Stanford Graph Learning Workshop 2022

Accelerating PyG with Intel CPUs

Ke Ding, Principal Engineer

Intel – SATG AIA

Sep 2022

Outline

- Intel AI Software Stack
- PyG Optimization for Intel CPUs
 - Message Passing Analysis
 - Kernel Optimization: scatter_add
 - Kernel Optimization: spmm_reduce
 - Node Sampling Optimization
- What's Next

AI Software Ecosystem and Intel Tools

		ainer Repository	Deep Learning Models MLOps	Deve	loper Sandbox		
Accelerat	o e End to End Data S	neContainer cience and Al	Cnvrg.io		DevCloud	Al Analytics T	ōolkit
Connect Al to	Big Data	Sport. Optimize Analytics Package	Domain Toolkit: NLP, RecSys	s, TLT, Time Series,	PPML	BigDL (Analytics Z	200)
Data Analyt	ics at Scale	Opti	mized Frameworks and Mido	lleware	Optimi	ze and Deploy	Models
	NumPy	TensorFlo	🖋 ن PyTorch 🚳	PyG	Automate Model Tuning AutoML	Write Once Deploy Anywhere	Automate Low-Precision Optimizatior
ן pandas omnו·scו	SciPy		PaddlePaddle CONNX Const	mxnet	SigOpt	OpenVINO Toolkit	Neural Compresso (INC)
oneAPI	on	eDAL	oneDNN	or	leCCL	or	neMKL
			tel intel intel MOVIDIUS	intel. Accelerators	ina [.]		

PyG Overview on Intel Platforms

- Open source upstream first
- Inference and training
- Abstract perf primitives into oneDNN

Message Passing Paradigm - GAS

- Graph Conv (GCN)
- Graph Attention (GAT)
- SAGEConv
- GINConv
- EdgeConv
- PNAConv
- RGCN

Message Passing Profiling

Case II: EdgeIndex in CSR.

Name	Self CPU %	Self CPU
<pre>torch_sparse::spmm_sum</pre>	97.09%	56.086s
aten::linear	0.00%	85.000us
aten::matmul	0.00%	57.000us
aten::mm	1.38%	795.201ms
aten::relu	0.00%	50.000us
aten::clamp_min	0.76%	440.384ms
aten::add_	0.57%	327.801ms
aten::log_softmax	0.00%	23.000us
aten::_log_softmax	0.10%	55.480ms
aten::argmax	0.09%	53.149ms
aten::index	0.01%	5.771ms
aten::empty	0.00%	1.088ms
aten::t	0.00%	68.000us
aten::detach	0.00%	65.000us

Case I: EdgeIndex in COO.

Name	Self CPU %	Self CPU
aten::scatter_add_	49.00%	37.797s
aten::index_select	19.74%	15.223s
aten::linear	0.01%	5.706ms
aten::addmm	6.62%	5.108s
aten::matmul	0.00%	2.339ms
aten::mm	7.09%	5.472s
aten::index	5.89%	4.544s
aten::fill_	3.59%	2.768s
aten::zeros	0.01%	7.616ms
aten::zero_	0.00%	2.728ms
aten::true_divide_	0.00%	1.158ms
aten::div_	2.74%	2.116s
aten::add_	1.36%	1.046s
aten::copy_	1.30%	1.005s

Profiling of GCN+ogbn-products

* Single batch inference (training hotspot slightly different).

Profiling of SAGE+Reddit

6

Kernel Optimization I: scatter_add

- *scatter_add* is hotspot when *EdgeIndex* stored in COO.
- It adds all values from the tensor *src* into *self* at the indices specified in the *index* tensor.

Scatter_add Analysis:

- Memory bandwidth bound.
- M refers to *num_nodes*, N refers to *num_edges*, K refers to *num_features*.
- Input shape might be very large: for example, in *SAGE*+*Reddit*, M = 135K, N = 447K, K = 256.
- Possible *write conflicts* since multiple threads may attempt to write the same address simultaneously.

Kernel Optimization I: scatter_add

- *scatter_add* is hotspot when *EdgeIndex* stored in COO.
- It adds all values from the tensor *src* into *self* at the indices specified in the *index* tensor.

Scatter_add Optimization:

- Good performance: parallel on outer dimension (M or N) and vectorize on inner dimension (K).
- Solve write conflicts though index sorting via *radix sort.*
- *SAGE*+*Reddit*: single socket inference:
 - i. scatter_add time: **5.9***x* speedup.
 - ii. end to end time: **1.7x** speedup.
- The algorithm is equivalent to:
 - i. convert COO to CSR (sorted indices encoded on CSR format);
 - ii. do *spmm_reduce*.

8

- *spmm_reduce* is hotspot when *EdgeIndex* stored in CSR.
- API definition similar to SpMM, except that more reduction type required "max", "mean".

