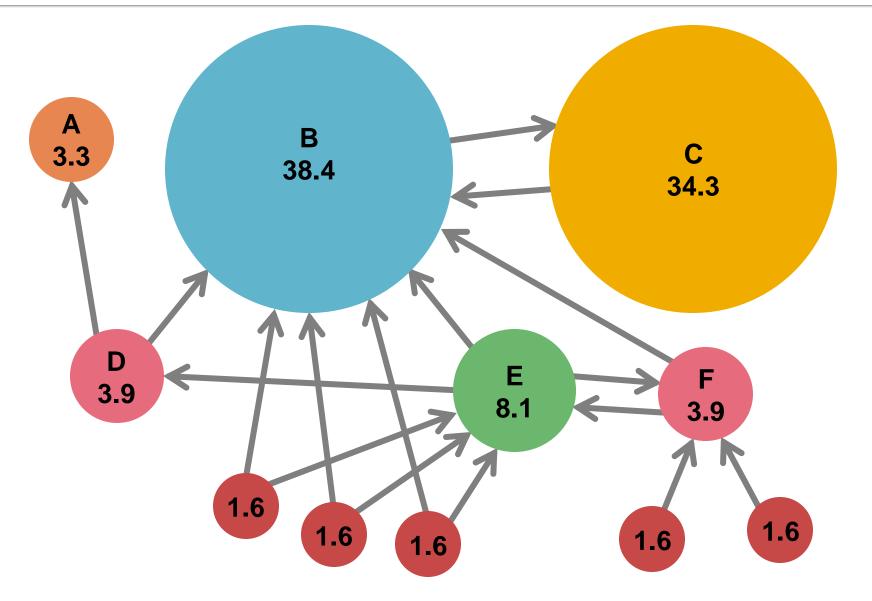
Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <u>http://www.mmds.org</u>

Link Analysis: TrustRank and WebSpam

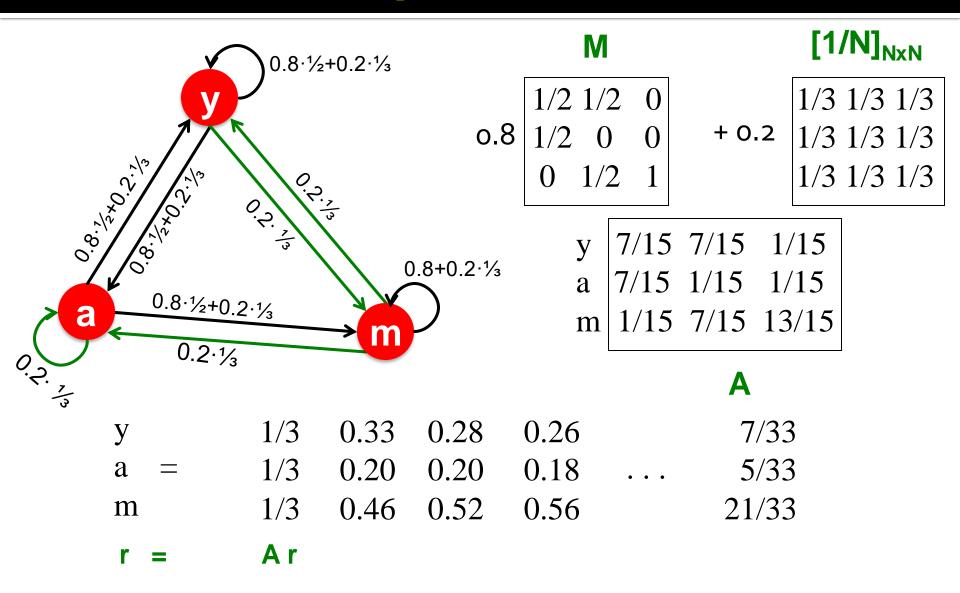
CS246: Mining Massive Datasets Jure Leskovec, Stanford University Mina Ghashami, Amazon http://cs246.stanford.edu

