Small world phenomena (1)

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

Network: Small world

Avg. path length **6.6** 90% of the people can be reached in < 8 hops

Hops	Nodes		
0	1		
1	10		
2	78		
3	3,96		
4	8,648		
5	3,299,252		
6	28,395,849		
7	79,059,497		
8	52,995,778		
9	10,321,008		
10	1,955,007		
11	518,410		
12	149,945		
13	44,616		
14	13,740		
15	4,476		
16	1,542		
17	536		
18	167		
19	71		
20	29		
21	16		
22	10		
23	3		
24	2		
25	3		

Six Degrees of Kevin Bacon

- Bacon number:
 - Create a network of Hollywood actors
 - Connect two actors if they co-appeared in the movie
 - Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite)
 Bacon number reported is 8
- Only approx. 12% of all actors cannot be linked to Bacon


```
Elvis Presley

Was in

Harum Scarum (1965)

with

Suzanne Covington

Was in

Beauty Shop (2005)

with

Kevin Bacon
```


Advanced Search Search

Sell My eBay Buy

Community

Help

Sign in or register

Site Map

Categories *

Motors

Express

Stores

eBay Security & Resolution Center

Back to list of items

Listed in category: Business & Industrial > Office > Office Supplies > Desk Accessories > Other

ERDOS NUMBER 5

Buyer or seller of this item? Sign in for your status

Item number: 200246739214

Watch this item in My eBay

FBuylt Now price: \$499.99

Buy It Now >

End time: 4 hours

Shipping costs: Free

Standard Flat Rate Shipping Service

Service to United States

Meet the seller

gfporch (724 🛊) Seller:

Feedback: 100 % Positive

Member: since May-02-00 in

United States

- See detailed feedback
- Ask seller a question
- Add to Favorite Sellers
- View coller's other items

The Small-world experiment

- The Small-world experiment [Milgram '67]
 - Pick 300 people at random
 - Ask them to get a letter to a by passing it through friends to a stockbroker in Boston
- How many steps does it take?

Stanley Milgram

The Small-world experiment

- 64 chains completed:
 - 6.2 on the average, thus "6 degrees of separation"
- Further observations:
 - People what owned stock
 had shortest paths to the stockbroker than
 random people
 - People from the Boston area have even closer paths

6-degrees: Model?

- How can we understand the small world phenomena?
- What is a good model?

Simplest model?

- Erdos-Renyi Random Graph model [Erdos-Renyi, '60]
 - aka.: Poisson/Bernoulli random graphs
- Two variants:
 - $G_{n,p}$: graph on n nodes and each edge (u,v) appears i.i.d. with prob. p. So a graph with m edges appears with prob. $p^m(1-p)^{M-m}$, where M=n(n-1)/2 is the max number of edges
 - $G_{n,m}$: graphs with n nodes, m uniformly at random picked edges

What kinds of networks does such process produce?

Properties of random graphs

• Degree distribution is Binomial (Poisson in the limit). Let p_k denote a fraction of nodes with degree k:

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \approx \frac{z^k e^{-z}}{k!}$$

- What is expected degree of a node?
 - Prob. of node u linking to node v is p
 - u can link (flips a coin) for all of (n-1) remaining nodes
 - Thus, the expected degree of a node is: p(n-1)

Properties of random graphs

Graph structure as p changes:

- Emergence of a giant component:
 - avg. degree k=2m/n:
 - $k=1-\varepsilon$: all components are of size $\Omega(\log n)$
 - $k=1+\varepsilon$: 1 component of size $\Omega(n)$, others have size $\Omega(\log n)$

Configuration model

Configuration model:

and randomly connect the spokes

- Assume each node has d spokes (half-edges):
 - d=1: set of pairs
 - d=2: set of cycles
 - d=3: arbitrarily complicated graphs
- d-regular graphs

Properties of random graphs

- Assume:
 every node has degree exactly d
- Then:

```
Diameter is O((\log n) / \alpha):
where G has expansion \alpha
if \forall S \subseteq V: \#edges\ leaving\ S \ge \alpha \cdot \min(|S|,\ |S|)
```

Let S_j be a set of nodes within j steps of v.

Then
$$|S_{j+1}| \ge |S_j| + \alpha |S_j|/d$$
.

So in $O(\log n)$ steps $|S_j|$ grows to $\Theta(n)$.

Small world: Reasoning 1

- Assume each human is connected to 100 other people:
- So:
 - In step 1 she can reach 100 people
 - In step 2 she can reach 100*100 = 10,000 people
 - In step 3 she can reach 100*100*100 = 100,000 people
 - In 5 steps she can reach 10 billion people
- What's wrong here?
 - Many edges are local ("short")

How "long" are the edges?

We can actually directly observe atomic events

of network evolution

Network	T	N	E
FLICKR $(03/2003-09/2005)$	621	584,207	3,554,130
Delicious $(05/2006-02/2007)$	292	203,234	430,707
Answers $(03/2007-06/2007)$	121	598,314	1,834,217
LinkedIn $(05/2003-10/2006)$	1294	$7,\!550,\!955$	30,682,028

Edges are local!

Just before the edge (u,v) is placed how many hops is between u and v?

Small-world model

- How to have local edges (lots of triangles) and small diameter?
- Small-world model [Watts-Strogatz 1998]:
 - Start with a low-dimensional regular lattice
 - Rewire:
 - Add/remove edges to create shortcuts to join remote parts of the lattice
 - For each edge with prob. p move the other end to a random vertex

