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CS345a: Data Mining
Jure Leskovec and Anand Rajaraman
Stanford University

Mining Data Streams (Part 2)

� Each element of data stream is a tuple

� Given a list of keys S

� Determine which elements of stream have 

keys in S

� Obvious solution: hash table

� But suppose we don’t have enough memory to 

store all of S in a hash table

� e.g., we might be processing millions of filters on 

the same stream

� Example: email spam filtering

� We know 1 billion “good” email addresses

� If an email comes from one of these, it is NOT 

spam

� Publish-subscribe

� People express interest in certain sets of keywords

� Determine whether each message matches a 

user’s interest
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� Create a bit array B of m bits, initially all 0’s.

� Choose a hash function h with range [0,m) 

� Hash each member of S to one of the bits, 

which is then set to 1

� Hash each element of stream and output only 

those that hash to a 1
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� |S| = 1 billion, |B|= 1GB = 8 billion bits

� If a string is in S, it surely hashes to a 1, so 

it always gets through

� Approximately most 1/8 of the bit array is 

1, so about 1/8th of the strings not in S get 

through to the output (false positives)

� Actually, less than 1/8th, because more than 

one key might hash to the same bit
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� If we throwmdarts into n equally likely 

targets, what is the probability that a target 

gets at least one dart?

� Targets = bits, darts = hash values
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m darts, n targets
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� Fraction of 1’s in array = probability of false 

positive = 1 – e-m/n

� Example: 109 darts, 8*109 targets.

� Fraction of 1’s in B = 1 – e-1/8 = 0.1175.

� Compare with our earlier estimate: 1/8 = 0.125.

� Say |S| = m, |B| = n

� Use k independent hash functions h1,…,hk

� Initialize B to all 0’s

� Hash each element s in S using each function, 

and set B[hi(s)] = 1 for i = 1,..,k

� When a stream element with key x arrives

� If B[hi(x)] = 1 for i= 1,..,k, then declare that x is in S

� Otherwise discard the element 
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� What fraction of bit vector B is 1’s?

� Throwing km darts at n targets

� So fraction of 1’s is (1 – e-km/n)

� k independent hash functions

� False positive probability = (1 – e-km/n)k
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� m = 1 billion, n = 8 billion

� k = 1: (1 – e-1/8) = 0.1175

� k = 2: (1 – e-1/4)2 = 0.0493

� What happens as we keep increasing k?

� “Optimal” value of k: n/mln 2 
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� Bloom filters guarantee no false negatives, 

and use limited memory

� Great for pre-processing before more expensive 

checks

� E.g., Google’s BigTable, Squid web proxy

� Suitable for hardware implementation

� Hash function computations can be parallelized
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� Problem: a data stream consists of 

elements chosen from a set of size n.  

Maintain a count of the number of distinct 

elements seen so far.

� Obvious approach: maintain the set of 

elements seen.
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� How many different words are found among 

the Web pages being crawled at a site?

� Unusually low or high numbers could indicate 

artificial pages (spam?)

� How many different Web pages does each 

customer request in a week?
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� Real Problem: what if we do not have space to 

store the complete set?

� Estimate the count in an unbiased way.

� Accept that the count may be in error, but 

limit the probability that the error is large.

17

� Pick a hash function h that maps each of the 

n elements to at least log2nbits

� For each stream element a, let r(a) be the 

number of trailing 0’s in h(a)

� Record R = the maximum r(a) seen

� Estimate = 2R.

* Really based on a variant due to AMS (Alon, Matias, and Szegedy) 
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� The probability that a given h (a) ends in at 

least r0’s is 2-r

� Probability of NOT seeing a tail of length r

among m elements:  (1 - 2-r )m

Prob. a given h(a)

ends in fewer than

r 0’s.

Prob. All 

end in fewer than

r 0’s.
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� Since 2-r is small, prob. of NOT finding a tail of 

length r is:

� If m<< 2r, tends to 1. So probability of finding 

a tail of length r tends to 0. 

� Ifm>> 2r, tends to 0. So probability of finding 

a tail of length r tends to 1.

� Thus, 2R will almost always be around m.
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� E(2R) is actually infinite.

� Probability halves when R ->R +1, but value 

doubles. 

� Workaround involves using many hash 

functions and getting many samples.

� How are samples combined?

� Average? What if one very large value?

� Median? All values are a power of 2.
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� Partition your samples into small groups

� Take the average of groups

� Then take the median of the averages
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� Suppose a stream has elements chosen from 

a set of n values.

� Let mi be the number of times value i occurs.

� The kthmoment is
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� 0thmoment = number of distinct elements

� The problem just considered.

� 1st moment = count of the numbers of 

elements = length of the stream.

� Easy to compute.

� 2nd moment = surprise number = a measure of 

how uneven the distribution is.

24

� Stream of length 100; 11 distinct values

� Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9  

Surprise # = 910

� Item counts: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1  

Surprise # = 8,110.
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� Works for all moments; gives an unbiased 

estimate.

� We’ll just concentrate on 2nd moment.

� Based on calculation of many random 

variables X.

� Each requires a count in main memory, so number 

is limited.
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� Assume stream has length n.

� Pick a random time to start, so that any time 

is equally likely.

� Let the chosen time have element a in the 

stream

� Maintain a count c of the number a’sin the 

stream starting at the chosen time

� X= n*(2c– 1)

� Store n once, count of a ’s for each X.

� X = n(2c – 1)

� E[X] = (1/n)Σall times tn (2c - 1)

= Σall times t (2c - 1)

= Σa (1 + 3 + 5 + … + 2ma-1)

= Σa(ma)
2
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a a a a

1 32 ma
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� Compute as many variables X as can fit in 

available memory.

� Average them in groups.

� Take median of averages.
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� We assumed there was a number n, the 

number of positions in the stream.

� But real streams go on forever, so n is a 

variable – the number of inputs seen so far.
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1. The variables X have n as a factor – keep n

separately; just hold the count in X

2. Suppose we can only store k counts.  We 

must throw some X ’s out as time goes on.

� Objective: each starting time t is selected with 

probability k /n

� How can we do this?
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� Stream a1, a2,…

� Define exponentially decaying window at time 

tto be:Σi = 1,2,…,tai (1-c)t-i

� c is a constant, presumably tiny, like 10-6 or 

10-9.
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1/c

. . .

� Key use case is when the stream’s statistics 

can vary over time

� Finding the most popular elements 

“currently”

� Stream of Amazon items sold

� Stream of topics mentioned in tweets

� Stream of music tracks streamed
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