MapReduce

CS345a: Data Mining

Jure Leskovec
Stanford University

Single-node architecture

CPU

Memory

1/7/2010

Motivation (Google example)

20+ billion web pages x 20KB = 400+ TB
1 computer reads 30-35 MB/sec from disk

~4 months to read the web
~1,000 hard drives to store the web

Even more to do something with the data

1/7/2010

Commodity Clusters

Web data sets can be very large

Tens to hundreds of terabytes
Cannot mine on a single server
Cluster of commodity Linux nodes

Gigabit ethernet interconnect

Mask issues such as hardware failure

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 4

Big computation — Big machines

(circa 2003)
8 2GHz Xeons
64GB RAM
8TB disk
/758,000 USD

(circa 2003)

176 2GHz Xeons
176GB RAM
~7TB disk
278,000 USD

In Aug 2006 Google had ~450,000 machines

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining

Cluster Architecture

2-10 Gbps backbone between racks

1 Gbps between Switch
any pair of nodes
in a rack

Switch va'__cch

| cPU CPU CPU CPU

Mera Mem Mem Mem

F

Disk Disk Disk Disk

Each rack contains 16-64 nodes

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 6

Large scale computing

Large scale computing for data mining problems
on commodity hardware

1/7/2010

PCs connected in a network

Need to process huge datasets on large clusters of
computers

How do you distribute computation?
Distributed programming is hard

Machines fail
addresses all of the above

Google’s computational/data manipulation model
Elegant way to work with big data

Jure Leskovec, Stanford CS345a: Data Mining

Ms45: Open Academic Cluster

Yahoo's collaboration with academia
Foster open research

Focus on large-scale, highly parallel
computing

Seed Facility:

Datacenter in a Box (DiB)

1000 nodes, 4000 cores, 3TB RAM,
1.5PB disk

High bandwidth connection to Internet
Located on Yahoo! corporate campus
World’s top 50 supercomputer

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 8

Implications

Implications of such computing environment

Single machine performance does not matter

Add more machines

One server may stay up 3 years (1,000 days)
If you have 1,0000 servers, expect to loose 1/day

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 9

ldea and solution

Bring computation close to the data
Store files multiple times for reliability

Programming model
Map-Reduce

Infrastructure —

Google: GFS
Hadoop: HDFS

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 10

Stable storage

if nodes can fail, how can
we store data persistently?
Answer:

Provides global file namespace
Google GFS; Hadoop HDFS; Kosmix KFS

Huge files (100s of GB to TB)
Data is rarely updated in place
Reads and appends are common

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 11

Distributed File System

Reliable distributed file system for petabyte scale
Data kept in 64-megabyte “chunks” spread across
thousands of machines

Each chunk , usually 3 times, on
different machines

Seamless recovery from disk or machine failure

[= = == == = - I [= == == == = - I [= = = = - I [= = = = - I

LCo |RCEN e RS G2 ||Cs | [Co ||Cs |
I I I I I I I I
1 Cs [|C, i 1 Cs | FES 1 BB | D1 I 1 | Do C, i
| o —— = J | = = J | e e e - J | e e e = = J
Chunk server 1 Chunk server 2 Chunk server 3 Chunk server N

| Bring computaton dircty tothe dtal_

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 12

Distributed File System

File is split into contiguous chunks
Typically each chunk is 16-64MB

Each chunk replicated (usually 2x or 3x)
Try to keep replicas in different racks

a.k.a. Name Nodes in HDFS
Stores metadata
Might be replicated

Talks to master to find chunk servers
Connects directly to chunkservers to access data

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 13

Warm up: Word Count

We have a large file of words:

one word per line

Count the number of times each
distinct word appears in the file

analyze web server logs to find popular URLs

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 14

Word Count (2)

Case 1: Entire file fits in memory

Case 2: File too large for mem, but all <word,
count> pairs fit in mem

Case 3: File on disk, too many distinct words
to fit in memory

sort datafile | unig —-c

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining

Word Count (3)

