Methods for High Degrees of Similarity

Index-Based Methods
Exploiting Prefixes and Suffixes
Exploiting Length
Overview

- LSH-based methods are excellent for similarity thresholds that are not too high.
 - Possibly up to 80% or 90%.
- But for similarities above that, there are other methods that are more efficient.
 - And also give exact answers.
Setting: Sets as Strings

- We’ll again talk about Jaccard similarity and distance of sets.
- However, now represent sets by strings (lists of symbols):
 1. Enumerate the universal set.
 2. Represent a set by the string of its elements in sorted order.
Example: Shingles

- If the universal set is k-shingles, there is a natural lexicographic order.
- Think of each shingle as a single symbol.
- Then the 2-shingling of abcad, which is the set \{ab, bc, ca, ad\}, is represented by the list \[ab], [ad], [bc], [ca] of length 4.
- **Alternative**: hash shingles; order by bucket number.
Example: Words

- If we treat a document as a set of words, we could order the words alphabetically.
- **Better**: Order words lowest-frequency-first.
- **Why?** We shall index documents based on the early words in their lists.
 - Fewer docs in a bucket.
What We Mean by “Index”

Documents containing “aardvark” in prefix

Documents containing “abacus” in prefix

Buckets

aardvark

abacus
Jaccard Distance

- Jaccard distance $J = 1 - \text{Jaccard similarity}$.
- $J = |\text{symmetric difference of sets}|/ |\text{union of sets}|$.
- **Example**: $S = \{1, 2, 3\}$, $T = \{2, 4, 5\}$.
 - Symmetric difference = $\{1, 3, 4, 5\}$.
 - Union = $\{1, 2, 3, 4, 5\}$.
 - $J = 0.8$.

7
Suppose two sets have Jaccard distance J and are represented by strings s_1 and s_2. Let the LCS of s_1 and s_2 have length C and the (insert/delete) edit distance of s_1 and s_2 be E. Then:

- $1-J = \text{Jaccard similarity} = \frac{C}{C+E}$.
- $J = \frac{E}{C+E}$.

Secret: $E = |\text{symmetric difference}|$; $C = |\text{intersection}|$.
Relationships Among J, E, C

- We shall be given an upper bound on J.
- Want to compare strings only if E and C are such that \(E/(E+C) \leq J \).
- \(E/(E+C) \) grows with E and shrinks with C.
- Thus, strongest limitations on pairs of strings are when E has its smallest possible value and C its largest possible value.
Indexes

- Build some indexes on the set of strings.
- Then, visit each string once and use the index to find possible candidates for similarity.

For thought: how does this approach compare with bucketizing and looking within buckets for similarity?
Length-Based Indexes

- The simplest thing to do is create an index on the length of strings.
- A string of length \(L \) can be Jaccard distance \(J \) from a string of length \(M \) only if \(L \times (1-J) \leq M \leq L/(1-J) \).
- **Example**: if \(1-J = 90\% \) (Jaccard similarity), then \(M \) is between 90\% and 111\% of \(L \).
Why the Limit on Lengths?

1-J = M/L
M = L(1-J)

A shortest candidate

1-J = L/M
M = L/(1-J)

A longest candidate
B-Tree Indexes

- The B-tree is a perfect index structure for a length-based index.
- Given a string of length L, we can find strings in the range $L \times (1-J)$ to $L/(1-J)$ without looking at any candidates outside that range.
- But just because strings are similar in length, doesn’t mean they are similar.
Aside: B-Trees

- If you didn’t take CS245 yet, a B-tree is a generalization of a binary search tree, where each node has many children, and each child leads to a segment of the range of values handled by its parent.
- Typically, a node is a disk block.
Aside: B-Trees – (2)

From parent

| 50 | 80 | 145 | 190 | 225 |

To values

< 50

≥ 50, < 80

≥ 80, < 145

Etc.
Prefix-Based Indexing

- If two strings are 90% similar, they must share some symbol in their prefixes whose length is just above 10% of the shorter.

- Thus, we can index symbols in just the first $\lfloor JL + 1 \rfloor$ positions of a string of length L.
Why the Limit on Prefixes?

If two strings do not share any of the first E symbols, then $J \geq E/L$.

Thus, $E = JL$ is possible, but any larger E is impossible. Index $E+1$ positions.

Extreme case: second string has none of the first E symbols of the first string, but they agree thereafter.
Indexing Prefixes

◆ Think of a bucket for each possible symbol.

◆ Each string of length L is placed in the bucket for each of its first $\lfloor JL+1 \rfloor$ positions.
Given a *probe* string s of length L, with J the limit on Jaccard distance:

for (each symbol a among the first $\lfloor JL+1 \rfloor$ positions of s) look for other strings in the bucket for a;
Example: Indexing Prefixes

- Let $J = 0.2$.
- String $abc\text{def}$ is indexed under a and b.
- String $ac\text{d}f\text{g}$ is indexed under a and c.
- String $b\text{c}d\text{e}$ is indexed only under b.
- If we search for strings similar to $c\text{d}e\text{f}$, we need look only in the bucket for c.
Prefix + Length

- Sort the buckets by length.
- Instead of comparing the probe string with all members of the bucket, look only at those whose length makes it possible there is a match.
Using Positions Within Prefixes

- If position i of string s is the first position to match a prefix position of string t, and it matches position j, then the edit distance between s and t is at least $i + j - 2$.