2/3/2022

Example: PageRank Scores



Random Teleports ($\beta = 0.8$)



PageRank: The Complete Algorithm

Input: Graph G and parameter β

- Directed graph G (can have spider traps and dead ends)
- Parameter $\boldsymbol{\beta}$
- Output: PageRank vector r

• Set:
$$r_j^{(0)} = \frac{1}{N}$$
, $t = 1$
• Do: $\forall j$: $r'_j = \sum_{i \to j} \beta \frac{r_i^{(t-1)}}{d_i}$
 $r'_j = 0$ if in-degree of j is 0
• Now re-insert the leaked PageRank:
 $\forall j$: $r_j^{(t)} = r'_j + \frac{1-S}{N}$ where: $S = \sum_j r'_j$
• $t = t + 1$
• while $\sum_j \left| r_j^{(t)} - r_j^{(t-1)} \right| < \varepsilon$

If the graph has no deadends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing **S**.

Some Problems with PageRank

- Measures generic importance of a page
 - Will ignore/miss topic-specific authorities
 - Solution: Topic-Specific PageRank (next)
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank

Topic-Specific PageRank

Topic-Specific PageRank

- Instead of generic importance, can we measure importance within a topic?
- Goal: Evaluate Web pages not just according to their importance, but also by how close they are to a particular topic, e.g. "sports" or "history"
- Allows search queries to be answered based on the interests of a user
 - Example: Query "Trojan" wants different pages depending on whether you are interested in sports, history, or computer security

Topic-Specific PageRank

- Random walker has a small probability of teleporting at any step
- Teleport can go to:
 - Standard PageRank: Any page with equal probability
 - To avoid dead-end and spider-trap problems
 - Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
 - When the walker teleports, she picks a page from a set S
 - S contains only pages that are relevant to the topic
 - E.g., Open Directory (DMOZ) pages for a given topic/query
 - For each teleport set S, we get a different vector r_s

Matrix Formulation

To make this work all we need is to update the teleportation part of the PageRank formulation:

$$A_{ij} = \begin{cases} \beta M_{ij} + (1 - \beta) / |S| & \text{if } i \in S \\ \beta M_{ij} + 0 & \text{otherwise} \end{cases}$$

- A is a stochastic matrix!
- We weighted all pages in the teleport set S equally
 - Could also assign different weights to pages!
- Compute as for regular PageRank:
 - Multiply by *M*, then add a vector of $(1 \beta)/|S|$
 - Maintains sparseness

Example: Topic-Specific PageRank

Suppose **S** = **{1}**, *β* = **0.8**

Node	Iteration				
	0	1	2	stable	
1	0.25	0.4	0.28	0.294	
2	0.25	0.1	0.16	0.118	
3	0.25	0.3	0.32	0.327	
4	0.25	0.2	0.24	0.261	

S={1}, β=0.9: r=[0.17, 0.07, 0.40, 0.36] S={1}, β=0.8: r=[0.29, 0.11, 0.32, 0.26] S={1}, β=0.7: r=[0.39, 0.14, 0.27, 0.19] S={1,2,3,4}, β=0.8: r=[0.13, 0.10, 0.39, 0.36] S={1,2,3}, β=0.8: r=[0.17, 0.13, 0.38, 0.30] S={1,2}, β=0.8: r=[0.26, 0.20, 0.29, 0.23] S={1}, β=0.8: r=[0.29, 0.11, 0.32, 0.26]

Discovering the Topic Vector S

Create different PageRanks for different topics

- The 16 DMOZ top-level categories:
 - Arts, Business, Sports,...

Which topic ranking to use?

- User can pick from a menu
- Classify query into a topic
- Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic
 - History of queries e.g., "basketball" followed by "Jordan"
- User context, e.g., user's bookmarks, ...