To make it slightly harder, suppose we have a
large corpus of documents

Count the number of times each distinct word
occurs in the corpus

words(docs/*) | sort | unig -C

where words takes a file and outputs the words
in it, one to a line

The above captures the essence of
MapReduce

Great thing is it is naturally parallelizable

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 16

Map-Reduce: Overview

Read a lot of data

Extract something you care about

Shuffle and Sort

Aggregate, summarize, filter or transform
Write the data

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 17

More specifically

Program specifies two primary methods:
-2 <k, v'>*

9 <kI’ VII>*

All vi with same k’ are reduced together and
processed in v’ order

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining

Map-Reduce: Word counting

Provided by the Provided by the
programmer programmer

The crew of the space shuttle
Endeavor recently returned to
Earth as ambassadors,
space exploration. Scientists
at NASA are saying that the
recent assembly of the Dextre
term space-based
man/machine partnership.
""The work we're doing now --
what we're going to need to
do to build any work station
or habitat structure on the

moon or Mars," said Allard
(key, value) (key, value)

Beutel.
19

Big document (key, value)
Jure Leskovec, Stanford CS345a: Data Mining

1/7/2010

Word Count using MapReduce

map(key, value):
// key: document name; value: text of document

for each word w in value:
emit(w, 1)

reduce(key, values):
/| key: a word; value: an iterator over counts

result =0
for each count v in values:
result +=v

emit(result)

20

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining

Map-Reduce: Environment

Map-Reduce environment takes care of:
the input data

the program’s execution across a set of
machines

Handling machine
Managing required inter-machine

Allows programmers without any experience
with parallel and distributed systems to easily
utilize the resources of a large distributed cluster

217/2010 Jure Leskovec, Stanford CS345a: Data Mining

Map-Reduce: A diagram

Input |Big document

l

© 00O OO

Intermediate | kl:v kl:v k2:v k3:v k—l V kd:v kd:v kl:v k3:v
[[Gmup by Keyj]]
Grouped |kl1:v,v,vv k3 v.v [kd:vovw [k3w

56d b

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 22

Map-Reduce

Programmer specifies @ @ @

Map and Reduce and input files
Workflow
Read inputs as a set of key-value-pairs E _l _l
transforms input kv-pairs into a
new set of k'v'-pairs
Sorts & Shuffles the k'v'-pairs to output Shuffle

nodes
All k'v’-pairs with a given k’ are sent to
the same
processes all k'v'-pairs grouped
by key into new k''v''-pairs
Write the resulting pairs to files
All phases are distributed with many
tasks doing the work @ @

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 23

Map-Reduce: in Parallel

r-—- - -=—-—-=-=-=-== A r-—--—-- - --=-=-= L —
| Map Task 1 I | Map Task 2 | | Map Task 3 |
! L b '
| L b '
| L L '
! L b '
[L b !
| | I | I |
1| kb klvkZy klv] | k3w kdw | kdw kdv |l | kd v klov k3w |
| Partitioning FLlnctlnn I | Partitioning Function I | P:LL‘tltu:-mng Function I

I B TRA— ¥ _

Sort and Group Sart and Group

|

| klvwyy | k3w
|

I

I

|

|

I

I

Reduce Task 2

r
I |
| 2 led v v v ks |1
I |
OO ©
I |
I |
I I
| |
| |

Reduce Task 1

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 24

Data flow

Input, final output are stored on a distributed

file system

Scheduler tries to schedule map tasks “close” to
physical storage location of input data

Intermediate results are stored on local FS of

map and reduce workers
Output is often input to another map reduce

task

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 25

Coordination

Task status: (idle, in-progress, completed)

ldle tasks get scheduled as workers become
available

When a map task completes, it sends the master
the location and sizes of its R intermediate files,
one for each reducer

Master pushes this info to reducers

Master pings workers periodically
to detect failures

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 26

Failures

1/7/2010

Map tasks completed or in-progress at worker are
reset to idle

Reduce workers are notified when task is
rescheduled on another worker

Only in-progress tasks are reset to idle

MapReduce task is aborted and client is notified

Jure Leskovec, Stanford CS345a: Data Mining 27

Task Granularity & Pipelining

Fine granularity tasks: map tasks >> machines
Minimizes time for fault recovery
Can pipeline shuffling with map execution
Better dynamic load balancing

