Mining Data Streams (Part 1)

CS345a: Data Mining

Jure Leskovec and Anand Rajaraman
Stanford University

Data Streams

- In many data mining situations, we know the entire data set in advance
- Sometimes the input rate is controlled externally
- Google queries
- Twitter or Facebook status updates

The Stream Model

- Input tuples enter at a rapid rate, at one or more input ports.
- The system cannot store the entire stream accessibly.
- How do you make critical calculations about the stream using a limited amount of (secondary) memory?

Applications - (1)

- Mining query streams
- Google wants to know what queries are more frequent today than yesterday
- Mining click streams
- Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
- E.g., Look for trending topics on Twitter, Facebook

Applications - (2)

- Sensor Networks
- Many sensors feeding into a central controller
- Telephone call records
- Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
- Gather information for optimal routing
- Detect denial-of-service attacks

Data Stream Problems

- Sampling data from a stream
- Filtering a data stream
- Queries over sliding windows
- Counting distinct elements
- Estimating moments
- Finding frequent elements
- Frequent itemsets

Sampling from a Data Stream

- Since we can't store the entire stream, one obvious approach is to store a sample
- Two different problems:
- Sample a fixed proportion of elements in the stream (say 1 in 10)
- Maintain a random sample of fixed size over a potentially infinite stream

Sampling a fixed proportion

- Scenario: search engine query stream
- Tuples: (user, query, time)
- Answer questions such as: how often did a user run the same query on two different days?
- Have space to store $1 / 10^{\text {th }}$ of query stream
- Naïve solution
- Generate a random integer in [0..9] for each query
- Store query if the integer is 0, otherwise discard

Problem with naïve approach

- Consider the question: What fraction of queries by an average user are duplicates?
- Suppose each user issues s queries once and d queries twice (total of $s+2 d$ queries)
- Correct answer: $d /(s+2 d)$
- Sample will contain $s / 10$ of the singleton queries and $2 d / 10$ of the duplicate queries at least once
- But only $d / 100$ pairs of duplicates
- So the sample-based answer is: $d /(10 s+20 d)$

Solution

- Pick $1 / 10^{\text {th }}$ of users and take all their searches in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets

Generalized Solution

- Stream of tuples with keys
- Key is some subset of each tuple's components
- E.g., tuple is (user, search, time); key is user
- Choice of key depends on application
- To get a sample of size a / b
- Hash each tuple's key uniformly into b buckets
- Pick the tuple if its hash value is at most a

Maintaining a fixed-size sample

- Suppose we need to maintain a sample of size exactly s
- E.g., main memory size constraint
- Don't know length of stream in advance
- In fact, stream could be infinite
- Suppose at time t we have seen n items
- Ensure each item is in sample with equal probability s / n

Solution

- Store all the first s elements of the stream
- Suppose we have seen n-1 elements, and now the $n^{\text {th }}$ element arrives ($n>s$)
- With probability s / n, pick the $n^{\text {th }}$ element, else discard it
- If we pick the $n^{\text {th }}$ element, then it replaces one of the s elements in the sample, picked at random
- Claim: this algorithm maintains a sample with the desired property

Proof: By Induction

- Assume that after n elements, the sample contains each element seen so far with probability s / n
- When we see element $n+1$, it gets picked with probability $s /(n+1)$
- For elements already in the sample, probability of remaining in the sample is:

$$
\left(1-\frac{s}{n+1}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right)=\frac{n}{n+1}
$$

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N - the N most recent elements received.
- Interesting case: N is so large it cannot be stored in memory, or even on disk.
- Or, there are so many streams that windows for all cannot be stored.

qwertyuio Rasdfghjklzxcvbnm

qwertyuiop asdfghjklzxcvbnm
qwertyuiopa dfghj $^{\text {kIzxcvbnm }}$
qwertyuiopas afghjklzxcvbnm
\longleftarrow Past
Future

Counting Bits - (1)

- Problem: given a stream of 0's and 1's, be prepared to answer queries of the form "how many 1 's in the last k bits?" where $k \leq N$.
- Obvious solution: store the most recent N bits.
- When new bit comes in, discard the $N+1^{\text {st }}$ bit.

Counting Bits - (2)

- You can't get an exact answer without storing the entire window.
- Real Problem: what if we cannot afford to store N bits?
- E.g., we're processing 1 billion streams and $N=1$ billion
- But we're happy with an approximate answer.

DGIM* Method

- Store $\mathrm{O}\left(\log ^{2} N\right.$) bits per stream.
- Gives approximate answer, never off by more than 50\%.
- Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits.
*Datar, Gionis, Indyk, and Motwani

Something That Doesn't (Quite) Work

- Summarize exponentially increasing regions of the stream, looking backward.
- Drop small regions if they begin at the same point as a larger region.

Key Idea

- Summarize blocks of stream with specific numbers of 1's.
- Block sizes (number of 1's) increase exponentially as we go back in time

Example: Bucketized Stream

Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $\mathrm{O}\left(\log _{2} N\right)$ bits.

Buckets

- A bucket in the DGIM method is a record consisting of:

1. The timestamp of its end $[O(\log N)$ bits].
2. The number of 1's between its beginning and end $[0(\log \log N)$ bits].

- Constraint on buckets: number of 1's must be a power of 2.
- That explains the $\log \log N$ in (2).

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1's.
- Buckets do not overlap in timestamps.
- Buckets are sorted by size.
- Earlier buckets are not smaller than later buckets.
- Buckets disappear when their end-time is > N time units in the past.

Updating Buckets - (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time.
- If the current bit is 0 , no other changes are needed.

Updating Buckets - (2)

- If the current bit is 1 :

1. Create a new bucket of size 1 , for just this bit.

- End timestamp = current time.

2. If there are now three buckets of size 1, combine the oldest two into a bucket of size 2 .
3. If there are now three buckets of size 2 , combine the oldest two into a bucket of size 4.
4. And so on ...

Example

1001010110001011010101010101011010101010101110101010111010100010110016

001010110001011 \square 0101010101011 \square 010101010111 \square $010101 \mid 10101$ 001011 dotor 001010110001011 10101010101011 \square 0101010101110 $010101 / 10101$ $00 \lcm{0170010}$ 1

0101100010110 \square 10101010101011 \square 0101010101110 \square $010101 / 10101000$ 00100101107 0101100010110 \square 0101010101011 \square 010101010111 \square $010101 \mid 10101000$ \square 10 $110 \square$
\qquad
\square 010101010101101010101010111 \square 010101110101 000 \square b \square

Querying

To estimate the number of 1's in the most recent N bits:

1. Sum the sizes of all buckets but the last.
2. Add half the size of the last bucket.

- Remember: we don't know how many 1's of the last bucket are still within the window.

Example: Bucketized Stream

Error Bound

- Suppose the last bucket has size 2^{k}.
- Then by assuming 2^{k-1} of its 1^{\prime} s are still within the window, we make an error of at most 2^{k-1}.
- Since there is at least one bucket of each of the sizes less than 2^{k}, the true sum is at least $1+2+. .+2^{k-1}=2^{k}-1$.
- Thus, error at most 50\%.

Extensions

- Can we use the same trick to answer queries "How many 1's in the last k ?" where $k<N$?
- Can we handle the case where the stream is not bits, but integers, and we want the sum of the last k ?

Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either $r-1$ or r for $r>2$
- Except for the largest size buckets; we can have any number between 1 and r of those
- Error is at most by $1 /(r-1)$
- By picking r appropriately, we can tradeoff between number of bits and error

