (2)

 3D molecular graph provided for training molecules
 1st OGB-LSC



Conclusions

- We presented OGB and OGB-LSC to accelerate research in graph ML.
- OGB is expanding with external dataset contributions.
- We are organizing 2nd OGB-LSC at NeurIPS 2022 to push large-scale graph ML!