CS 341: Halloween Costume Predictions using Twitter
Anirudh Venkatesh, Onkar Dalal, Praveen Bommannavar

Introduction

For this project we had access to Walmart’s sales data from the Northern Illinois region for October 7, 2011 - November 7, 2011 as well as 3 billion tweets from a similar time frame. We began this project with an aim to predict the sales of Halloween costumes for Walmart using Twitter as a signal. The analysis we conducted showed that one could indeed correlate the sales of Halloween costumes with activity on Twitter mentioning the costume name. The left plot shows a scatterplot of costume sales after October 25 versus tweets mentioning the costume until October 24.

The right plot shows the same response plotted against costume sales until October 24, which appears to be a much stronger predictor. Nonetheless, this analysis showed that Twitter contains a signal for the popularity of items, one which could be made stronger with appropriate tuning for better precision.

Problem Description

In light of this, we turned our attention to the problem of detecting which costumes were actually worn on Halloween. Knowing this would allow us to answer the question: which costumes should Walmart have sold on Halloween?
To explore this question, we focused on the time frame immediately before Halloween, which fell on a Monday this year; that is, we analyzed approximately 100 million English language tweets from October 28 - October 31, the days immediately preceding Halloween.
Related Work

Many recent attempts have been made to form predictions based on activity on Twitter. Asur and Huberman show that the success of newly released movies can be forecasted using sentiment analysis on tweets relevant to movie titles [1], while Bollen and Mao use moods contained in tweets to predict the stock market [2]. More recently, Globalpoint Research did a sentiment analysis of tweets related to the New Hampshire primary to accurately predict the outcome [4].

The methods which we shall employ in this work are closely related to those presented in [3], where Agichtein and Gravano describe a method which they term ‘Snowball,’ for generating a table of relations between keywords and attributes of interest. This method begins with seed keywords and attributes, and finds relevant contexts around which these appear. Using these contexts, additional items are added to the table.

Methodology:

Our methodology for mining the Twitter data for costumes which were worn on Halloween follows the approach taken in [3], with modifications to account for the fact that we are simply searching for relevant costumes rather than any attribute in particular. That is, while the Snowball method looks for structured relations of the form

\[
\text{Organization} \Rightarrow \text{Location}
\]

Microsoft \Rightarrow \text{Redmond}
Exxon \Rightarrow \text{Irving}
IBM \Rightarrow \text{Armonk}

we are simply interested in popular costumes. This introduces additional challenges, which we shall describe in detail. Also, we incorporated helper keywords to guide our search, an element not present in [3]. Specifically, whereas the Organization=> Location example looked through all documents mentioning some seed organizations with the mention of a seed location, we guided the search for halloween costume by first filtering tweets on reliable keyword surrogates.

The procedure we used is outlined below:

Step 1: Generate keywords that are relevant to our task

Although a number of alternatives exist for this step, we looked for words co-occurring with the terms \{halloween, costume, dress up\} by looking for large values of

\[
P[\text{word} | \{\text{halloween} \text{ or } \text{costume} \text{ or } \text{dress up}\}] - P[\text{word}]\]

Large values correspond to a word being strongly associated with the terms “halloween”, “costume” or “dress up”. Other alternatives are dividing by \(P[\text{word}]\) rather than subtracting, or multiplying by inverse document frequency (IDF).

Step 2: Context generation

Part a)

In this part, tweets are inspected for the presence of costume seeds (such as batman or zombie) and surrounding so-called contexts are given points for each particular costume depending on the number of keywords (from Step 1) that appear in the tweet.
Here, a context is defined as a tuple \((l_{context}, r_{context})\) where \(l_{context}\) corresponds to a sequence of words appearing before a costume name, and \(r_{context}\) corresponds to a sequence of words appearing after a costume name.