Application to Measuring Proximity in Graphs

Random Walk with Restarts: Set S is a single node

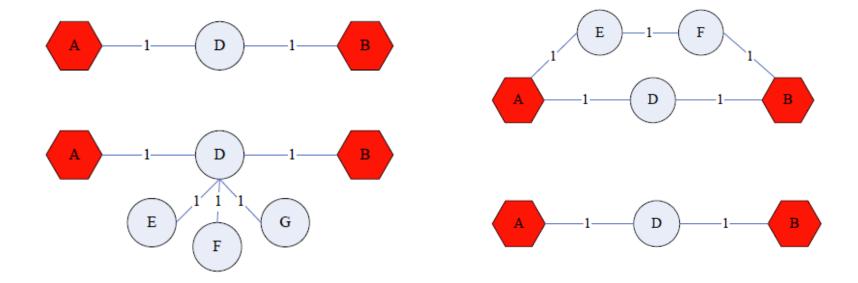
Prounity Graphs

a.k.a.: Relevance, Closeness, 'Similarity'...

[Tong-Faloutsos, 'o6]

Good proximity measure?

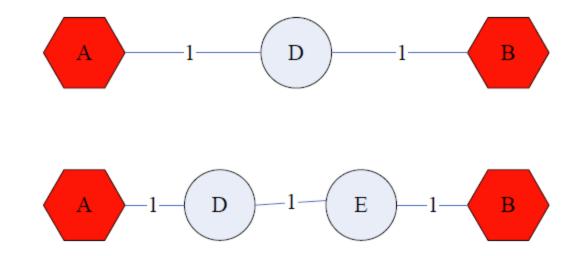
Shortest path is not good:



No effect of degree-1 nodes (E, F, G)! Multi-faceted relationships

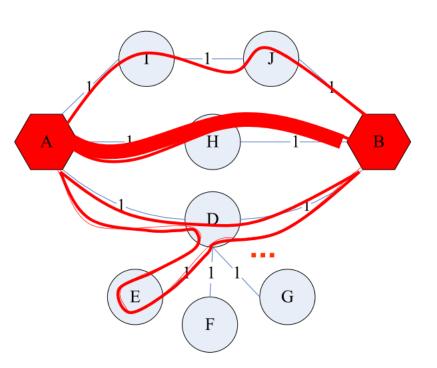
Good proximity measure?

Network flow is not good:



Does not punish long paths

What is a good notion of proximity?



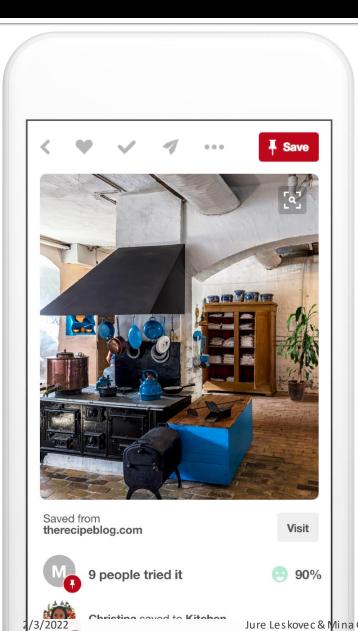
Need a method that considers:

- Multiple connections
- Multiple paths
- Direct and indirect connections
- Degree of the node

Pixie: Random Walk-based Real-Time Recommender System at Pinterest

<u>https://labs.pinterest.com/user/themes/pin_labs/assets/paper/paper-pixie.pdf</u>

