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Problem Statement

Given a set of data points, group them into a
clusters so that:
points within each cluster are similar to each other

points from different clusters are dissimilar
Usually, points are in a high-dimensional
space, and similarity is defined using a
distance measure

Euclidean, Cosine, Jaccard, edit distance, ...
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Application Example: SkyCat

A catalog of 2 billion “sky objects”
represents objects by their radiation in 7

dimensions (frequency bands).
. cluster into similar objects, e.g.,

galaxies, nearby stars, quasars, etc.
Sloan Sky Survey is a newer, better version.



More Examples

Cluster customers based on their purchase
histories

Cluster products based on the sets of
customers who purchased them

Cluster documents based on similar words or
shingles

Cluster DNA sequences based on edit
distance



Methods of Clustering

Initially, each point in cluster by itself.

Repeatedly combine the two “nearest” clusters
into one.

Maintain a set of clusters.
Place points into their “nearest” cluster.



Hierarchical Clustering

Key Operation: repeatedly combine two
nearest clusters
Three important questions:

How do you represent a cluster of more than one
point?

How do you determine the “nearness” of clusters?
When to stop combining clusters?



Euclidean Case

Each cluster has a well-defined

i.e., average across all the points in the cluster
Represent each cluster by its centroid
Distance between clusters = distance between
centroids






Non-Euclidean Distances

The only “locations” we can talk about are the
points themselves.
l.e., there is no “average” of two points.
= point “closest” to
other points.

Treat clustroid as if it were centroid, when
computing intercluster distances.



“Closest” Point?

Possible meanings:

Smallest maximum distance to the other points.

Smallest average distance to other points.

Smallest sum of squares of distances to other
points.

Etc., etc.
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Other Approaches

. intercluster distance =
minimum of the distances between any two

points, one from each cluster.
: Pick a notion of of

clusters, e.g., maximum distance from the
clustroid.
Merge clusters whose union is most cohesive.

’)



Cohesion

Approach 1: Use the diameter of the merged
cluster = maximum distance between points
in the cluster.

Approach 2: Use the average distance
between points in the cluster.



Cohesion —(2)

Approach 3: Use a density-based approach:
take the diameter or average distance, e.g.,

and divide by the number of points in the
cluster.

Perhaps raise the number of points to a power
first, e.g., square-root.



Stopping Criteria

Stop when we have k clusters

Stop when the cohesion of the cluster
resulting from the best merger falls below a
threshold

Stop when there is a sudden jump in the
cohesion value



Implementing Hierarchical

Clustering

Naive implementation:

At each step, compute pairwise distances between
each pair of clusters

O(N3)
Careful implementation using a priority queue
can reduce time to O(N? log N)
Too expensive for really big data sets that
don’t fit in memory



k — Means Algorithm(s)

Assumes Euclidean space.

Start by picking k, the number of clusters.

Initialize clusters by picking one point per
cluster.

. pick one point at random, then k-1

other points, each as far away as possible from the
previous points.



Populating Clusters

For each point, place it in the cluster whose
current centroid it is nearest, and update the
centroid of the cluster.
After all points are assigned, fix the centroids
of the k clusters.

: reassign all points to their closest
centroid.

Sometimes moves points between clusters.



Example: Assigning Clusters

Reassigned
points

Clusters after first round



Getting k Right

Try different k, looking at the change in the
average distance to centroid, as k increases.

Average falls rapidly until right k, then
changes little.

T Best value
Average of k
distance to l
centroid

k—>



Example: Picking k

Too few;
many long
distances
to centroid.



Example: Picking k

Just right;
distances
rather short.



Example: Picking k

Too many;

little improvement
In average
distance.




BFR Algorithm

BFR ( ) is a variant of k -
means designed to handle very large (disk-
resident) data sets.

It assumes that clusters are normally
distributed around a centroid in a Euclidean
space.

Standard deviations in different dimensions may
vary.



Points are read one main-memory-full at a
time.