When this part is complete, we can organize the point totals into a matrix where rows correspond to different contexts and columns correspond to different costumes. The point total for context \(i\) and costume \(j\) is denoted by \(value_{ij}\) in the table below.

\[
\begin{array}{cccc}
\text{costume}_1 & \text{costume}_2 & \text{costume}_3 & \ldots \\
(l_{context}, r_{context})_1 & value_{11} & values_{12} & value_{13} & \ldots \\
(l_{context}, r_{context})_2 & value_{21} & values_{22} & value_{23} & \ldots \\
(l_{context}, r_{context})_3 & value_{31} & values_{32} & value_{33} & \ldots \\
\end{array}
\]

Part b)

Using this matrix, we score each of these rows, making sure to account for diversity, that is, we give a context greater credibility if many costumes are expressed using that context. The score is also increased if the values are high.

The specific mechanism by which scores are computed is as follows:

- Each costume \(j\) can give a context \(i\) at most two points.
 - One point is given for the presence of context \(i\) (indicator variable) in any tweet about costume \(j\).
 - The fraction \(\log(1 + value_{ij})/\log(1 + \max_{i(costume_j)}\)) points are given to emphasize the value. The quantity \(\max_{i(costume_j)}\) is the maximum point total of costume \(j\) over all contexts.

From the computed scores for each context, we produce a short-list of costumes that have at least a threshold score. This is to ensure that all contexts we choose have enough frequency with any given costume, but also have a large enough diversity (in other words, the context is expressed along with a sufficient number of different seed costumes). After accounting for the score threshold, we have a shortlist of roughly 150 contexts.

Step 3: Costume prediction

The final phase of our procedure involves using the generated keywords from Step 1 and the generated contexts from Step 2, along with their associated scores, to output a more extensive set of valid Halloween costumes than is given by the seed set of costumes. To do this, we examine tweets in the time period from October 28 - October 31 and generate candidate costume names based on proximity to all input contexts. For example, for the context ("dress up as", "for Halloween"), the candidate costumes produced would be the sequence of words that occurs between “dress up as” and “for Halloween” over all the input tweets. In the case that a context is completely on the right side or left side (e.g. ("want to dress up as", "")), we generate candidate costumes of up to 3 words in length preceding or following the context, respectively.
For each generated costume \(j \), we compute and output an aggregate score \(\text{total} \) as follows:
\[
\text{total} = 0
\]
- For every tweet in which costume \(j \) is flanked by any of the input contexts:
 - For every occurrence of an input keyword, add the associated score of that keyword (as computed in Step 1) to \(\text{total} \)
 - For every occurrence of an input context, add the associated score of that context (as computed in Step 2) to \(\text{total} \)

To prevent skewing of computed total score by retweeted tweets, we omit tweets that have “RT @” in them from consideration. While this reduces the error caused by the retweets, we were unable to eliminate the retweets where the tweet text was copied with an additional remarks. Using the computed aggregate score \(\text{total} \) for each costume as a measure of its relevance as a Halloween costume, we can then rank the generated costumes by aggregate score to produce a list of the costumes most likely worn during Halloween in 2011.

Results:

We now give the inputs and outputs associated with each step of the procedure outlined above. In our analysis, we began with the seed costume set

\[C = \{ \text{banana, batman, catwoman, devil, lady gaga, nicki minaj, nurse, pirate, spiderman, superman, vampire, zombie} \} \]

Keywords:

We obtained the following list of keywords occurring with \{halloween, costume, dress up\}. The bold words have been manually selected as relevant keywords for which we shall give extra points for tweets containing them.

