Near Neighbor Search in High Dimensional Data (1)

Motivation

Distance Measures
Shingling
Min-Hashing
Anand Rajaraman

Tycho Brahe

Johannes Kepler

... and Isaac Newton

Newton's Law of Universal Gravitation

$$
\overrightarrow{\mathbf{F}}=\frac{-\mathbf{G M m} \hat{\mathbf{r}}}{\mathbf{r}^{2}}
$$

Newton's 2nd Law

$$
\overrightarrow{\mathbf{F}}=\mathrm{d} / \mathrm{dt}(\mathrm{~m} \overrightarrow{\mathrm{v}})
$$

Figure 11.0

The Classical Model

Data
Theory
Applications

Fraud Detection

Model-based decision making

Data
Model
Predictions

Scene Completion Problem

Hays and Efros, SIGGRAPH 2007

The Bare Data Approach

The Web

Did you mean: argumentative

High Dimensional Data

- Many real-world problems
- Web Search and Text Mining
- Billions of documents, millions of terms
- Product Recommendations
- Millions of customers, millions of products
- Scene Completion, other graphics problems
- Image features
- Online Advertising, Behavioral Analysis
- Customer actions e.g., websites visited, searches

A common metaphor

- Find near-neighbors in high-D space
- documents closely matching query terms
- customers who purchased similar products
- products with similar customer sets
- images with similar features
- users who visited the same websites
- In some cases, result is set of nearest neighbors
- In other cases, extrapolate result from attributes of near-neighbors

Example: Question Answering

- Who killed Abraham Lincoln?
- What is the height of Mount Everest?
- Naïve algorithm
- Find all web pages containing the terms "killed" and "Abraham Lincoln" in close proximity
- Extract k-grams from a small window around the terms
- Find the most commonly occuring k-grams

Example: Question Answering

- Naïve algorithm works fairly well!
- Some improvements
- Use sentence structure e.g., restrict to noun phrases only
- Rewrite questions before matching
- "What is the height of Mt Everest" becomes "The height of Mt Everest is <blank>"
- The number of pages analyzed is more important than the sophistication of the NLP
- For simple questions

Reference: Dumais et al

The Curse of Dimesnsionality

1-d space

The Curse of Dimensionality

- Let's take a data set with a fixed number N of points
- As we increase the number of dimensions in which these points are embedded, the average distance between points keeps increasing
- Fewer "neighbors" on average within a certain radius of any given point

The Sparsity Problem

- Most customers have not purchased most products
- Most scenes don't have most features
- Most documents don't contain most terms
- Easy solution: add more data!
- More customers, longer purchase histories
- More images
- More documents
- And there's more of it available every day!

Example: Scene Completion

Hays and Efros, SIGGRAPH 2007

10 nearest neighbors from a collection of 20,000 images

10 nearest neighbors from a collection of 2 million images

Distance Measures

- We formally define "near neighbors" as points that are a "small distance" apart
- For each use case, we need to define what "distance" means
- Two major classes of distance measures:
- Euclidean
- Non-Euclidean

Euclidean Vs. Non-Euclidean

- A Euclidean space has some number of real-valued dimensions and "dense" points.
- There is a notion of "average" of two points.
- A Euclidean distance is based on the locations of points in such a space.
- A Non-Euclidean distance is based on properties of points, but not their "location" in a space.

Axioms of a Distance Measure

- d is a distance measure if it is a function from pairs of points to real numbers such that:

1. $d(x, y) \geq 0$.
2. $d(x, y)=0$ iff $x=y$.
3. $d(x, y)=d(y, x)$.
4. $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})$ (triangle inequality).

Some Euclidean Distances

- L_{2} norm: $\mathrm{d}(\mathrm{x}, \mathrm{y})=$ square root of the sum of the squares of the differences between x and y in each dimension.
- The most common notion of "distance."
- L_{1} norm : sum of the differences in each dimension.
- Manhattan distance = distance if you had to travel along coordinates only.