Often use 200,000 map & 5,000 reduce tasks
Running on 2,000 machines

Process Time >

User Program |MapReduce() .. wait ...
Master Assign tasks to worker machines...
Worker 1 Map 1 Map 3

Worker 2 Map 2
Worker 3 Reduce 1
Worlker 4 Reduce 2

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 28

Started: Fn Nov 7 09:51:07 2003 -- up 0 hr 00 rmun 18 sec

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

323 workers; 0 deaths

Type

Shards

Done

Active

Input(MVIB)

Done(MB) Output(IVB)

Map

13853

0

323

878934.6

1314.4

717.0

Shuffle

500

0

323

717.0

0.0

0.0

Reduce

500

0

0

0.0

0.0

0.0

100
90
80
701
B0
501

401

Percent Conpleted

301
20

101

oI IR EEE

f=]

1/7/2010

100

<

&
Reduce Shard

400
B

&

Jure Leskovec, Stanford CS345a: Data Mining

Counters
Vamnable Minute
Mapped
(MB/s) e
Shuffle
(MB/s) 0.0
S 0.0
(MB/s)
doc-
o e hits 145825686
docs-
 desed 506631
dups-in-
index- 0
merge
mr_
operator- 508192
calls
r.ﬂr-

‘|operator- 506631

29

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Frn Now 7 09:51:07 2003 -- up 0 hr 05 mun 07 sec

1707 workers, 1 deaths Counters
Type Shards| Done Active |Input(V[B) Done(MB) Output{IVIB) Variable Minute
Map 13853| 1857 1707 8739346 1919958 113936.6 Mapped 699 1
Shufle | 500/ 0| 500/ 113936.6| 571137, 571137 (MB/s)
Reduce| 500/ 0 0| 571137 0.0 0.0 Shuffle 349 5
(MB/s)
100 Outpm 0.0
90 (MB/s) ‘
80 doe- 15004411944
- index-hits
3 70 3
[T] oCcs-
fe ooy | 17200135
: 50 dups-mn-
§ 40 index- 0
E 30 merge
20 s
operator-| 17331371
10 calls
oa o =3 o o < |-
= b & 5 i
Reduce Shard operator-| 17290135
outbuts

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 30

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 10 min 18 sec

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

1707 workers; 1 deaths

Type Shards Done Active Input(MB) Done(IMB) Output(MB)
Map 13853| 5354| 1707| 878934.6| 406020.1 241058.2
Shuffle 500 0| 500| 241058.2| 196362.5 196362.5
Reduce| 500 0 0| 1963625 0.0 0.0
100
90
80
B 70
-
©
= 60
£
3
-
c
8
5
a

1/7/2010

100

b=d
=
o

Reduce Shard

300

Jure Leskovec, Stanford CS345a: Data Mining

400
500

Counters
Variable Minute
Mapped
(MB/s) 704 .4
Shuffle
(MESS) 371.5
Output
(MMB/s) 0.0
doc-
e 5000364228
docs-
indesed 17300709
dups-in-
mndex- 0
merge
n’l‘r-
operator-| 17342493
calls
Im-
operator-| 17300709

outputs

31

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 15 mun 31 sec
1707 workers; 1 deaths

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Ivpe |Shards Done Active Input{(MB) Done(MB) Output(MEB)

Map 138531 8841 1707 878934.6| 621608.5 369459 8

Shuffle 500 0 500| 369459.8| 326986.8 326986.8

Reduce 500 0 0] 3269868 0.0 0.0
100

g & 3 8 8

Percent Conpleted
=
L=

g

10

1/7/2010

8

g

[}

Reduce Shard

300

Jure Leskovec, Stanford CS345a: Data Mining

400

B0

Counters

Variable

Minute

Mapped
(MB/s)

706.5

Shuffle
(MMB/s)

419.2

Output
(MB/s)

0.0

doc-
mndex-hits

4982870667

docs-
indexed

17229926

dups-in-
mdex-
merge

-
operator-

calls

17272056

mr-
operator-
outouts

17229926

32

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Started: Fnn Nov 7 09:51:.07 2003 -- up 0 hr 29 min 45 sec
1707 workers; 1 deaths