Pinterest



Blue accents 219 Pins

Vintage kitchen 377 Pins

Fireplace Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets

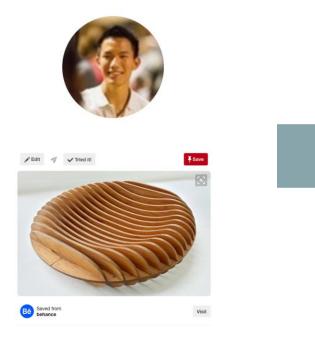
Goal: Radical Personalization

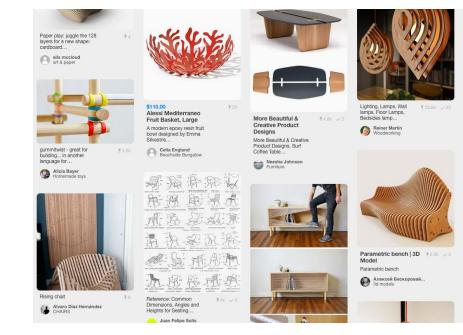
- Recommendations can be radically personalized.
- Adapting in real-time
 Opportunity for human centered
- personalization.

Recommendation problem

How to provide relevant and responsive recommendations

From 100B Pins to 1K Pins in real-time (50ms, 200,000x/s)





Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets

Input:

Chocolate Strawberry # 249 Shake

This healthier chocolate strawberry shake is like sipping a...

One Lovely Life

Pins to Pins

Input:

Output:

Chocolate Dipped Smoothie Strawberry time for...

₹249

Chocolate Strawberry Shake

This healthier chocolate strawberry shake is like sipping a...

One Lovely Life

Smoothie. Just in Be Whole, Be You, Ed Todd Drinks- Smoothies

Easy Breezy x 80.1k **Tropical Orange** Smoothie

8 Staple Smoothies You Should Know How to Make 8 Staple Smoothies That

¥ 60

Spinach-Pear-**Celery Smoothie** drink this daily and watch the pounds come off without fuss...

greenreset.com Spring Stutzman R - Drink Up

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets

Input:

Chocolate Strawberry Shake ₹249

This healthier chocolate strawberry shake is like sipping a...

One Lovely Life

Healthy + 1 Chocolate Peanut Butter Chips Muffins Healthy Chocolate Peanut Butter Chip Muffins made with greek... The First Year Katle - You Brew ...

* 119 Healt Chev Chook t Healt Choc Cook Healt Choc Cook butte Amv¹

The Ultimate

₹221

Healthy Soft & Checolate Chip Cookies The ULTIMATE Healthy Chocolate Chip Cookies -- so buttery... Amv's Healthy Baking Robin Guertin Realthy cooking

2/3/2022

Input:

Chocolate Strawberry Shake

¥ 249

This healthier chocolate strawberry shake is like sipping a...

One Lovely Life



Healthy Chocolate **Peanut Butter Chips Muffins** Healthy Chocolate Peanut Butter Chip Muffins made with greek... The First Year Katie - You Brew ... Healthy Recipes

Chewy **Chocolate Chip** Cookies The ULTIMATE Healthy Chocolate Chip Cookies -- so buttery... Amv's Healthy Baking

healthy cooking

Output:

30 minute Skinny

Banana Chocolate Chip Muffins

colate chips

Almost fat free healthy banana muffins with

6 Ridiculously Healthy But Delicious 3-Ingredient Treats... Bita Pittmoi Foodies

ropical Orange Smoothie

tealthy Peanut Butter

Chocolate Chip

Oatmeal Bars

Healthy Peanut Butter Chocolate Chip Oatmeal

Healthy Peanut Butter Chocolate Chip Oatmeal Bars

ive Well Bake Often

Control Live Well, Bake O. Best Comfort Fo...

