
Accelerating PyG with Intel CPUs
Ke Ding, Principal Engineer
Intel – SATG AIA
Sep 2022

Stanford Graph Learning Workshop 2022

Stanford Graph Learning Workshop 2022 2

Outline

• Intel AI Software Stack
• PyG Optimization for Intel CPUs

§ Message Passing Analysis

§ Kernel Optimization: scatter_add

§ Kernel Optimization: spmm_reduce

§ Node Sampling Optimization

• What’s Next

Stanford Graph Learning Workshop 2022 3

Deploy
Create Machine Learning &

Deep Learning Models

AI Software Ecosystem and Intel Tools
Engineer Data

Container Repository
oneContainer

Developer Sandbox
DevCloud

MLOps
Cnvrg.io

Accelerate End to End Data Science and AI AI Analytics Toolkit

Connect AI to Big Data Domain Toolkit: NLP, RecSys, TLT, Time Series, PPML BigDL
(Analytics Zoo)

Data Analytics at Scale Optimized Frameworks and Middleware Optimize and Deploy Models

oneDNN oneMKLoneDAL oneCCL

Write Once
Deploy

Anywhere

Automate Model
Tuning AutoML

Automate
Low-Precision
Optimization

OpenVINO
Toolkit

SigOpt
Neural

Compressor
(INC)

* Other names and brands may be claimed as the property of others

Stanford Graph Learning Workshop 2022 4

PyG Overview on Intel Platforms

torch-scatter

torch-sparse

torch-cluster

pyg-lib

PyTorch

PyG: Models, Operators, Storage

oneDNN oneCCL

• scatter_add
• index_select
• spmm_reduce
• sort
• index
• …

• Open source upstream first
• Inference and training
• Abstract perf primitives into oneDNN

Stanford Graph Learning Workshop 2022 5

Message Passing Paradigm - GAS

1

2

3

4

Apply

1

2

3

4Message 𝒆𝟏𝟒

Message 𝒆𝟐𝟒

Message 𝒆𝟑𝟒

Gather Scatter

UDFs

• 𝐺𝑟𝑎𝑝ℎ 𝐶𝑜𝑛𝑣 (𝐺𝐶𝑁)
• 𝐺𝑟𝑎𝑝ℎ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝐺𝐴𝑇)
• 𝑆𝐴𝐺𝐸𝐶𝑜𝑛𝑣
• 𝐺𝐼𝑁𝐶𝑜𝑛𝑣
• 𝐸𝑑𝑔𝑒𝐶𝑜𝑛𝑣
• 𝑃𝑁𝐴𝐶𝑜𝑛𝑣
• 𝑅𝐺𝐶𝑁

Stanford Graph Learning Workshop 2022 6

Message Passing Profiling

Case I: EdgeIndex in COO.

Profiling of SAGE+Reddit

Case II: EdgeIndex in CSR.

Profiling of GCN+ogbn-products
* Single batch inference (training hotspot slightly different).

Stanford Graph Learning Workshop 2022 7

Kernel Optimization I: scatter_add
• scatter_add is hotspot when EdgeIndex stored in COO.

• It adds all values from the tensor src into self at the indices specified in the index tensor.

2

1

1

0

2

0

1

3

𝑠𝑟𝑐[0]

𝑠𝑟𝑐[1]

𝑠𝑟𝑐[2]

𝑠𝑟𝑐[3]

𝑠𝑟𝑐[4]

𝑠𝑟𝑐[5]

𝑠𝑟𝑐[6]

𝑠𝑟𝑐[7]

𝑠𝑒𝑙𝑓[0]

𝑠𝑒𝑙𝑓[1]

𝑠𝑒𝑙𝑓[2]

𝑠𝑒𝑙𝑓[3]

𝑀

𝐾

𝐾

𝑁

𝒔𝒆𝒍𝒇

𝒊𝒏𝒅𝒆𝒙 𝒔𝒓𝒄

𝑁

𝑠𝑒𝑙𝑓 1 = 𝑠𝑟𝑐 1 + 𝑠𝑟𝑐 2 + 𝑠𝑟𝑐[6]

Scatter_add Analysis:
• Memory bandwidth bound.
• M refers to num_nodes, N refers to

num_edges, K refers to num_features.
• Input shape might be very large: for

example, in SAGE+Reddit, M = 135K, N =
447K, K = 256.

• Possible write conflicts since multiple
threads may attempt to write the same
address simultaneously.

Stanford Graph Learning Workshop 2022 8

Kernel Optimization I: scatter_add
• scatter_add is hotspot when EdgeIndex stored in COO.

• It adds all values from the tensor src into self at the indices specified in the index tensor.

𝑠𝑒𝑙𝑓[𝑗]
𝑀

𝐾

𝐾

𝑁

𝒔𝒆𝒍𝒇

𝒊𝒏𝒅𝒆𝒙 𝒔𝒓𝒄

𝑁

Scatter_add Optimization:
• Good performance: parallel on outer dimension (M

or N) and vectorize on inner dimension (K).
• Solve write conflicts though index sorting via

radix sort.
• SAGE+Reddit: single socket inference:

i. scatter_add time: 5.9x speedup.
ii. end to end time: 1.7x speedup.

• The algorithm is equivalent to:
i. convert COO to CSR (sorted indices

encoded on CSR format);
ii. do spmm_reduce.

𝑡!

𝑡"

𝑡#

𝑡$

𝑖𝑛𝑑%

𝑖𝑛𝑑&

𝑖𝑛𝑑'

No Write Conflicts
Good Performance

Stanford Graph Learning Workshop 2022 9

Kernel Optimization II: spmm_reduce
• spmm_reduce is hotspot when EdgeIndex stored in CSR.