Type |Shards| Done Active Input((MB) Done(IMB) Output(IVIB)
Map 13853|13853 0| 878934.6| 878934.6 523499.2
Shuffle 500 195| 305| 523499.2| 523389.6 523389.6
Reduce| 500 0] 195| 523389.6 2685.2 2742.6

10

L=

S

o=

g

=

7

L3

&

f=1

=

G

4

Percent Conpleted
o

3

=

Z

f=2

1

=

L=

100

o
=
0

Reduce Shard

1/7/2010

300

Jure Leskovec, Stanford CS345a: Data Mining

400

KO0

Counters
Variable Minute
Mapped
(MB/s) 0.3
Shuffle
(MB/s) 0.3
Qutput
MB/s) -
doc- i
indesc_hits 2313178|10¢
docs-
ndexed 7336
dups-n-
index- 0
merge
nlr_
merge- |1954105
calls
merge- |1954105

outputs

33

MapReduce status: MR_Indexer-beta6-large-2003 10 28 00 03

Started: Fn Nowv 7 09:51:07 2003 -- up 0 hr 31 min 34 sec
1707 workers; 1 deaths

Type Shards Done Active Input(MB) Done(MB) Output{VB)
Map 13853|13853 0| 878934.6| 878934.6 5234992
Shuffle 500 500 0| 523499.2| 5234995 5234995
Reduce 500 0| 500 523499.5| 133837.8 1369296
100
90
S0

7

=1

&

(=

5

=3

4

Percent Conpleted
<

3

=3

2

<

1

=3

k=

1/7/2010

100

L=
=
i

Reduce Shard

300

Jure Leskovec, Stanford CS345a: Data Mining

400

R0

Counters -
Variable DMinute
Mapped

(MB/s) 0.0
Shuffle 0.1
(MB/s) '
Output

MB/s) 1238.8
doc-

) . ([
mdex-hits Bk
docs- 0
mdexed

dups-n-

mdesx- 0
merge

n"li‘_

merge- |[51738599
calls

merge- [51738599
outputs

34

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

started: Fri Nowv 7 09:51:07 2003 -- up 0 hr 33 min 22 sec
1707 workers; 1 deaths

Type Shards| Done Active Input{MB) Done{(IVB) Output{MB)
Map 1385313853 0| 878934.6| 878934.6 5234992
Shuffle 5000 500 0| 5234992 5234995 523499.5
Reduce 500 0 500| 523499.5| 2632833 269351.2

10

L]

9

o

g

o

7

=

6

o

5

=]

4

Percent Conpleted
o

3

=]

2

<

1

<

L=

<
=4
o

Reduce Shard

100

1/7/2010

300

Jure Leskovec, Stanford CS345a: Data Mining

400

iy}

Counters
Variable Minute
Mapped
(MB/s) 0.0
Shuffle
(MB/s) 0.0
Output
QMB/s) 12251
doc- 0
ndex-hits
docs- 0
indexed
dups-mn-
mdex- 0
merge
mr-
merge- (51842100
calls
merge- [51842100
outputs

35

MapReduce status: MR _Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 35 min 08 sec
1707 workers; 1 deaths

Type Shards Done Active Input(MIB) Done(IVIB) Output(IVIB)
Map | 12853|13853 0| 878934.6| 878934.6| 5234992
Shuffle | 500 500 0| 5234992 5234995 5234995
Reduce| 500 0| 500] 5234995 390447.6| 399457.2

10

<

9

<

8

<

=

o

5

<o

5

<

4

Percent Conpleted
o

3

<

z

L=]

1

<

o

1/7/2010

100

L=
=
od

Reduce Shard

300

Jure Leskovec, Stanford CS345a: Data Mining

Counters

Variable

Mapped
(MB/s)

Minute

0.0

Shuffle
ME/s)

0.0

Qutput
(MB/s)

1222.0

doc-
mdesx-hits

docs-
mdexed

01t

dups-in-
mndex-
merge

mr-
merge-
calls

merge-
outputs

51640600

51640600

36

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Now 7 09:51
1707 workers; 1 deaths

