Mining Data Streams (Part 2)

CS345a: Data Mining Jure Leskovec and Anand Rajaraman Stanford University

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which elements of stream have keys in S
- Obvious solution: hash table
 - But suppose we don't have enough memory to store all of S in a hash table
 - e.g., we might be processing millions of filters on the same stream

Applications

- Example: email spam filtering
 - We know 1 billion "good" email addresses
 - If an email comes from one of these, it is NOT spam
- Publish-subscribe
 - People express interest in certain sets of keywords
 - Determine whether each message matches a user's interest

First Cut Solution – (1)

- Create a bit array *B* of *m* bits, initially all 0's.
- Choose a hash function h with range [0,m)
- Hash each member of S to one of the bits, which is then set to 1
- Hash each element of stream and output only those that hash to a 1

First Cut Solution – (3)

- |S| = 1 billion, |B| = 1GB = 8 billion bits
- If a string is in S, it surely hashes to a 1, so it always gets through
- Approximately most 1/8 of the bit array is
 1, so about 1/8th of the strings not in S get through to the output (*false positives*)
- Actually, less than 1/8th, because more than one key might hash to the same bit

Throwing Darts

- If we throwmdarts into n equally likely targets, what is the probability that a target gets at least one dart?
- Targets = bits, darts = hash values

Throwing Darts – (3)

- Fraction of 1's in array = probability of false positive = 1 - e^{-m/n}
- Example: 10⁹ darts, 8*10⁹ targets.
 - Fraction of 1's in $B = 1 e^{-1/8} = 0.1175$.
 - Compare with our earlier estimate: 1/8 = 0.125.

Bloom Filter

- Say |S| = m, |B| = n
- Use k independent hash functions h₁,..., h_k
- Initialize B to all O's
- Hash each element s in S using each function, and set B[h_i(s)] = 1 for i = 1,...,k
- When a stream element with key x arrives
 - If B[h_i(x)] = 1 for i= 1,...,k, then declare that x is in S
 - Otherwise discard the element

Bloom Filter -- Analysis

- What fraction of bit vector B is 1's?
 - Throwing km darts at n targets
 - So fraction of 1's is (1 e^{-km/n})
- k independent hash functions
- False positive probability = (1 e^{-km/n})^k

Bloom Filter – Analysis (2)

- m = 1 billion, n = 8 billion
 - k = 1: (1 e^{-1/8}) = 0.1175
 - k = 2: (1 e^{-1/4})² = 0.0493
- What happens as we keep increasing k?
- "Optimal" value of k: n/mln 2

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
 - E.g., Google's BigTable, Squid web proxy
- Suitable for hardware implementation
 - Hash function computations can be parallelized

Counting Distinct Elements

- Problem: a data stream consists of elements chosen from a set of size *n*.
 Maintain a count of the number of distinct elements seen so far.
- Obvious approach: maintain the set of elements seen.

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?

Using Small Storage

- Real Problem: what if we do not have space to store the complete set?
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.

Flajolet-Martin* Approach

- Pick a hash function h that maps each of the n elements to at least log₂nbits
- For each stream element *a*, let *r*(*a*) be the number of trailing 0's in *h*(*a*)
- Record R = the maximum r(a) seen
- Estimate = 2^{R} .

* Really based on a variant due to AMS (Alon, Matias, and Szegedy)

Why It Works

- The probability that a given h (a) ends in at least r0's is 2-r
- Probability of NOT seeing a tail of length r among m elements: (1 - 2^{-r})^m

Why It Works – (2)

- Since 2^{-r} is small, prob. of NOT finding a tail of length r is:
- If m<< 2^r, tends to 1. So probability of finding a tail of length r tends to 0.
- Ifm>> 2^r, tends to 0. So probability of finding a tail of length r tends to 1.
- Thus, 2^{*R*} will almost always be around *m*.

Why It Doesn't Work

- E(2^{*R*}) is actually infinite.
- Probability halves when R ->R +1, but value doubles.
- Workaround involves using many hash functions and getting many samples.
- How are samples combined?
 - Average? What if one very large value?
 - Median? All values are a power of 2.

Solution

- Partition your samples into small groups
- Take the average of groups
- Then take the median of the averages

Generalization: Moments

- Suppose a stream has elements chosen from a set of n values.
- Let m_i be the number of times value *i* occurs.
- The *k*th*moment* is

Special Cases

- Othmoment = number of distinct elements
 The problem just considered.
- 1st moment = count of the numbers of elements = length of the stream.
 - Easy to compute.
- 2nd moment = surprise number = a measure of how uneven the distribution is.

Example: Surprise Number

- Stream of length 100; 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 Surprise # = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 Surprise # = 8,110.

AMS Method

- Works for all moments; gives an unbiased estimate.
- We'll just concentrate on 2nd moment.
- Based on calculation of many random variables *X*.
 - Each requires a count in main memory, so number is limited.

One Random Variable (X)

- Assume stream has length *n*.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element *a* in the stream
- Maintain a count c of the number a'sin the stream starting at the chosen time
- X= n*(2c- 1)
 - Store *n* once, count of *a* 's for each *X*.

Combining Samples

- Compute as many variables X as can fit in available memory.
- Average them in groups.
- Take median of averages.

Problem: Streams Never End

- We assumed there was a number *n*, the number of positions in the stream.
- But real streams go on forever, so n is a variable – the number of inputs seen so far.

Fixups

- The variables X have n as a factor keep n separately; just hold the count in X
- 2. Suppose we can only store k counts. We must throw some X 's out as time goes on.
 - Objective: each starting time t is selected with probability k /n
 - How can we do this?

Exponentially Decaying Windows

- Stream a₁, a₂,...
- Define exponentially decaying window at time tto be: $\Sigma_{i=1,2,...,t}a_i$ (1-c)^{t-i}
- c is a constant, presumably tiny, like 10^{-6} or 10^{-9} .

Applications

- Key use case is when the stream's statistics can vary over time
- Finding the most popular elements "currently"
 - Stream of Amazon items sold
 - Stream of topics mentioned in tweets
 - Stream of music tracks streamed