
Near Neighbor Search in

High Dimensional Data (1)

Anand Rajaraman

Motivation
Distance Measures

Shingling
Min-Hashing

Tycho Brahe

Johannes Kepler

… and Isaac Newton

The Classical Model

F = ma

Data Theory Applications

Fraud Detection

Model-based decision making

Model

Neural Nets

Regression

Classifiers

Decision Trees

Data Model Predictions

Scene Completion Problem

Hays and Efros, SIGGRAPH 2007

The Bare Data Approach

The Web

Simple algorithms with

access to large datasets

High Dimensional Data

• Many real-world problems

– Web Search and Text Mining

• Billions of documents, millions of terms

– Product Recommendations

• Millions of customers, millions of products

– Scene Completion, other graphics problems

• Image features

– Online Advertising, Behavioral Analysis

• Customer actions e.g., websites visited, searches

A common metaphor

• Find near-neighbors in high-D space
– documents closely matching query terms

– customers who purchased similar products

– products with similar customer sets

– images with similar features

– users who visited the same websites

• In some cases, result is set of nearest
neighbors

• In other cases, extrapolate result from
attributes of near-neighbors

Example: Question Answering

• Who killed Abraham Lincoln?

• What is the height of Mount Everest?

• Naïve algorithm

– Find all web pages containing the terms
“killed” and “Abraham Lincoln” in close
proximity

– Extract k-grams from a small window around
the terms

– Find the most commonly occuring k-grams

Example: Question Answering

• Naïve algorithm works fairly well!

• Some improvements
– Use sentence structure e.g., restrict to noun

phrases only

– Rewrite questions before matching
• “What is the height of Mt Everest” becomes “The

height of Mt Everest is <blank>”

• The number of pages analyzed is more
important than the sophistication of the
NLP
– For simple questions

Reference: Dumais et al

The Curse of Dimesnsionality

1-d space

2-d space

The Curse of Dimensionality

• Let’s take a data set with a fixed number N

of points

• As we increase the number of dimensions

in which these points are embedded, the

average distance between points keeps

increasing

• Fewer “neighbors” on average within a

certain radius of any given point

The Sparsity Problem

• Most customers have not purchased most

products

• Most scenes don’t have most features

• Most documents don’t contain most terms

• Easy solution: add more data!

– More customers, longer purchase histories

– More images

– More documents

– And there’s more of it available every day!

Hays and Efros, SIGGRAPH 2007

Example: Scene Completion

10 nearest neighbors from a

collection of 20,000 images
Hays and Efros, SIGGRAPH 2007

10 nearest neighbors from a

collection of 2 million images
Hays and Efros, SIGGRAPH 2007

Distance Measures

• We formally define “near neighbors” as

points that are a “small distance” apart

• For each use case, we need to define

what “distance” means

• Two major classes of distance measures:

– Euclidean

– Non-Euclidean

Euclidean Vs. Non-Euclidean

• A Euclidean space has some number of

real-valued dimensions and “dense” points.

– There is a notion of “average” of two points.

– A Euclidean distance is based on the
locations of points in such a space.

• A Non-Euclidean distance is based on

properties of points, but not their “location”

in a space.

Axioms of a Distance Measure

• d is a distance measure if it is a function

from pairs of points to real numbers such

that:

1. d(x,y) > 0.

2. d(x,y) = 0 iff x = y.

3. d(x,y) = d(y,x).

4. d(x,y) < d(x,z) + d(z,y) (triangle inequality).

Some Euclidean Distances

• L2 norm : d(x,y) = square root of the sum

of the squares of the differences between

x and y in each dimension.

– The most common notion of “distance.”

• L1 norm : sum of the differences in each

dimension.

– Manhattan distance = distance if you had to
travel along coordinates only.

Examples of Euclidean Distances

a = (5,5)

b = (9,8)
L2-norm:
dist(x,y) =
√(42+32)
= 5

L1-norm:
dist(x,y) =
4+3 = 7

4

35

Another Euclidean Distance

• L∞ norm : d(x,y) = the maximum of
the differences between x and y in
any dimension.

• Note: the maximum is the limit as n
goes to ∞ of the Ln norm

Non-Euclidean Distances

• Cosine distance = angle between vectors

from the origin to the points in question.

• Edit distance = number of inserts and

deletes to change one string into another.

• Hamming Distance = number of positions

in which bit vectors differ.

Cosine Distance

• Think of a point as a vector from the

origin (0,0,…,0) to its location.

• Two points’ vectors make an angle,

whose cosine is the normalized dot-

product of the vectors: p1.p2/|p2||p1|.

– Example: p1 = 00111; p2 = 10011.

– p1.p2 = 2; |p1| = |p2| = √3.

– cos(θ) = 2/3; θ is about 48 degrees.

Cosine-Measure Diagram

p1

p2p1.p2

θ

|p2|

d (p1, p2) = θ = arccos(p1.p2/|p2||p1|)

Why C.D. Is a Distance Measure

• d(x,x) = 0 because arccos(1) = 0.