Examples of Euclidean Distances

Another Euclidean Distance

- L_{∞} norm: $\mathrm{d}(\mathrm{x}, \mathrm{y})=$ the maximum of the differences between x and y in any dimension.
- Note: the maximum is the limit as n goes to ∞ of the L_{n} norm

Non-Euclidean Distances

- Cosine distance = angle between vectors from the origin to the points in question.
- Edit distance = number of inserts and deletes to change one string into another.
- Hamming Distance = number of positions in which bit vectors differ.

Cosine Distance

- Think of a point as a vector from the origin $(0,0, \ldots, 0)$ to its location.
- Two points' vectors make an angle, whose cosine is the normalized dotproduct of the vectors: $p_{1} \cdot p_{2} /\left|p_{2}\right|\left|p_{1}\right|$.
- Example: $p_{1}=00111 ; p_{2}=10011$.
$-p_{1} \cdot p_{2}=2 ;\left|p_{1}\right|=\left|p_{2}\right|=\sqrt{ } 3$.
$-\cos (\theta)=2 / 3 ; \theta$ is about 48 degrees.

Cosine-Measure Diagram

$$
\mathrm{d}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=\theta=\arccos \left(\mathrm{p}_{1} \cdot \mathrm{p}_{2} /\left|\mathrm{p}_{2}\right|\left|\mathrm{p}_{1}\right|\right)
$$

Why C.D. Is a Distance Measure

- $d(x, x)=0$ because $\arccos (1)=0$.
- $d(x, y)=d(y, x)$ by symmetry.
- $d(x, y) \geq 0$ because angles are chosen to be in the range 0 to 180 degrees.
- Triangle inequality: physical reasoning. If I rotate an angle from x to z and then from z to y, I can't rotate less than from x to y.

Edit Distance

- The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other. Equivalently:
$d(x, y)=|x|+|y|-2|\operatorname{LCS}(x, y)|$
- LCS = longest common subsequence = any longest string obtained both by deleting from x and deleting from y.

Example: LCS

- $x=a b c d e ; y=b c d u v e$.
- Turn x into y by deleting a, then inserting u and v after d.
- Edit distance $=3$.
- Or, LCS $(x, y)=b c d e$.
- Note that $d(x, y)=|x|+|y|-2|L C S(x, y)|$

$$
=5+6-2 * 4=3
$$

Edit Distance Is a Distance Measure

- $d(x, x)=0$ because 0 edits suffice.
- $d(x, y)=d(y, x)$ because insert/delete are inverses of each other.
- $\mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0$: no notion of negative edits.
- Triangle inequality: changing x to z and then to y is one way to change x to y.

Variant Edit Distances

- Allow insert, delete, and mutate.
- Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Ditto for any set of operations on strings.
- Example: substring reversal OK for DNA sequences

Hamming Distance

- Hamming distance is the number of positions in which bit-vectors differ.
- Example: $p_{1}=10101 ; p_{2}=10011$.
- $d\left(p_{1}, p_{2}\right)=2$ because the bit-vectors differ in the $3^{\text {rd }}$ and $4^{\text {th }}$ positions.

Jaccard Similarity

- The Jaccard Similarity of two sets is the size of their intersection divided by the size of their union.
$-\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$.
- The Jaccard Distance between sets is 1 minus their Jaccard similarity.

$$
-d\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=1-\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right|| | \mathrm{C}_{1} \cup \mathrm{C}_{2} \mid .
$$

Example: Jaccard Distance

3 in intersection.
8 in union.
Jaccard similarity $=3 / 8$
Jaccard distance $=5 / 8$

Encoding sets as bit vectors

- We can encode sets using 0/1(Bit, Boolean) vectors
- One dimension per element in the universal set
- Interpret set intersection as bitwise AND and set union as bitwise OR
- Example: $p_{1}=10111 ; p_{2}=10011$.
- Size of intersection $=3$; size of union $=4$, Jaccard similarity (not distance) $=3 / 4$.
- $d(x, y)=1-($ Jaccard similarity $)=1 / 4$.