- The LCS of s and t is no longer than $L - i + 1$, where L is the length of s.
If J is the limit on Jaccard distance, then $E/(E+C) \leq J$.
- $E \geq i + j - 2$.
- $C \leq L - i + 1$.

For smallest E, largest C:
- $(i + j - 2)/(L + j - 1) \leq J$.
- Or, $j \leq (JL - J - i + 2)/(1 - J)$.

Makes sense because $E/(E+C)$ grows with E and shrinks with C.
Positions/Prefixes – (3)

* We only need to find a candidate once, so we may as well:
 1. Visit positions of our given string in numerical order, and
 2. Assume that there have been no matches for earlier positions.
Create a 2-attribute index on (symbol, position).
If string s has symbol a as the i^{th} position of its prefix, add s to the bucket (a, i).
A B-tree index with keys ordered first by symbol, then position is excellent.
If we want to find matches for probe string s of length L, do:

```plaintext
for (i=1; i<=J*L+1; i++) {
    let s have $a$ in position i;
    for (j=1;
        j<=(J*L-J-i+2)/(1-J); j++)
        compare s with strings in bucket ($a$, j);
}
```
Example: Lookup

- Suppose $J = 0.2$.
- Given probe string adegjkmprz, $L=10$ and the prefix is ade.
- For the ith position of the prefix, we must look at buckets where $j \leq (JL - J - i + 2)/(1 - J) = (3.8 - i)/0.8$.
- For $i = 1$, $j \leq 3$; for $i = 2$, $j \leq 2$, and for $i = 3$, $j \leq 1$.
Example: Lookup – (2)

Thus, for probe adegkmprz we look in the following buckets: (a, 1), (a, 2), (a, 3), (d, 1), (d, 2), (e, 1).

Suppose string \(t \) is in (d, 3). Either:

- We saw \(t \), because a is in position 1 or 2, or
- The edit distance is at least 3 and the length of the LCS is at most 9 (thus the Jaccard distance is at least \(\frac{1}{4} \)).
We Win Two Ways

1. Triangular nested loops let us look at only half the possible buckets.
2. Strings that are much longer than the probe string but whose prefixes have a symbol far from the beginning that also appears in the prefix of the probe string are not considered at all.
Adding Suffix Length to the Mix

- We can index on three attributes:
 1. Character at a prefix position.
 2. Number of that position.
 3. Length of the suffix = number of positions in the entire string to the right of the given position.
Lower Bound on Edit Distance

- Suppose we are given probe string s, and we find string t because its j^{th} position matches the i^{th} position of s.
- A lower bound on edit distance E is:
 1. $i + j - 2$ plus
 2. The absolute difference of the lengths of the suffixes of s and t (what follows positions i and j, respectively).
Longest Common Subsequence

- Suppose we are given probe string s, and we find string t first because its jth position matches the ith position of s.

- If the suffixes of s and t have lengths k and m, respectively, then an upper bound on the length C of the LCS is $1 + \min(k, m)$.
Bound on Jaccard Distance

◆ If J is the limit on Jaccard distance, then $E/(E+C) \leq J$ becomes:

$\begin{align*}
&i + j - 2 + |k - m| \leq J(i + j - 2 + |k - m| + 1 + \min(k, m)). \\
&\text{Thus: } j + |k - m| \leq (J(i - 1 + \min(k, m)) - i + 2)/(1 - J).
\end{align*}$
Positions/Prefixes/Suffixes – Indexing

- Create a 3-attribute index on (symbol, position, suffix-length).
- If string s has symbol a as the i^{th} position of its prefix, and the length of the suffix relative to that position is k, add s to the bucket (a, i, k).
Example: Indexing

- Consider string \texttt{abcde} with J = 0.2.
- Prefix length = 2.
- Index in: (\texttt{a}, 1, 4) and (\texttt{b}, 2, 3).
As for the previous case, to find candidate matches for a probe string \(s \) of length \(L \), with required similarity \(J \), visit the positions of \(s \)'s prefix in order.

If position \(i \) has symbol \(a \) and suffix length \(k \), look in index bucket \((a, j, m)\) for all \(j \) and \(m \) such that \(j + |k - m| \leq (J(i - 1 + \min(k, m)) - i + 2)/(1 - J)\).
Example: Lookup

- Consider abcde with $J = 0.2$.
- **Require:** $j + |k - m| \leq (J(i - 1 + \min(k, m)) - i + 2)/(1 - J)$.
- For $i = 1$, note $k = 4$. We want $j + |4 - m| \leq (0.2\min(4, m)+1)/0.8$.
- Look in $(a, 1, 3), (a, 1, 4), (a, 1, 5), (a, 2, 4), (b, 1, 3)$.
- From $i = 2, k = 3$, $j + |3 - m| \leq 0.2(1+\min(4, m))/0.8$.

Pattern of Search

\[i = 1 \]

Position

Length of suffix

\(k \)
Pattern of Search

Pattern of Search

Pattern of Search

Pattern of Search

Pattern of Search
Pattern of Search

Position

k

Length of suffix

$i = 3$
Physical-Index Issues

- A B-tree on (symbol, position, length) isn’t perfect.
 - For a given symbol and position, you only want some of the suffix lengths.
 - Similar problem for any order of the attributes.

- Several two-dimensional index structures might work better.