• d(x,y) = d(y,x) by symmetry.

• d(x,y) > 0 because angles are chosen to

be in the range 0 to 180 degrees.

• Triangle inequality: physical reasoning.

If I rotate an angle from x to z and then

from z to y, I can’t rotate less than from

x to y.

Edit Distance

• The edit distance of two strings is the
number of inserts and deletes of
characters needed to turn one into the
other. Equivalently:

d(x,y) = |x| + |y| - 2|LCS(x,y)|

• LCS = longest common subsequence =
any longest string obtained both by
deleting from x and deleting from y.

Example: LCS

• x = abcde ; y = bcduve.

• Turn x into y by deleting a, then inserting

u and v after d.

– Edit distance = 3.

• Or, LCS(x,y) = bcde.

• Note that d(x,y) = |x| + |y| - 2|LCS(x,y)|

= 5 + 6 – 2*4 = 3

Edit Distance Is a Distance Measure

• d(x,x) = 0 because 0 edits suffice.

• d(x,y) = d(y,x) because insert/delete are

inverses of each other.

• d(x,y) > 0: no notion of negative edits.

• Triangle inequality: changing x to z and

then to y is one way to change x to y.

Variant Edit Distances

• Allow insert, delete, and mutate.

– Change one character into another.

• Minimum number of inserts, deletes, and

mutates also forms a distance measure.

• Ditto for any set of operations on strings.

– Example: substring reversal OK for DNA
sequences

Hamming Distance

• Hamming distance is the number of

positions in which bit-vectors differ.

• Example: p1 = 10101; p2 = 10011.

• d(p1, p2) = 2 because the bit-vectors differ

in the 3rd and 4th positions.

Jaccard Similarity

• The Jaccard Similarity of two sets is the

size of their intersection divided by the

size of their union.

– Sim (C1, C2) = |C1∩C2|/|C1∪C2|.

• The Jaccard Distance between sets is 1

minus their Jaccard similarity.

– d(C1, C2) = 1 - |C1∩C2|/|C1∪C2|.

Example: Jaccard Distance

3 in intersection.
8 in union.
Jaccard similarity= 3/8
Jaccard distance = 5/8

Encoding sets as bit vectors

• We can encode sets using 0/1(Bit, Boolean)
vectors

– One dimension per element in the universal set

• Interpret set intersection as bitwise AND and
set union as bitwise OR

• Example: p1 = 10111; p2 = 10011.

• Size of intersection = 3; size of union = 4,
Jaccard similarity (not distance) = 3/4.

• d(x,y) = 1 – (Jaccard similarity) = 1/4.

Finding Similar Documents

• Locality-Sensitive Hashing (LSH) is a

general method to find near-neighbors in

high-dimensional data

• We’ll introduce LSH by considering a

specific case: finding similar text

documents

– Also introduces additional techniques:
shingling, minhashing

• Then we’ll discuss the generalized theory

behind LSH

Problem Statement

• Given a large number (N in the millions or

even billions) of text documents, find pairs

that are “near duplicates”

• Applications:

– Mirror websites, or approximate mirrors.

• Don’t want to show both in a search

– Plagiarism, including large quotations.

– Web spam detection

– Similar news articles at many news sites.

• Cluster articles by “same story.”

Near Duplicate Documents

• Special cases are easy

– Identical documents

– Pairs where one document is completely
contained in another

• General case is hard

– Many small pieces of one doc can appear out
of order in another

• We first need to formally define “near

duplicates”

Documents as High Dimensional Data

• Simple approaches:

– Document = set of words appearing in doc

– Document = set of “important” words

– Don’t work well for this application. Why?

• Need to account for ordering of words

• A different way: shingles

42

Shingles

• A k-shingle (or k-gram) for a document is

a sequence of k tokens that appears in

the document.

– Tokens can be characters, words or
something else, depending on application

– Assume tokens = characters for examples

• Example: k=2; doc = abcab. Set of 2-

shingles = {ab, bc, ca}.

– Option: shingles as a bag, count ab twice.

• Represent a doc by its set of k-shingles.

43

Working Assumption

• Documents that have lots of shingles in

common have similar text, even if the text

appears in different order.

• Careful: you must pick k large enough, or

most documents will have most shingles.

– k = 5 is OK for short documents; k = 10 is
better for long documents.

44

Compressing Shingles

• To compress long shingles, we can

hash them to (say) 4 bytes.

• Represent a doc by the set of hash

values of its k-shingles.

• Two documents could (rarely) appear to

have shingles in common, when in fact

only the hash-values were shared.

45

Thought Question

• Why is it better to hash 9-shingles (say) to

4 bytes than to use 4-shingles?

• Hint: How random are the 32-bit

sequences that result from 4-shingling?