Most points from previous memory loads
are summarized by simple statistics.

To begin, from the initial load we select the
initial kK centroids by some sensible
approach.



Initialization: k -Means

Possibilities include:
Take a small random sample and cluster
optimally.

Take a sample; pick a random point, and then k —
1 more points, each as far from the previously
selected points as possible.



Three Classes of Points

The discard set: points close enough to a
centroid to be summarized.

The compression set: groups of points that
are close together but not close to any
centroid. They are summarized, but not
assigned to a cluster.

The retained set: isolated points.



“Galaxies” Picture
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Summarizing Sets of Points

For each cluster, the discard set is
summarized by:
The number of points, N.

The vector SUM: j ! component = sum of the
coordinates of the points in the i " dimension.

The vector SUMSQ; i t" component = sum of
squares of coordinates in i th dimension.



Comments

2d + 1 values represent any number of points.
d = number of dimensions.

Centroid (mean) in j " dimension = SUM, /N.
SUM. =it component of SUM.

Variance in dimension i can be computed by:

(SUMSQ; /N ) — (SUM. /N )?

Question: Why use this representation rather

than directly store centroid and standard

deviation?



Processing a “Memory-Load” of

Points

Find those points that are “sufficiently
close” to a cluster centroid; add those
points to that cluster and the DS.

Use any main-memory clustering
algorithm to cluster the remaining points
and the old RS.

Clusters go to the CS; outlying points to the
RS.



Processing — (2)

Adjust statistics of the clusters to account for
the new points.

Add N’s, SUM’s, SUMSQs.
Consider merging compressed sets in the CS.
If this is the last round, merge all compressed
sets in the CS and all RS points into their
nearest cluster.



A Few Detalls. ..

How do we decide if a point is “close enough”
to a cluster that we will add the point to that

cluster?
How do we decide whether two compressed

sets deserve to be combined into one?



How Close is Close Enough?

We need a way to decide whether to put a
new point into a cluster.

BFR suggest two ways:

The Mahalanobis distance is less than a
threshold.

Low likelihood of the currently nearest centroid
changing.



Mahalanobis Distance

Normalized Euclidean distance from

centroid.

For point (x,...,x,) and centroid (c,,...,¢;):
Normalize in each dimension: y. = (x.-c,)/0;
Take sum of the squares of the y;’s.

Take the square root.



Mahalanobis Distance — (2)

If clusters are normally distributed in d
dimensions, then after transformation, one
standard deviation = Vd.

l.e., 70% of the points of the cluster will have a
Mahalanobis distance < Vd.

Accept a point for a cluster if its M.D. is <
some threshold, e.g. 4 standard deviations.



Picture: Equal M.D. Regions




Should Two CS Subclusters Be

Combined?

Compute the variance of the combined
subcluster.
N, SUM, and SUMSQ allow us to make that
calculation quickly.
Combine if the variance is below some
threshold.
Many alternatives: treat dimensions
differently, consider density.



The CURE Algorithm

Problem with BFR/k -means:

Assumes clusters are normally distributed in each
dimension.

And axes are fixed — ellipses at an angle are
OK

CURE:
Assumes a Euclidean distance.

Allows clusters to assume any shape.



Example: Stanford Faculty Salaries

age —



Starting CURE

Pick a random sample of points that fit in
main memory.

Cluster these points hierarchically — group
nearest points/clusters.

For each cluster, pick a sample of points,
as dispersed as possible.

From the sample, pick representatives by
moving them (say) 20% toward the
centroid of the cluster.



Example: Initial Clusters

age —



Example: Pick Dispersed Points

age —

Pick (say) 4
remote points
for each
cluster.



Example: Pick Dispersed Points

age —

Move points
(say) 20%
toward the
centroid.



Finishing CURE

Now, visit each point p in the data set.
Place it in the “closest cluster.”
Normal definition of “closest”: that cluster with

the closest (to p ) among all the sample points of
all the clusters.