07 2003 -- up O hr 37 mun 01 sec

Type Shards Done Acﬁve-lnput(hr[B) .Done(ll’[B) Output{(MB)
Map | 13853]13853 0| 878934.6| 878934.6| 5234992
Shuffle | 500 500 0| 5234992 5204686 5204686
Reduce| 500 406| 94| 5204686 5122652 5143733

10

<

g

<

8

L=

o

-

6

o

5

o

4

Percent Conpleted
o

3

<

2

=]

1

<

o

1/7/2010

o
o
o)

o
o
(2]

Reduce Shard

100

Jure Leskovec, Stanford CS345a: Data Mining

400

alily]

Counters
Variable DMinute
Mapped
(MB/s) 0.0
Shuffle
(MMB/s) 0.0
Output
QMB/s) 8495
doc- 0
mdex-hits
docs- 0
indexed
dups-in-
ndex- 0
merge
nn'-
merge- [35083350
calls
merge- | 35083350
outputs

11

37

MapReduce status: MR Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 38 min 56 sec
1707 workers; 1 deaths

Type |Shards Done Active Input{(IVM[B) Done(MB) Output(MVIB)

Idap 1385313853 0| 878934.6| 878934.6 523499.2

Shuffle 500 500 0| 523499.2| 51978138 519781.8

Reduce 500 498 21 519781.8| 5193%4.7 519440.7
100

9

o

5

o

7

b=

6

o

5

o

4

Percent Conpleted
o

3

o

Z

o

1

o

L=

=
=
o

i~
i~
b
Reduce Shard

100

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining

= =
< =}
d’ '

Counters
Vamnable Minute
IMapped
(MB/s) 0.0
Shuffle
(MB/{s) 0.0
Output
(MB/s) Sl
doc-
mdex-hits 2 e
docs- 0
mdexed
dups-mn-
mndesx- 0
merge
mr_
merge- |394792
calls
merge- | 394792
outputs

38

MapReduce status: MR_Indexer-beta6-large-2003 10 28 00 03

Started: Fri Nov 7 09:51:07 2003 -- up 0 hr 40 min 43 sec
1707 workers; 1 deaths

Type |Shards Done Active .Input(Iv[B) Done(ImIB)-Dutput(I-.[B)
Map | 13853|13853 0| 878934.6| 878934.6| 5234992
Shuffle | 500 500 0| 5234992 519774.3| 5197743
Reduce| 500 499 1| 519774.3| 5197352 519764.0

10

<

9

<

8

<

o

7

5

<o

5

<

4

Percent Conpleted
o

o

3

z

L=]

1

<

o

1/7/2010

100

300

L=
=
od

Reduce Shard

Jure Leskovec, Stanford CS345a: Data Mining

Qutput
(MB/s)
doc-
mdesx-hits

Counters

Variable MMinute
Mapped 0.0
(MB/s)
Shuffle
(MB/3) 0.0

1.9
01105i

docs- 0
mndexed
dups-in-

mdex- 0
merge

Im_

merge- 73442
calls
merge- 73442
outputs

39

Refinement: Backup tasks

Slow workers significantly slow the
completion time:

Other jobs on the machine
Bad disks
Weird things

Solution:

Near end of phase, spawn backup copies of tasks
Whichever one finishes first “wins”

Effect:
Dramatically shortens job completion time

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 40

Refinements: Backup tasks

Backup tasks reduce job time

System deals with failures

Input (MB/s)

Shuffle (MB/s)

Output (MB/s)

1/7/2010

20000

10000

0

20000

10000

0

20000

10000

Normal

Done:
839 s

I | T I T I
200 400 600 8OO 10001200

A
T 11 T 1

200 400 a0 GO0 10001200

[rsmen

]

T T T T T T
200 400 600 SO0 10001200

Seconds

No backup tasks

20000

10000

0

20000

10000

0

20000

10000

Done:
1235 s

A

1 [T [T |
200 400 600 800 100012

L=y

f

T T T
200 400 600 BOD 100012

E=]

M

O

T T T T T T
200 400 600 BOO 1000 1200

Seconds

Jure Leskovec, Stanford CS345a: Data Mining

200 processes killed

20000

10000

20000

10000

20000

10000

0

Done:
886 s

200 400 600 8300|1000 1200

Kl#w#fi—ﬁwku I

0

200 400 600 SO0 1000 1200

AN A

[1]