Finding Similar Documents

- Locality-Sensitive Hashing (LSH) is a general method to find near-neighbors in high-dimensional data
- We'll introduce LSH by considering a specific case: finding similar text documents
- Also introduces additional techniques: shingling, minhashing
- Then we'll discuss the generalized theory behind LSH

Problem Statement

- Given a large number (N in the millions or even billions) of text documents, find pairs that are "near duplicates"
- Applications:
- Mirror websites, or approximate mirrors.
- Don't want to show both in a search
- Plagiarism, including large quotations.
- Web spam detection
- Similar news articles at many news sites.
- Cluster articles by "same story."

Near Duplicate Documents

- Special cases are easy
- Identical documents
- Pairs where one document is completely contained in another
- General case is hard
- Many small pieces of one doc can appear out of order in another
- We first need to formally define "near duplicates"

Documents as High Dimensional Data

- Simple approaches:
- Document = set of words appearing in doc
- Document = set of "important" words
- Don't work well for this application. Why?
- Need to account for ordering of words
- A different way: shingles

Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the document.
- Tokens can be characters, words or something else, depending on application
- Assume tokens = characters for examples
- Example: k=2; doc = abcab. Set of 2shingles $=\{a b, b c, c a\}$.
- Option: shingles as a bag, count ab twice.
- Represent a doc by its set of k-shingles.

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order.
- Careful: you must pick k large enough, or most documents will have most shingles.
$-k=5$ is OK for short documents; $k=10$ is better for long documents.

Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes.
- Represent a doc by the set of hash values of its k-shingles.
- Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared.

Thought Question

- Why is it better to hash 9-shingles (say) to 4 bytes than to use 4 -shingles?
- Hint: How random are the 32-bit sequences that result from 4-shingling?

Similarity metric

- Document = set of k-shingles
- Equivalently, each document is a $0 / 1$ vector in the space of k-shingles
- Each unique shingle is a dimension
- Vectors are very sparse
- A natural similarity measure is the Jaccard similarity
$-\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=\left|\mathrm{C}_{1} \cap \mathrm{C}_{2}\right| /\left|\mathrm{C}_{1} \cup \mathrm{C}_{2}\right|$

Motivation for LSH

- Suppose we need to find near-duplicate documents among $\mathrm{N}=1$ million documents
- Naively, we'd have to compute pairwaise Jaccard similarites for every pair of docs
- i.e, $N(N-1) / 2 \approx 5^{*} 10^{11}$ comparisons
- At 10^{5} secs/day and 10^{6} comparisons/sec, it would take 5 days
- For $\mathrm{N}=10$ million, it takes more than a year...

Key idea behind LSH

- Given documents (i.e., shingle sets) D1 and D2
- If we can find a hash function h such that:
- if $\operatorname{sim}(\mathrm{D} 1, \mathrm{D} 2)$ is high, then with high probability $h(\mathrm{D} 1)=h(\mathrm{D} 2)$
- if $\operatorname{sim}(\mathrm{D} 1, \mathrm{D} 2)$ is low, then with high probability $h(\mathrm{D} 1) \neq h(\mathrm{D} 2)$
- Then we could hash documents into buckets, and expect that "most" pairs of near duplicate documents would hash into the same bucket
- Compare pairs of docs in each bucket to see if they are really near-duplicates

Min-hashing

- Clearly, the hash function depends on the similarity metric
- Not all similarity metrics have a suitable hash function
- Fortunately, there is a suitable hash function for Jaccard similarity
- Min-hashing

The shingle matrix

- Matrix where each document vector is a column

documents			
1 0 1 0 1 0 0 1 0 1 0 1 shingles 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0			

Min-hashing

- Define a hash function h as follows:
- Permute the rows of the matrix randomly
- Important: same permutation for all the vectors!
- Let C be a column (= a document)
$-h(C)=$ the number of the first (in the permuted order) row in which column C has 1

Minhashing Example

Surprising Property

- The probability (over all permutations of the rows) that $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$ is the same as $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- That is:

$$
-\operatorname{Pr}\left[h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)\right]=\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)
$$

- Let's prove it!

Proof (1) : Four Types of Rows

- Given columns C_{1} and C_{2}, rows may be classified as:

	C_{1}	C_{2}
a	1	1
b	1	0
c	0	1
d	0	0

- Also, $a=\#$ rows of type a, etc.
- Note $\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=a /(a+b+c)$.

