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Outline

● NVIDIA addresses the challenges of end-to-end GNN workflows

● Example workflows

● pyg-lib accelerates     PyG workflows

2



Challenges in the GNN Workflows
• GNN model training requires advanced system knowledge

○ Loading large datasets (100GB+)
○ Managing memory for graph-structured data
○ Sparsity-aware workflows
○ Distributed training

• Script-based GNN workflows are not flexible enough
○ Swapping datasets or models even for similar tasks requires a lot more effort than for 

Computer Vision or Natural Language Processing
○ Using torchvision or torchtext enables easy data and model swapping, which does not 

currently exist for GNNs

• Preprocessing of large datasets (100GB+) is very slow on CPU

• Additional effort required to deploy
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https://pytorch.org/vision/stable/index.html
https://pytorch.org/text/stable/index.html
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● NVIDIA provides a flexible, easy-to-use, general API that allows for 
building end-to-end GNN workflows, addressing the previously 
mentioned challenges:

○ Automatic, accelerated system management reduces the need for 
system knowledge

○ Flexibility allows for switching between tasks, models, and data 
types with a few lines of code change.

○ RAPIDs GPU optimized preprocessing: go from hours to minutes
○ Push button deployment

● At GTC 2022 in Spring it was introduced and explained in detail:
○ https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s42485/

● It fully supports      PyG and DGL, the two main GNN frameworks
● In this talk we will focus specifically on the     PyG side
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NVIDIA’s Turnkey, E2E GPU Accelerated GNN 
Pipeline

https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s42485/
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E2E GPU Accelerated GNN Stack
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E2E Accelerated PyG Workflow
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● Microsoft Academic Graph (MAG) is a 
heterogenous graph of academia

● The goal is to infer missing information in 
the graph (the venue of papers).

● Tabformer is a graph of credit card 
transactions

● The goal is to learn to detect fraudulent 
transactions.

Card
4782 nodes

Merchant
93298 nodes

transaction
24,198,836 edges
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Author
1,134,649 nodes

Institution
8740 nodes

affiliated with
1,043,998 edges

Paper
736,389 nodes

writes
7,145,660 edges

cites
5,416,271 edges

Field of Study
59,965 nodes

has topic
7,505,078 edges

Example Datasets

https://ogb.stanford.edu/docs/nodeprop/#ogbn-mag
https://github.com/IBM/TabFormer/tree/main/data/credit_card
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● The API provides a generalized GNN module

● Unified customizable interface allows for easy creation of

both complex and simple GNNs

8

Generalized GNN Module
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MAG Workflow
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TabFormer Workflow
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Accelerating Heterogeneous GNNs

● R-GCN is one of the most commonly used
GNN for heterogeneous graphs:

● Utilizes an edge-type dependent weight matrix to transform neighbors 
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Venue?



Naive R-GCN Implementation

out = 0

for r in range(num_edge_types):

     out += adj[r] @ h @ w[r]

return out
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● Naive implementation: Iterate over each edge type individually 

● Flexible: Any homogeneous GNN operator can be utilized, e.g., via
                   PyG’s to_hetero(model) functionality

● Inefficient: Lack of parallelism across edge types



Vertically-Stacked R-GCN Implementation
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● Leverage full parallelism by stacking adjacency matrices vertically
Thanapalasingam et al.: Relational Graph Convolutional Networks: A Closer Look (2021)
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Inefficient in case …

● large number
of edge types / 
sparse edge types

● there exists multiple 
node types (all features 
will be replicated for each 
edge type)



CUTLASS-based R-GCN Implementation
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● Idea: Follow    PyG’s generic gather-scatter scheme and perform 
edge-type dependent transformation in edge-level space

@Hr=1

H

W1

AHWW2

W3

@

@

scatter_reducegather

● Flexible: Any heterogeneous GNN operator can be modelled this way
              (multiple aggregations, attention-based, …)

● Efficient, even on sparse edge types, large number of node/edge types

Utilize CUTLASS Grouped GEMM
to implement a segment matmul:

segment_matmul(H, offsets, W)
Hr=2

Hr=3



pyg-lib

● pyg-lib is a low-level GNN library exposing optimized operations for use in     PyG

/pyg-team/pyg-lib

○ GPU-accelerated neighbor sampling based for large-scale graphs via cugraph
○ GPU-accelerated heterogeneous GNNs via CUTLASS Grouped GEMM
○ GPU-accelerated sparse aggregations via cugraph-ops integration (coming soon)

● Optimizations provide speed ups with no lines of code change
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Gathered on a 2 x A6000 node w/
AMD Ryzen Threadripper PRO 3975WX 

32-Cores

Zoom

16

Data Loading Acceleration w/ CuGraph



● Single A100 GPU used on a node w/ 8 x 80GB A100 & 
AMD EPYC 7742 64-Core Processor

● Using FakeHeteroDataset w/:
○ avg_num_nodes=20000
○ num_node_types=4

● 2 RGCNConvs w/ 128 input, 16 hidden, & 10 output channels

Zoom
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RGCN Grouped GEMM Benchmark

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.FakeHeteroDataset
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv


• NVIDIA’s provides an API for effortless GPU accelerated GNN training/deploying

○ Product Page: http://developer.nvidia.com/gnn-frameworks 

○ General open source availability on GitHub Q4

• NVIDIA-optimized PyG Container Coming Q4: 

○ Performance-tuned & tested for NVIDIA GPUs 

○ Sign up: https://developer.nvidia.com/pyg-container-early-access 

• pyg-lib uses CuGraph & CUTLASS to enable further acceleration

○ Initial CUTLASS integration w/ PyG 2.1, additional accelerations coming soon
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Summary

http://developer.nvidia.com/gnn-frameworks
https://developer.nvidia.com/pyg-container-early-access