• API definition similar to SpMM, except that more reduction type required “max”, “mean”.

𝐾𝐾

=×𝑀

𝑁

𝑁

𝑨(𝒔𝒑𝒂𝒓𝒔𝒆, 𝑪𝑺𝑹) 𝑩(𝒅𝒆𝒏𝒔𝒆) 𝑪(𝒅𝒆𝒏𝒔𝒆)

𝑖0
𝑖0 𝑖1

𝑖1

𝑖0 𝑖1

𝑗0 𝑗1 𝑗2 𝑗0 𝑗1 𝑗2

𝑗0

𝑗1
𝑗2

𝑡!

𝑡"

𝑡#

𝑡$

Spmm Reduce Optimization:
• Memory bandwidth bound.
• Reduce type: “sum”, “max”, “mean”.
• M and N refers to num_nodes, nnz refers to

num_edges, K refers to num_features.
• Input shape might be very large: for

example, in GCN+ogbn-products:
i. num_nodes: 2.4M
ii. num_edges: 126M
iii. num_features: 256

Parallel on N,
Vectorize on K

Stanford Graph Learning Workshop 2022 10

Kernel Optimization II: spmm_reduce
• GCN+ogbn-products single socket inference got 4.3x speedup (spmm_sum improved by 4.7x)

56.09

29.31
25.66

21.95

11.83

0

10

20

30

40

50

60

OOB vectorization unrolling blocking balanced partition

Ti
m

e
(s

)

Vectorization
along inner
dimension

1.9x

spmm_sum in GCN+obgn-products

Stanford Graph Learning Workshop 2022 11

Kernel Optimization II: spmm_reduce
• GCN+ogbn-products single socket inference got 4.3x speedup (spmm_sum improved by 4.7x)

56.09

29.31
25.66

21.95

11.83

0

10

20

30

40

50

60

OOB vectorization unrolling blocking balanced partition

Ti
m

e
(s

)

Unrolling
along inner
dimension

2.2x

spmm_sum in GCN+obgn-products

Stanford Graph Learning Workshop 2022 12

Kernel Optimization II: spmm_reduce
• GCN+ogbn-products single socket inference got 4.3x speedup (spmm_sum improved by 4.7x)

56.09

29.31
25.66

21.95

11.83

0

10

20

30

40

50

60

OOB vectorization unrolling blocking balanced partition

Ti
m

e
(s

)

Blocking
Row-wise blocking to
reduce write memory

access

2.6x

spmm_sum in GCN+obgn-products

Stanford Graph Learning Workshop 2022 13

Kernel Optimization II: spmm_reduce
• GCN+ogbn-products single socket inference got 4.3x speedup (spmm_sum improved by 4.7x)

56.09

29.31
25.66

21.95

11.83

0

10

20

30

40

50

60

OOB vectorization unrolling blocking balanced partition

Ti
m

e
(s

)

Balanced Thread Partition
• Length of each row refers to number

of connections for each node.
• Directly parallel on rows would lead

to thread payload unbalance.
• Can’t assume each node has the

same number of connections.

4.7x

spmm_sum in GCN+obgn-products

Stanford Graph Learning Workshop 2022 14

Node Sampling
Larger graphs require node sampling and graph partitioning.

1. Sampling neighborhood (k=1,2) 2. Aggregate features from neighbors

Stanford Graph Learning Workshop 2022 15

Node Sampling
• PyG has implemented commonly used samplers at torch_geometric.loader such as NeighborLoader,

HGTLoader, RandomNodeSampler, etc.

• Concept of Loader is a combination of PyTorch’s DataLoader and a specific sampler, which handles
data sampling and transformation. On some workloads, loader itself might be major performance
hotspot.

Profiling of GraphSAGE+mag240m

• In the example of GraphSAGE + mag240m, the
DataLoader is major performance hotspot.

• Multi-process data loading is enabled if user set
num_workers > 0, and the sampling from each
worker will be sequential.

• Multi-process worker + sequential sampler be not
optimal.

Stanford Graph Learning Workshop 2022 16

Node Sampling
• PyG has implemented commonly used samplers at torch_geometric.loader such as NeighborLoader,

HGTLoader, RandomNodeSampler, etc.

• Concept of Loader is a combination of PyTorch’s DataLoader and a specific sampler, which handles
data sampling and transformation. On some workloads, loader itself might be major performance
hotspot.

Profiling of GraphSAGE+mag240m 48.6% time spent on this circled line since only 4 cores used!

Stanford Graph Learning Workshop 2022 17

Node Sampling
• PyG has implemented commonly used samplers at torch_geometric.loader such as NeighborLoader,

HGTLoader, RandomNodeSampler, etc.

• Concept of Loader is a combination of PyTorch’s DataLoader and a specific sampler, which handles
data sampling and transformation. On some workloads, loader itself might be major performance
hotspot.

Profiling of GraphSAGE+mag240m

Optimize data loader on CPU:
• Make sure sampling and transformation can be

properly paralleled.
• Set CPU affinity if the multi-process data loader is

used.
• Fuse multiple operators from convert_batch in C++

kernel.

Stanford Graph Learning Workshop 2022 18

What’s Next

• Fully Optimize PyG for both inference and training for Intel platforms

• Large scale distributed GNNs for top use cases

• Unified Graph Platform and workflows supporting query, analytics and
GNNs

Questions?