I I | T | T
200 400 600 800 1000 1200

Seconds

41

Refinements: Combiners

1/7/2010

Often a map task will produce many pairs of
the form (k,v1), (k,v2), ... for the same key k
E.g., popular words in Word Count
Can save network time by pre-aggregating at
mapper
combine(kl, list(vl)) =2 v2
Usually same as reduce function

Works only if reduce function is commutative
and associative

Refinements: Partition Function

1/7/2010

Inputs to map tasks are created by contiguous
splits of input file

For reduce, we need to ensure that records
with the same intermediate key end up at the
same worker

System uses a default partition function e.g.,
hash(key) mod R

Sometimes useful to override

E.g., hash(hostname(URL)) mod R ensures URLs
from a host end up in the same output file

Problems for Map-Reduce

E.g., want to simulate disease spreading in a
(small) social network
Input:

Each line: node id, virus parameters (death, birth rate)

Reads a line of input and simulate the virus
Output: triplets (node id, virus id, hit time)

Collect the node IDs and see which nodes are most
vulnerable

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 44

Example 1: Host size

Suppose we have a large web corpus
Let’s look at the metadata file

Lines of the form (URL, size, date, ...)
For each host, find the total number of bytes

l.e., the sum of the page sizes for all URLs from
that host

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining

Example 2: Language model

Statistical machine translation:

Need to count number of times every 5-word
sequence occurs in a large corpuse of duments

Easy with MapReduce:

Map: extract (5-word sequence, count) from
document

Reduce: combine counts

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 46

Example 3: Distributed Grep

Find all occurrences of the given pattern in a
very large set of files

1/7/2010

Example 4: Graph reversal

Given a directed graph as an adjacency list:
srcl: destll, destl2, ...
src2: dest21, dest22, ...

Construct the graph in which all the links are
reversed

1/7/2010

Implementations

Google

Not available outside Google
Hadoop

An open-source implementation in Java
Uses HDFS for stable storage

Download: http://lucene.apache.org/hadoop/
Aster Data

Cluster-optimized SQL Database that also
implements MapReduce

Made available free of charge for this class

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 49

Cloud Computing

1/7/2010

Ability to rent computing by the hour

Additional services e.g., persistent storage
We will be using Amazon’s “Elastic Compute
Cloud” (EC2)

Aster Data and Hadoop can both be run on
EC2

In discussions with Amazon to provide access
free of charge for class

Reading

Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing on Large Clusters
http://labs.google.com/papers/mapreduce.html

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The

Google File System
http://labs.google.com/papers/gfs.html

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 51

Resources

Hadoop Wik

Introduction
http://wiki.apache.org/lucene-hadoop/

Getting Started
http://wiki.apache.org/lucene-hadoop/GettingStartedWithHadoop

Map/Reduce Overview
http://wiki.apache.org/lucene-hadoop/HadoopMapReduce
http://wiki.apache.org/lucene-hadoop/HadoopMapRedClasses

Eclipse Environment
http://wiki.apache.org/lucene-hadoop/EclipseEnvironment

Javadoc
http://lucene.apache.org/hadoop/docs/api/

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 52

Resources

Releases from Apache download mirrors

http://www.apache.org/dyn/closer.cgi/lucene/hado

op/
Nightly builds of source

http://people.apache.org/dist/lucene/hadoop/nightl
y/
Source code from subversion

http://lucene.apache.org/hadoop/version_control.
html

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 53

Further reading

Programming model inspired by functional language primitives
Partitioning/shuffling similar to many large-scale sorting systems
NOW-Sort ['97]
Re-execution for fault tolerance
BAD-FS ['04] and TACC ['97]
Locality optimization has parallels with Active Disks/Diamond work

Active Disks ['01], Diamond ['04]
Backup tasks similar to Eager Scheduling in Charlotte system

Charlotte ['96]
Dynamic load balancing solves similar problem as River's
distributed queues

River ['99]

1/7/2010 Jure Leskovec, Stanford CS345a: Data Mining 54