Bars

-ST

Chocolate Dipped Strawberry Smoothie, Just in time for...

ick + Nutrition

Whole, Be You,

The Ed Todd Drinks- Smoothies

VANILLA PUMPKIN

WHEN BEARING STATE

+ 5.3k

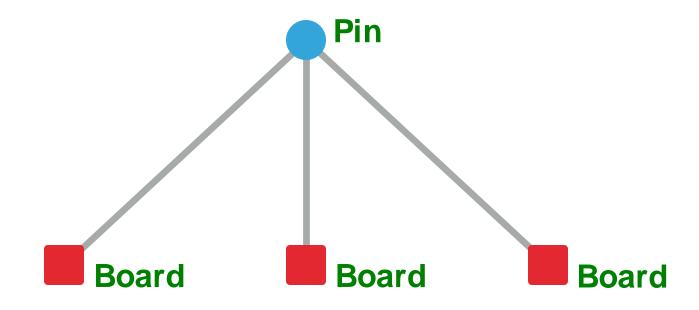
Chocolate Dipped Strawberry Smoothie

Dark Chocolate Sea Salt Almonds A simple, gluten free, healthy chocolate treat to feel good...

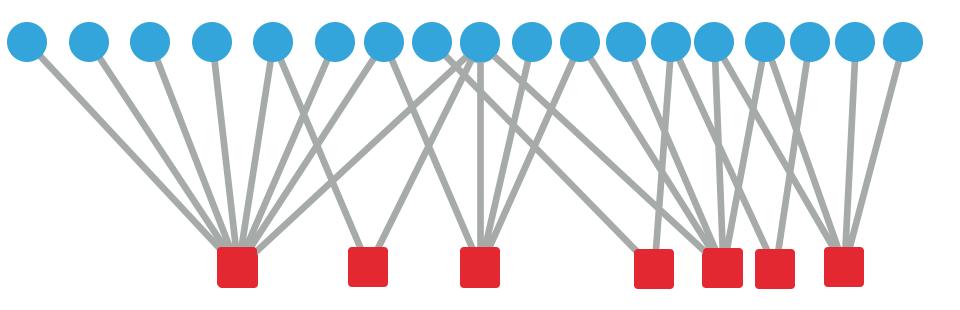
A NeuroticMommy

Pinterest is a Giant Bipartite Graph

Bipartite Pin And Board Graph



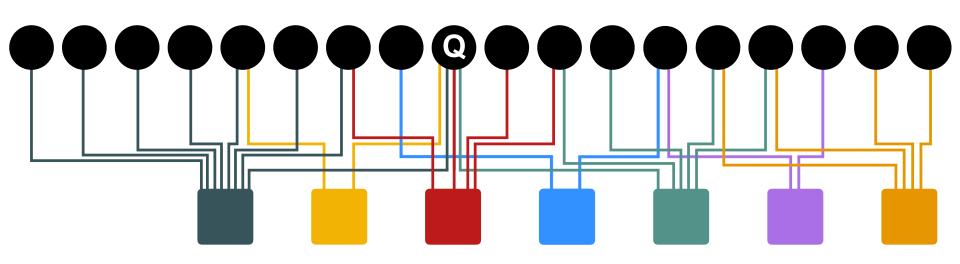
Bipartite Pin And Board Graph



Pixie Random Walks

Idea:

- Every node has some importance
- Importance gets evenly split among all edges and pushed to the neighbors
- Given a set of QUERY NODES Q, simulate a random walk:

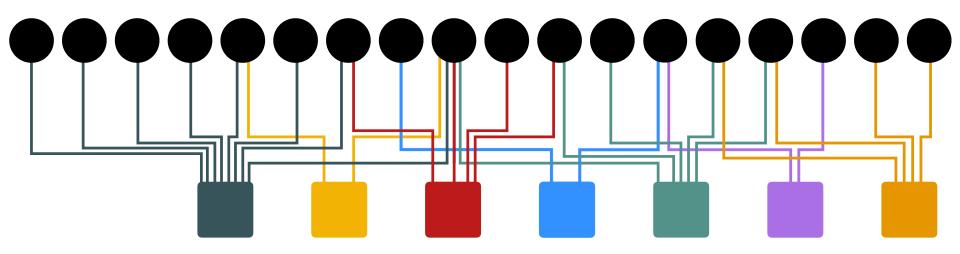


Pixie Random Walk Algorithm

Proximity to query node(s) Q:

ALPHA = 0.5 QUERY NODES =

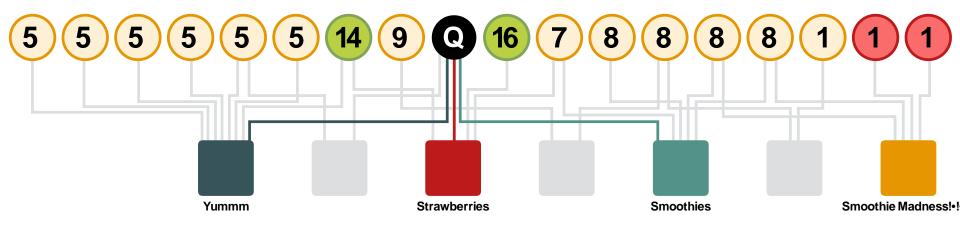
pin_node = QUERY_NODES.sample_by_weight()
for i in range(N_STEPS):
 board_node = pin_node.get_random_neighbor()
 pin_node = board_node.get_random_neighbor()
 pin_node.visit_count += 1
 if random() < ALPHA:
 pin_node = QUERY_NODES.sample_by_weight()</pre>



Pixie Random Walk Algorithm

ALPHA = 0.5 QUERY NODES =

pin_node = QUERY_NODES.sample_by_weight()
for i in range(N_STEPS):
 board_node = pin_node.get_random_neighbor()
 pin_node = board_node.get_random_neighbor()
 pin_node.visit_count += 1
 if random() < ALPHA:
 pin_node = QUERY_NODES.sample_by_weight()</pre>



Pixie:

Outputs top 1k pins with highest visit count Extensions:

- Weighted edges: The walk prefers to traverse certain edges:
 - Edges to pins in your local language
 - Personalized edge weights:
 - Pixie for different users and query pins can choose to bias edge selection dynamically based on user and edge features.
 - Weight = PersonalizedNeighbor(E,U), where E is edge and U is the user.

Extensions:

Multiple query pins:

- Each query pin q gets a different importance w_q
- Run PixieRandomWalk for each q in parallel.
- Combine visit counts.
- Important insight: The number of steps required to obtain meaningful visit counts depends on the query pin's degree
 - Scale the number of steps allocated to each query pin to be proportional to its degree

Extensions:

Multi-hit Booster:

- For multi-pin queries we prefer recommendations related to multiple query pins q.
 - Candidates with high visit counts from multiple query pins are more relevant to the query than candidates having equally high total visit count but all coming from a single query pin.
- Solution: When combining visit counts use:

$$V[p] = \left(\sum_{q \in Q} \sqrt{V_q[p]}\right)^2$$

Note that when a candidate pin p is visited by walks from only a single query pin q then the count is unchanged. However, if the candidate pin is visited from multiple query pins, then the count is boosted.

Extensions:

Early stopping:

- Insight: We only care about top-1k most visited pins.
- So, we don't need to walk a fixed big number of steps
- We just walk until 1k-th most visited pin has at least 20 visits.

Graph Cleaning/Pruning

Pinterest graph has 200B edges

- We don't need all of them!
 - Super popular pins are pinned to millions of boards
 - Not useful: When the random walk hits the pin, the signal just disperses. Such pins appear randomly in our recommendations.

• What we did: Keep only good boards for pins

 Compute the similarity between pin's topic vector and each of its boards. Only take boards with high similarity.

