

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which elements of stream have keys in S
- Obvious solution: hash table
- But suppose we don't have enough memory to store all of S in a hash table
- e.g., we might be processing millions of filters on the same stream

Applications

- Example: email spam filtering
- We know 1 billion "good" email addresses
- If an email comes from one of these, it is NOT spam
- Publish-subscribe
- People express interest in certain sets of keywords
- Determine whether each message matches a user's interest

First Cut Solution - (z)

First Cut Solution - (1)

- Create a bit array B of m bits, initially all 0's.
- Choose a hash function h with range [0,m)
- Hash each member of S to one of the bits, which is then set to 1
- Hash each element of stream and output only those that hash to a 1

First Cut Solution - (3)

- $|S|=1$ billion, $|B|=1 G B=8$ billion bits
- If a string is in S, it surely hashes to a 1 , so it always gets through
- Approximately most $1 / 8$ of the bit array is 1 , so about $1 / 8^{\text {th }}$ of the strings not in S get through to the output (false positives)
- Actually, less than $1 / 8^{\text {th }}$, because more than one key might hash to the same bit

Throwing Darts

- If we throwmdarts into n equally likely targets, what is the probability that a target gets at least one dart?
- Targets = bits, darts = hash values

Throwing Darts - (3)

- Fraction of 1's in array = probability of false positive $=1-e^{-m / n}$
- Example: 10^{9} darts, $8^{*} 10^{9}$ targets.
- Fraction of 1 's in $\mathrm{B}=1-\mathrm{e}^{-1 / 8}=0.1175$.
- Compare with our earlier estimate: $1 / 8=0.125$.

Bloom Filter -- Analysis

- What fraction of bit vector B is 1 's?
- Throwing km darts at n targets
- So fraction of 1 's is ($1-\mathrm{e}^{-\mathrm{km} / \mathrm{n}}$)
- k independent hash functions
- False positive probability $=\left(1-e^{-k m / n}\right)^{k}$

Throwing Darts - (2)

m darts, n targets

Bloom Filter

- Say $|\mathrm{S}|=m,|\mathrm{~B}|=n$
- Use k independent hash functions h_{1}, \ldots, h_{k}
- Initialize B to all 0's
- Hash each element s in S using each function, and set $\mathrm{B}\left[h_{i}(s)\right]=1$ for $i=1, . ., k$
- When a stream element with key x arrives
- If $\mathrm{B}\left[h_{i}(x)\right]=1$ for $i=1, . ., k$, then declare that x is in S
- Otherwise discard the element

Bloom Filter - Analysis (z)

- $m=1$ billion, $n=8$ billion
- $k=1:\left(1-e^{-1 / 8}\right)=0.1175$
- $k=2:\left(1-e^{-1 / 4}\right)^{2}=0.0493$
- What happens as we keep increasing k ?
- "Optimal" value of $k: n / m \ln 2$

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
- Great for pre-processing before more expensive checks
- E.g., Google's BigTable, Squid web proxy
- Suitable for hardware implementation
- Hash function computations can be parallelized

Applications

- How many different words are found among the Web pages being crawled at a site?
- Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?

Counting Distinct Elements

- Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.
- Obvious approach: maintain the set of elements seen.

Using Small Storage

- Real Problem: what if we do not have space to store the complete set?
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.

Flajolet-Martin* Approach

- Pick a hash function h that maps each of the n elements to at least $\log _{2} n$ bits
- For each stream element a, let $r(a)$ be the number of trailing 0's in $h(a)$
- Record $R=$ the maximum $r(a)$ seen
- Estimate $=2^{R}$.
* Really based on a variant due to AMS (Alon, Matias, and Szegedy)

Why It Works

- The probability that a given $h(a)$ ends in at least $r 0^{\prime}$ s is 2^{-r}
- Probability of NOT seeing a tail of length r among m elements: $\left(1-2^{-r}\right)^{m}$

Why It Works - (2)

- Since 2^{-r} is small, prob. of NOT finding a tail of length r is:
- If $\mathrm{m} \ll 2^{r}$, tends to 1 . So probability of finding a tail of length r tends to 0 .
- Ifm>> 2^{r}, tends to 0 . So probability of finding a tail of length r tends to 1.
- Thus, 2^{R} will almost always be around m.

Solution

- Partition your samples into small groups
- Take the average of groups
- Then take the median of the averages

Why It Doesn't Work

- $E\left(2^{R}\right)$ is actually infinite.
- Probability halves when $R->R+1$, but value doubles.
- Workaround involves using many hash functions and getting many samples.
- How are samples combined?
- Average? What if one very large value?
- Median? All values are a power of 2.

Generalization: Moments

- Suppose a stream has elements chosen from a set of n values.
- Let m_{i} be the number of times value i occurs.
- The $k^{\text {th }}$ moment is

Special Cases

- $0^{\text {th }}$ moment $=$ number of distinct elements
- The problem just considered.
- $1^{\text {st }}$ moment $=$ count of the numbers of elements = length of the stream.
- Easy to compute.
- $2^{\text {nd }}$ moment $=$ surprise number $=$ a measure of how uneven the distribution is.

Example: Surprise Number

- Stream of length 100; 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 Surprise \# = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 Surprise \# = 8,110.

AMS Method

- Works for all moments; gives an unbiased estimate.
- We'll just concentrate on $2^{\text {nd }}$ moment.
- Based on calculation of many random variables X.
- Each requires a count in main memory, so number is limited.

Expectation Analysis

- $\mathrm{X}=\mathrm{n}(2 \mathrm{c}-1)$
- $E[X]=(1 / n) \Sigma_{\text {all timest }}{ }^{n}(2 c-1)$
$=\Sigma_{\text {all timest }}(2 c-1)$
$=\Sigma_{\mathrm{a}}\left(1+3+5+\ldots+2 \mathrm{~m}_{\mathrm{a}}-1\right)$
$=\Sigma_{a}\left(m_{a}\right)^{2}$

Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n is a variable - the number of inputs seen so far.

One Random Variable (X)

- Assume stream has length n.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element a in the stream
- Maintain a count c of the number a'sin the stream starting at the chosen time
- $X=n^{*}(2 c-1)$
- Store n once, count of a 's for each X.

Combining Samples

- Compute as many variables X as can fit in available memory.
- Average them in groups.
- Take median of averages.

Fixups

1. The variables X have n as a factor - keep n separately; just hold the count in X
2. Suppose we can only store k counts. We must throw some X 's out as time goes on.

- Objective: each starting time t is selected with probability k / n
- How can we do this?

Exponentially Decaying Windows

- Stream a_{1}, a_{2}, \ldots
- Define exponentially decaying window at time tto be: $\Sigma_{i=1,2, \ldots, t} \mathrm{a}_{\mathrm{i}}(1-\mathrm{c})^{t-\mathrm{i}}$
- c is a constant, presumably tiny, like 10^{-6} or 10^{-9}.

Sliding Versus Decaying Windows

Applications

- Key use case is when the stream's statistics can vary over time
- Finding the most popular elements
"currently"
- Stream of Amazon items sold
- Stream of topics mentioned in tweets
- Stream of music tracks streamed