\[
[\text{'halloween'}, \text{'costume'}, \text{'a'}, \text{'for'}, \text{'as'}, \text{'happy'}, \text{'costumes'}, \text{'up'}, \text{'my'}, \text{'party'}, \text{'dressed'}, \text{'dress'}, \text{'tonight'}, \text{'be'}, \text{'to'}, \text{'this'}, \text{'dressing'}, \text{'and'}, \text{'going'}, \text{'the'}, \text{'in'}, \text{'wear'}, \text{'or'}, \text{'year'}, \text{'on'}, \text{'happyhalloween'}, \text{'is'}, \text{'candy'}, \text{'have'}, \text{'slut'}, \text{'what'}, \text{'trick'}, \text{'everyone'}, \text{'wearing'}, \text{'kids'}, \text{'weekend'}, \text{'gonna'}, \text{'of'}, \text{'out'}, \text{'your'}, \text{'girls'}, \text{'it's'}, \text{'tomorrow'}, \text{'best'}, \text{'night'}, \text{'scary'}, \text{'ur'}, \text{'today'}, \text{'its'}, \text{'all'}, \text{'are'}, \text{'i'}, \text{'slutty'}, \text{'was'}, \text{'just'}, \text{'last'}, \text{'at'}, \text{'some'}, \text{'think'}, \text{'school'}, \text{'cute'}, \text{'i'm'}, \text{'little'}, \text{'fun'}, \text{'see'}, \text{'go'}, \text{'their'}, \text{'not'}, \text{'treating'}, \text{'so'}, \text{'should'}, \text{'treat'}, \text{'wait'}, \text{'sexy'}, \text{'ready'}, \text{'look'}, \text{'macmiller'}, \text{'dont'}, \text{'don't'}, \text{'monday'}, \text{'contest'}, \text{'pumpkin'}, \text{'our'}, \text{'excited'}, \text{'seen'}, \text{'lord voldemort7'}, \text{'being'}, \text{'parties'}, \text{'need'}, \text{'idea'}, \text{'if'}, \text{'dear'}, \text{'these'}, \text{'people'}, \text{'pics'}, \text{'work'}, \text{'ideas'}, \text{'celebrate'}, \text{'any'}, \text{'cat'}, \text{'day'}, \text{'ever'}, \text{'mycostume'}, \text{'kid'}, \text{'snow'}, \text{'lil'}, \text{'got'}, \text{'saw'}, \text{'zombie'}, \text{'minute'}, \text{'sluts'}, \text{'old'}, \text{'awesome'}, \text{'an'}, \text{'girl'}, \text{'face'}, \text{'get'}, \text{'christmas'}, \text{'with'}, \text{'outfit'}, \text{'pic'}, \text{'part'}, \text{'house'}, \text{'most'}, \text{'put'}, \text{'enough'}, \text{'mask'}, \text{'years'}, \text{'witch'}, \text{'door'}, \text{'even'}, \text{'lady'}, \text{'yet'}]
\]

Contexts:

A sample of the highest-scoring contexts with associated scores are given:

<table>
<thead>
<tr>
<th>Context</th>
<th>Score</th>
<th>Context</th>
<th>Score</th>
<th>Context</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>to dress up as</td>
<td>14.559763</td>
<td>be a</td>
<td>for halloween</td>
<td>12.851941</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>costume for halloween</td>
<td>11.541077</td>
<td>dress up as a</td>
<td>10.941845</td>
<td></td>
</tr>
<tr>
<td>to be</td>
<td>for halloween</td>
<td>10.555063</td>
<td>to be a</td>
<td>for</td>
<td>10.192246</td>
</tr>
</tbody>
</table>
Costumes:

In the next step, we use these contexts to generate a list of costumes which occur in the specific context order from the tweets belonging the four days prior to Halloween. The results generated produced costume names with precision 78.3% and the same process on tweets from fourteen days before Halloween generated costumes with precision 75.7%. These precision values are the percentages of actual costumes among the candidate costumes generated, values were evaluated by manual inspection of results. The numbers can be explained by the adjectives picked and the longer phrases picked from the contexts which have only left or right phrase. Also, the difference between the precisions can be explained by the increasing relevance of the tweets (with the seed costumes and the contexts) to Halloween as the day approaches.