Similarity metric

• Document = set of k-shingles

• Equivalently, each document is a 0/1

vector in the space of k-shingles

– Each unique shingle is a dimension

– Vectors are very sparse

• A natural similarity measure is the Jaccard

similarity

– Sim (C1, C2) = |C1∩C2|/|C1∪C2|

Motivation for LSH

• Suppose we need to find near-duplicate

documents among N=1 million documents

• Naively, we’d have to compute pairwaise

Jaccard similarites for every pair of docs

– i.e, N(N-1)/2 ≈ 5*1011 comparisons

– At 105 secs/day and 106 comparisons/sec, it
would take 5 days

• For N = 10 million, it takes more than a

year…

Key idea behind LSH

• Given documents (i.e., shingle sets) D1 and D2

• If we can find a hash function h such that:

– if sim(D1,D2) is high, then with high probability

h(D1) = h(D2)

– if sim(D1,D2) is low, then with high probability

h(D1) ≠ h(D2)

• Then we could hash documents into buckets,
and expect that “most” pairs of near duplicate
documents would hash into the same bucket

– Compare pairs of docs in each bucket to see if they

are really near-duplicates

Min-hashing

• Clearly, the hash function depends on the

similarity metric

– Not all similarity metrics have a suitable hash
function

• Fortunately, there is a suitable hash

function for Jaccard similarity

– Min-hashing

The shingle matrix

• Matrix where each document vector is a column

0101

0101

1010

1010

1010

1001

0101

documents

shingles

Min-hashing

• Define a hash function h as follows:

– Permute the rows of the matrix randomly

• Important: same permutation for all the vectors!

– Let C be a column (= a document)

– h(C) = the number of the first (in the permuted
order) row in which column C has 1

Minhashing Example

Input matrix

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

1212
h

Surprising Property

• The probability (over all permutations

of the rows) that h(C1) = h(C2) is the

same as Sim(C1, C2)

• That is:

– Pr[h(C1) = h(C2)] = Sim(C1, C2)

• Let’s prove it!

Proof (1) : Four Types of Rows

• Given columns C1 and C2, rows may be
classified as:

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

• Also, a = # rows of type a , etc.

• Note Sim(C1, C2) = a/(a + b + c).

Proof (2): The Clincher

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

• Now apply a permutation
– Look down the permuted columns C1 and C2 until

we see a 1.

– If it’s a type-a row, then h(C1) = h(C2). If a type-b
or type-c row, then not.

– So Pr[h(C1) = h(C2)] = a/(a + b + c) = Sim(C1, C2)

LSH: First Cut

• Hash each document using min-hashing

• Each pair of documents that hashes into

the same bucket is a candidate pair

• Assume we want to find pairs with

similarity at least 0.8.

– We’ll miss 20% of the real near-duplicates

– Many false-positive candidate pairs

• e.g., We’ll find 60% of pairs with similarity 0.6.

Minhash Signatures

• Fixup: Use several (e.g., 100) independent

min-hash functions to create a signature

Sig(C) for each column C

• The similarity of signatures is the fraction

of the hash functions in which they agree.

• Because of the minhash property, the

similarity of columns is the same as the

expected similarity of their signatures.

Minhash Signatures Example
Input matrix

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Implementation (1)

• Suppose N = 1 billion rows.

• Hard to pick a random permutation from

1…billion.

• Representing a random permutation

requires 1 billion entries.

• Accessing rows in permuted order leads

to thrashing.

Implementation (2)

• A good approximation to permuting

rows: pick 100 (?) hash functions

– h1 , h2 ,…

– For rows r and s, if hi (r) < hi (s), then r
appears before s in permutation i.

– We will use the same name for the hash
function and the corresponding min-hash
function

Example

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5

h(1)=1, h(2)=2, h(3)=3, h(4)=4, h(5)=0

h(C1) = 1

h(C2) = 0

g(x) = 2x+1 mod 5

g(1)=3, g(2)=0, g(3)=2, g(4)=4, g(5)=1

g(C1) = 2

g(C2) = 0

Sig(C1) = [1,2]

Sig(C2) = [0,0]

Implementation (3)

• For each column c and each hash

function hi , keep a “slot” M (i, c).

– M(i, c) will become the smallest value of hi (r)
for which column c has 1 in row r

– Initialize to infinity

• Sort the input matrix so it is ordered by

rows

– So can iterate by reading rows sequentially
from disk

Implementation (4)

for each row r

for each column c

if c has 1 in row r

for each hash function hi do

if hi (r) < M(i, c) then

M (i, c) := hi (r);

Example

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5
g(x) = 2x+1 mod 5

h(1) = 1 1 -
g(1) = 3 3 -

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

Sig1 Sig2

Implementation – (4)

• Often, data is given by column, not row.
– E.g., columns = documents, rows = shingles.

• If so, sort matrix once so it is by row.
– This way we compute hi (r) only once for each

row

• Questions for thought:
– What’s a good way to generate hundreds of

independent hash functions?

– How to implement min-hashing using
MapReduce?

The Big Picture

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.