Proof (2): The Clincher

	C_{1}	C_{2}
a	1	1
b	1	0
c	0	1
d	0	0

- Now apply a permutation
- Look down the permuted columns C_{1} and C_{2} until we see a 1 .
- If it's a type-a row, then $h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)$. If a type-b or type-c row, then not.
- So $\operatorname{Pr}\left[h\left(\mathrm{C}_{1}\right)=h\left(\mathrm{C}_{2}\right)\right]=\mathrm{a} /(\mathrm{a}+\mathrm{b}+\mathrm{c})=\operatorname{Sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$

LSH: First Cut

- Hash each document using min-hashing
- Each pair of documents that hashes into the same bucket is a candidate pair
- Assume we want to find pairs with similarity at least 0.8 .
- We'll miss 20\% of the real near-duplicates
- Many false-positive candidate pairs
- e.g., We'll find 60% of pairs with similarity 0.6.

Minhash Signatures

- Fixup: Use several (e.g., 100) independent min-hash functions to create a signature Sig(C) for each column C
- The similarity of signatures is the fraction of the hash functions in which they agree.
- Because of the minhash property, the similarity of columns is the same as the expected similarity of their signatures.

Minhash Signatures Example

Input matrix

1	4	3	1 0 1 0				
3	2	4		1	0	0	1
7	1	7		0	1	0	1
6	3	6		0	1	0	1
2	6	1		0	1	0	1
5	7	2	1	0	1	0	
4	5	5		1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	$1-3$	$2-4$	$1-2$	$3-4$
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

Implementation (1)

- Suppose $\mathrm{N}=1$ billion rows.
- Hard to pick a random permutation from 1...billion.
- Representing a random permutation requires 1 billion entries.
- Accessing rows in permuted order leads to thrashing.

Implementation (2)

- A good approximation to permuting rows: pick 100 (?) hash functions
- h_{1}, h_{2}, \ldots
- For rows r and s, if $h_{i}(r)<h_{i}(s)$, then r appears before s in permutation i.
- We will use the same name for the hash function and the corresponding min-hash function

Example

$$
\begin{aligned}
& h(\mathrm{x})=x \bmod 5 \\
& h(1)=1, h(2)=2, h(3)=3, h(4)=4, h(5)=0 \\
& h(\mathrm{C} 1)=1 \\
& h(\mathrm{C} 2)=0 \\
& g(\mathrm{x})=2 x+1 \bmod 5 \\
& g(1)=3, g(2)=0, g(3)=2, g(4)=4, g(5)=1 \\
& g(\mathrm{C} 1)=2 \\
& g(\mathrm{C} 2)=0
\end{aligned}
$$

$\operatorname{Sig}(\mathrm{C} 1)=[1,2]$
$\operatorname{Sig}(\mathrm{C} 2)=[0,0]$

Implementation (3)

- For each column c and each hash function h_{i}, keep a "slot" $M(i, c)$.
- $M(i, c)$ will become the smallest value of $h_{i}(r)$ for which column c has 1 in row r
- Initialize to infinity
- Sort the input matrix so it is ordered by rows
- So can iterate by reading rows sequentially from disk

Implementation (4)

for each row r
for each column c
if c has 1 in row r
for each hash function h_{i} do
if $h_{i}(r)<M(i, c)$ then

$$
M(i, c):=h_{i}(r) ;
$$

Example

Sig1 Sig2

Row	C1	$C 2$
1	1	0
2	0	1
3	1	1
4	1	0
5	0	1

$h(x)=x \bmod 5$
$g(x)=2 x+1 \bmod 5$

$h(1)=1$	1	-
$g(1)=3$	3	-
$h(2)=2$	1	2
$g(2)=0$	3	0
$h(3)=3$	1	2
$g(3)=2$	2	0
$h(4)=4$	1	2
$g(4)=4$	2	0
$h(5)=0$	1	0
$g(5)=1$	2	0

Implementation - (4)

- Often, data is given by column, not row.
- E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- This way we compute $h_{i}(r)$ only once for each row
- Questions for thought:
- What's a good way to generate hundreds of independent hash functions?
- How to implement min-hashing using MapReduce?

The Big Picture