The following is the list of 50 highest-scoring costumes generated from using all tweets from the four day window preceding Halloween (October 28 - October 31) as input. The found costumes are displayed along with associated score:

cat 3255.7 zombie 1333.5 nerd 1273.65
witch 1065.75 vampire 946.4 pirate 821.45
pumpkin 789.6 ghost 698.95 hipster 676.55
crown 579.95 bunny 578.9 devil 561.05
princess 557.2 stripper 493.15 cop 488.95
carrot 460.25 spoon 445.2 banana 437.5
iphone 5 426.65 hippie 424.55 nurse 414.75
kitty 407.4 nun 405.6 ninja 401.8
angel 376.6 fairy 370.65 eskimo 362.95
sexy pan am stewardess 323.4 cowgirl 315.35 indian 305.9
playboy bunny 303.8 cow 302.4
football player 288.75 normal person 284.9 mexican 281.4
smurf 269.5 nicki minaj 267.05 hobo 254.45
prostitute 253.4 cowboy 234.85 cheerleader 233.8
leprechaun 225.75 angry bird 208.25 bumble bee 206.15
tiger 204.75 lion 203.0 muggle 200.9
school girl 199.15 sailor 198.1 penguin 193.2

To examine whether we can predict consumption of the popular (high-scoring) costumes that we display in the previous table from tweets earlier in the month, we run Step 3 of our algorithm over all texts in the period of 14 days before Halloween, to produce the following results for top 50 high-scoring costumes:

cat 1467.55 zombie 930.3 pirate 805.7
vampire 787.15 cop 684.2 princess 540.75
pumpkin 502.25 nerd 493.5 bunny 485.45
witch 471.45 playboy bunny 427.7 nun 425.95
banana 424.2 angry bird 419.65 clown 415.1
ghost 402.85 ninja 388.15 stripper 380.1
Comparing the two sets, 35 out of 50 costumes (Jaccard similarity of 0.54) predicted from the fourteen-days tweet data were also obtained in the four-days tweet data. This large overlap gives validity to the predictions obtained over the fourteen-day time period. It shows that contexts generated in Step 2 are clearly linked with Halloween costumes since potential noise from the entire 14-day period does not skew the costume generation results too far from those of the 4 day window immediately prior to Halloween. Thus, we can see that the procedure we use allows for utilizing tweet data from an earlier time period (in this case fourteen days) to actually predict which Halloween costumes will be popular to a reasonable degree.

Validation:

We compare the costume predictions with the results of the survey conducted by the National Retail Federation about popular Halloween costumes across the United States in 2011 (see Appendix for details). For the purposes of validation, we believe this source is a valid “ground truth” as to which costumes people actually wore for Halloween 2011.

By comparing the top costume results that our algorithm predicted with the top 20 most popular Halloween costumes among adults from this survey, we see that 15 out of the top 20 costumes were produced by our algorithm as one of the top 50 costumes worn during Halloween in 2011. Thus, we can see that not only did our algorithm produce mostly feasible costume results (as evidenced by 78% precision), but the costumes it generated as being popularly worn in the 4-day time window before Halloween were correct to a reasonable degree, based on the results of this survey.

Conclusions:

In this project, we ran one iteration of the 3 Step method outlined above in order to generate a larger set of Halloween costumes. By running more iterations, using the output set of costumes from the previous iteration as the seed set of the next iteration, we can in-turn generate more contexts, and thus, more candidate Halloween costumes. However, with the precision values that we received above after one iteration (roughly 78%) , running further iterations of this procedure would require a quality scoring function else we run into the risk of introducing a large number false positives into the costume predictions. Since we prune the contexts generated to account for diversity, the set of ‘all contexts’ is not well-defined and hence, there is no easy way to compute the recall. However, a possible proxy for the set of ‘all contexts’ would be to generate an extended list of contexts based on the newly generated costumes (again accounting for the diversity).
The results of this project could have great utility for Walmart. From our analysis, and by looking at the set of costumes sold by Walmart (from the Walmart data set), we find that several of the highest-scoring costumes that we observe to be the most likely to be worn during Halloween 2011 were not carried in Walmart stores at that time. The following are examples of such costumes:

<table>
<thead>
<tr>
<th>Costume</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>nerd</td>
<td>1273.65</td>
</tr>
<tr>
<td>hipster</td>
<td>676.55</td>
</tr>
<tr>
<td>carrot</td>
<td>460.25</td>
</tr>
<tr>
<td>spoon</td>
<td>445.2</td>
</tr>
<tr>
<td>iphone 5</td>
<td>426.65</td>
</tr>
<tr>
<td>nun</td>
<td>405.6</td>
</tr>
<tr>
<td>eskimo</td>
<td>362.95</td>
</tr>
<tr>
<td>nicki minaj</td>
<td>267.05</td>
</tr>
<tr>
<td>angry bird</td>
<td>208.25</td>
</tr>
</tbody>
</table>

These costumes can be used to answer the question raised in the problem statement about which costumes Walmart should have sold. As these costumes are observed in our analysis to be likely candidates for popular Halloween costumes in 2011, it probably would have been profitable for Walmart to include several of these in its 2011 Halloween costume offerings.

In addition, the implication we notice that tweets from an earlier time window can be used to predict costumes that will be worn during the Halloween time window to a reasonable degree could be extended and applied to a variety of other similar problems. Such applications of using social data for prediction could potentially give Walmart valuable information about the types of products that are currently trending that their stores currently do not carry.

References:

[1] Predicting the Future with Social Media, Sitaram Asur and Bernardo Huberman, in Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

Acknowledgement:

We are extremely grateful to our mentor, Prof. Anand Rajaraman, for his constant guidance in this project and for taking the time out of his busy schedule to meet with us each week. We also would like to thank Prof. Jeff Ullman, Prof. Andreas Weigend, and Prof. Jure Leskovec for their support.

Appendix:

Ranks for Adults:

1. Witch 13.4% 7,305,503
2. Pirate 3.9% 2,107,817
3. Vampire 3.7% 2,012,007
<table>
<thead>
<tr>
<th>Rank</th>
<th>Costume</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Zombie</td>
<td>3.0%</td>
<td>1,628,768</td>
</tr>
<tr>
<td>5</td>
<td>Batman Character</td>
<td>2.2%</td>
<td>1,221,576</td>
</tr>
<tr>
<td>6</td>
<td>Cat</td>
<td>2.2%</td>
<td>1,197,623</td>
</tr>
<tr>
<td>7</td>
<td>Wench/Tart/Vixen</td>
<td>2.1%</td>
<td>1,125,766</td>
</tr>
<tr>
<td>8</td>
<td>Ghost</td>
<td>1.5%</td>
<td>838,336</td>
</tr>
<tr>
<td>9</td>
<td>Nurse</td>
<td>1.4%</td>
<td>766,479</td>
</tr>
<tr>
<td>10</td>
<td>Scary Costume</td>
<td>1.2%</td>
<td>670,669</td>
</tr>
</tbody>
</table>

Ranks for Kids:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Costume</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Princess</td>
<td>11.0%</td>
<td>5,134,868</td>
</tr>
<tr>
<td>2</td>
<td>Witch</td>
<td>4.4%</td>
<td>2,058,908</td>
</tr>
<tr>
<td>3</td>
<td>Spider-Man</td>
<td>3.1%</td>
<td>1,438,755</td>
</tr>
<tr>
<td>4</td>
<td>Pirate</td>
<td>2.8%</td>
<td>1,314,725</td>
</tr>
<tr>
<td>5</td>
<td>Pumpkin</td>
<td>2.8%</td>
<td>1,289,918</td>
</tr>
<tr>
<td>6</td>
<td>Fairy</td>
<td>2.6%</td>
<td>1,215,500</td>
</tr>
<tr>
<td>7</td>
<td>Action/Super Hero</td>
<td>2.5%</td>
<td>1,190,694</td>
</tr>
<tr>
<td>T8</td>
<td>Batman</td>
<td>2.4%</td>
<td>1,141,082</td>
</tr>
<tr>
<td>T8</td>
<td>Vampire</td>
<td>2.4%</td>
<td>1,141,082</td>
</tr>
<tr>
<td>T9</td>
<td>Disney Princess</td>
<td>2.2%</td>
<td>1,041,857</td>
</tr>
</tbody>
</table>