
Rishi Puri, Deep Learning Software Engineer for NVIDIA
Matthias Fey, Deep Learning Software Engineer for kumo.AI

Accelerating GNNs with PyTorch Geometric and GPUs

1

Outline

● NVIDIA addresses the challenges of end-to-end GNN workflows

● Example workflows

● pyg-lib accelerates PyG workflows

2

Challenges in the GNN Workflows
• GNN model training requires advanced system knowledge

○ Loading large datasets (100GB+)
○ Managing memory for graph-structured data
○ Sparsity-aware workflows
○ Distributed training

• Script-based GNN workflows are not flexible enough
○ Swapping datasets or models even for similar tasks requires a lot more effort than for

Computer Vision or Natural Language Processing
○ Using torchvision or torchtext enables easy data and model swapping, which does not

currently exist for GNNs

• Preprocessing of large datasets (100GB+) is very slow on CPU

• Additional effort required to deploy

3

https://pytorch.org/vision/stable/index.html
https://pytorch.org/text/stable/index.html

4

● NVIDIA provides a flexible, easy-to-use, general API that allows for
building end-to-end GNN workflows, addressing the previously
mentioned challenges:

○ Automatic, accelerated system management reduces the need for
system knowledge

○ Flexibility allows for switching between tasks, models, and data
types with a few lines of code change.

○ RAPIDs GPU optimized preprocessing: go from hours to minutes
○ Push button deployment

● At GTC 2022 in Spring it was introduced and explained in detail:
○ https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s42485/

● It fully supports PyG and DGL, the two main GNN frameworks
● In this talk we will focus specifically on the PyG side

4

NVIDIA’s Turnkey, E2E GPU Accelerated GNN
Pipeline

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s42485/

5

E2E GPU Accelerated GNN Stack

Pre-process Deployment

Triton Inference
Server

HugeCTR

Synthetic
Graph

Generation

Core APIs

DGL

Financial
Services

PyTorch

PyTorch Geometric

Distributed
Training

Core File
System

Compute (A100, V100, H100**)

Drug
Discovery

Cyber
Security

OGB
(+ other Open Source

datasets)
RecSys

CUDA, cuDF, cuGraph, cuSparse, cuDNN

Core functionality

Industry specific
custom workflows

NVTabular

Data
Loader

GNN
Models

XGBoost

5**H100 coming soon

Parquet files
for node and

edges

Optimized File
System

Parquet/
CSV
Files

Preprocessing

● User-defined
transform functions

● Transform functions
for Public datasets

● Data Converters
from any data
source to our
optimized file
system

Any
Database

PyG
Binary

File

…

Data Loader PyG Based
Model

Distributed
Trainer

Deployment of the
Whole Workflow

● R-GCN
● R-GAT
● SE3T
● …

● Node-level tasks
● Edge-level tasks
● Graph-level tasks

or

Pre-loaded
PyG Graph

6

E2E Accelerated PyG Workflow

7

● Microsoft Academic Graph (MAG) is a
heterogenous graph of academia

● The goal is to infer missing information in
the graph (the venue of papers).

● Tabformer is a graph of credit card
transactions

● The goal is to learn to detect fraudulent
transactions.

Card
4782 nodes

Merchant
93298 nodes

transaction
24,198,836 edges

7

Author
1,134,649 nodes

Institution
8740 nodes

affiliated with
1,043,998 edges

Paper
736,389 nodes

writes
7,145,660 edges

cites
5,416,271 edges

Field of Study
59,965 nodes

has topic
7,505,078 edges

Example Datasets

https://ogb.stanford.edu/docs/nodeprop/#ogbn-mag
https://github.com/IBM/TabFormer/tree/main/data/credit_card

8

● The API provides a generalized GNN module

● Unified customizable interface allows for easy creation of

both complex and simple GNNs

8

Generalized GNN Module

9

MAG Workflow

9

10

TabFormer Workflow

10

Accelerating Heterogeneous GNNs

● R-GCN is one of the most commonly used
GNN for heterogeneous graphs:

● Utilizes an edge-type dependent weight matrix to transform neighbors

11

Venue?

Naive R-GCN Implementation

out = 0

for r in range(num_edge_types):

 out += adj[r] @ h @ w[r]

return out

12

● Naive implementation: Iterate over each edge type individually

● Flexible: Any homogeneous GNN operator can be utilized, e.g., via
 PyG’s to_hetero(model) functionality

● Inefficient: Lack of parallelism across edge types

Vertically-Stacked R-GCN Implementation

13

● Leverage full parallelism by stacking adjacency matrices vertically
Thanapalasingam et al.: Relational Graph Convolutional Networks: A Closer Look (2021)

@

@

A AH

H

W

AHW

Inefficient in case …

● large number
of edge types /
sparse edge types

● there exists multiple
node types (all features
will be replicated for each
edge type)

CUTLASS-based R-GCN Implementation

14

● Idea: Follow PyG’s generic gather-scatter scheme and perform
edge-type dependent transformation in edge-level space

@Hr=1

H

W1

AHWW2

W3

@

@

scatter_reducegather

● Flexible: Any heterogeneous GNN operator can be modelled this way
 (multiple aggregations, attention-based, …)

● Efficient, even on sparse edge types, large number of node/edge types

Utilize CUTLASS Grouped GEMM
to implement a segment matmul:

segment_matmul(H, offsets, W)
Hr=2

Hr=3

pyg-lib

● pyg-lib is a low-level GNN library exposing optimized operations for use in PyG

/pyg-team/pyg-lib

○ GPU-accelerated neighbor sampling based for large-scale graphs via cugraph
○ GPU-accelerated heterogeneous GNNs via CUTLASS Grouped GEMM
○ GPU-accelerated sparse aggregations via cugraph-ops integration (coming soon)

● Optimizations provide speed ups with no lines of code change

15

Gathered on a 2 x A6000 node w/
AMD Ryzen Threadripper PRO 3975WX

32-Cores

Zoom

16

Data Loading Acceleration w/ CuGraph

● Single A100 GPU used on a node w/ 8 x 80GB A100 &
AMD EPYC 7742 64-Core Processor

● Using FakeHeteroDataset w/:
○ avg_num_nodes=20000
○ num_node_types=4

● 2 RGCNConvs w/ 128 input, 16 hidden, & 10 output channels

Zoom

17

RGCN Grouped GEMM Benchmark

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.FakeHeteroDataset
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv

• NVIDIA’s provides an API for effortless GPU accelerated GNN training/deploying

○ Product Page: http://developer.nvidia.com/gnn-frameworks

○ General open source availability on GitHub Q4

• NVIDIA-optimized PyG Container Coming Q4:

○ Performance-tuned & tested for NVIDIA GPUs

○ Sign up: https://developer.nvidia.com/pyg-container-early-access

• pyg-lib uses CuGraph & CUTLASS to enable further acceleration

○ Initial CUTLASS integration w/ PyG 2.1, additional accelerations coming soon

18

Summary

http://developer.nvidia.com/gnn-frameworks
https://developer.nvidia.com/pyg-container-early-access