Spmm Reduce Optimization:

- Memory bandwidth bound.
- Reduce type: "sum", "max", "mean".
- M and N refers to *num_nodes*, nnz refers to *num_edges*, K refers to *num_features*.
- Input shape might be very large: for example, in *GCN+ogbn-products:*
 - *i. num_nodes:* 2.4M
 - ii. num_edges: 126M
 - iii. num_features: 256

9

• *GCN+ogbn-products* single socket inference got *4.3x* speedup (spmm_sum improved by *4.7x*)

• *GCN+ogbn-products* single socket inference got 4.3x speedup (spmm_sum improved by 4.7x)

spmm_sum in GCN+obgn-products

• *GCN+ogbn-products* single socket inference got *4.3x* speedup (spmm_sum improved by *4.7x*)

• *GCN+ogbn-products* single socket inference got 4.3x speedup (spmm_sum improved by 4.7x)

spmm_sum in GCN+obgn-products

Larger graphs require node sampling and graph partitioning.

1. Sampling neighborhood (k=1,2)

2. Aggregate features from neighbors

- PyG has implemented commonly used samplers at *torch_geometric.loader* such as NeighborLoader, HGTLoader, RandomNodeSampler, etc.
- Concept of Loader is a combination of PyTorch's DataLoader and a specific sampler, which handles
 data sampling and transformation. On some workloads, loader itself might be *major performance hotspot*.

Name	Self CPU %	Self CPU
_MultiProcessingDataLoaderIter	71.27%	608.842s
<pre>torch_sparse::spmm_mean</pre>	14.91%	127.390s
aten::addmm	3.77%	32.166s
aten::copy_	3.60%	30.766s
aten::mm	2.29%	19.588s
aten::native_batch_norm	0.94%	7.989s
aten::add_	0.57%	4.877s
aten::clamp_min	0.28%	2.429s
aten::empty	0.23%	1.935s
<pre>torch_sparse::ptr2ind</pre>	0.19%	1.661s
aten::to	0.18%	1.550s

- In the example of *GraphSAGE* + *mag240m*, the DataLoader is major performance hotspot.
- Multi-process data loading is enabled if user set num_workers > 0, and the sampling from each worker will be sequential.
- Multi-process worker + sequential sampler be not optimal.

Profiling of GraphSAGE+mag240m

- PyG has implemented commonly used samplers at *torch_geometric.loader* such as NeighborLoader, HGTLoader, RandomNodeSampler, etc.
- Concept of Loader is a combination of PyTorch's DataLoader and a specific sampler, which handles data sampling and transformation. On some workloads, loader itself might be *major performance hotspot*.

Name	Self CPU %	Self CPU
_MultiProcessingDataLoaderIter	71.27%	608.842s
<pre>torch_sparse::spmm_mean</pre>	14.91%	127.390s
aten::addmm	3.77%	32.166s
aten::copy_	3.60%	30.766s
aten::mm	2.29%	19.588s
aten::native_batch_norm	0.94%	7.989s
aten::add_	0.57%	4.877s
aten::clamp_min	0.28%	2.429s
aten::empty	0.23%	1.935s
<pre>torch_sparse::ptr2ind</pre>	0.19%	1.661s
aten::to	0.18%	1.550s

Profiling of GraphSAGE+mag240m

48.6% time spent on this circled line since only 4 cores used!

- PyG has implemented commonly used samplers at *torch_geometric.loader* such as NeighborLoader, HGTLoader, RandomNodeSampler, etc.
- Concept of Loader is a combination of PyTorch's DataLoader and a specific sampler, which handles data sampling and transformation. On some workloads, loader itself might be *major performance hotspot*.

Name	Self CPU %	Self CPU
_MultiProcessingDataLoaderIter	71.27%	608.842s
<pre>torch_sparse::spmm_mean</pre>	14.91%	127.390s
aten::addmm	3.77%	32.166s
aten::copy_	3.60%	30.766s
aten::mm	2.29%	19.588s
aten::native_batch_norm	0.94%	7.989s
aten::add_	0.57%	4.877s
aten::clamp_min	0.28%	2.429s
aten::empty	0.23%	1.935s
<pre>torch_sparse::ptr2ind</pre>	0.19%	1.661s
aten::to	0.18%	1.550s

Optimize data loader on CPU:

- Make sure sampling and transformation can be *properly paralleled*.
- Set CPU affinity if the multi-process data loader is used.
- Fuse multiple operators from *convert_batch* in C++ kernel.

Profiling of GraphSAGE+mag240m

What's Next

- Fully Optimize PyG for both inference and training for Intel platforms
- Large scale distributed GNNs for top use cases
- Unified Graph Platform and workflows supporting query, analytics and GNNs

Questions?