Data Type	Number	Size	Memory
Pin Nodes	3 Billion	8 Bytes	24 GiB
Board Nodes	2 Billion	8 Bytes	16 GiB
Undirected Edges	20 Billion	8 Bytes	160 GiB
			208 GiB

Benefits of Pixie

Benefits:

- Blazingly fast: Given Q, we can output top 1k in 50ms (after doing ~100k steps of the random walk)
- Single machine can run 1,500 walks in parallel (1500 recommendation requests per second).
- Fit entire graph in RAM of a single machine (17B edges, 3B nodes)
- Can scale it by just adding more machines

To learn more read: <u>https://cs.stanford.edu/people/jure/pubs/pixie-www18.pdf</u>

Recommendations@Twitter

Joint work with many Twitter folks over several years: <u>http://www.vidb.org/pvidb/volg/p1281-sharma.pdf</u>

2/3/2022

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets

Recommendations@Twitter

0 662 1 961

Ramnath Balasubramanyan and 3 others follow

Follow

Follow

Follow

@jiasong_sun Software Engineer @twitter

Silad Mishne and 5 others follow

David Burkett @david_burkett

Doesn't usually write well in the short form, but is glad that other people do.

David Gleich and 2 others follow

Nelly Litvak @nellylitvak

Professor in Applied Mathematics at University of Twente and Eindhoven University of Technology| complex networks| novelty in education| non-fiction author

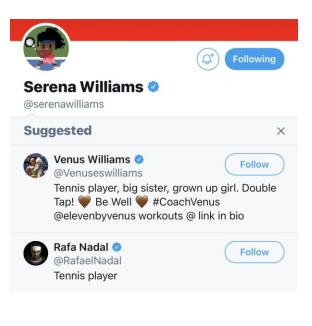
Show more

A JOINT BIDEN ADDRESSES A JOINT SESSION OF CONGRESS

0 6,219

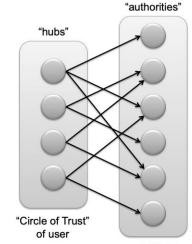
1

feels like a gift.

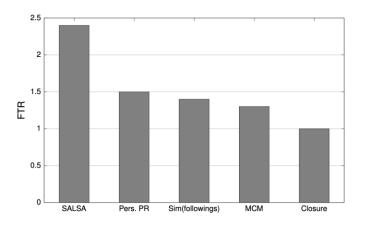


SALSA for Recommendations

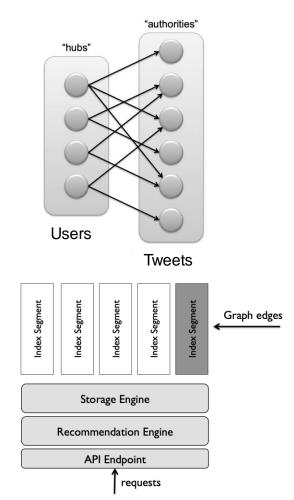
User Recs



users LHS follow



Content Recs



TrustRank: Combating Spam on the Web

What is Web Spam?

Spamming:

Any deliberate action to boost a web page's position in search engine results, incommensurate with the page's real value

Spam:

- Web pages that are the result of spamming
- This is a very broad definition
 - SEO industry might disagree!
 - SEO = search engine optimization

Approximately 10-15% of web pages are spam

Web Search

Early search engines:

- Crawl the Web
- Index pages by the words they contained
- Respond to search queries (lists of words) with the pages containing those words

Early page ranking:

- Attempt to order pages matching a search query by "importance"
- First search engines considered:
 - (1) Number of times query words appeared
 - (2) Prominence of word position, e.g. title, header

First Spammers

 As people began to use search engines to find things on the Web, those with commercial interests tried to exploit search engines to bring people to their own site – whether they wanted to be there or not

Example:

- Shirt-seller might pretend to be about "movies"
- Techniques for achieving high relevance/importance for a web page

First Spammers: Term Spam

- How do you make your page appear to be about movies?
 - (1) Add the word movie 1,000 times to your page
 - Set text color to the background color, so only search engines would see it
 - (2) Or, run the query "movie" on your target search engine
 - See what page came on top of result ranking
 - Copy it into your page, make it "invisible"

These and similar techniques are termed spam

Google's Solution to Term Spam

- Believe what people say about you, rather than what you say about yourself
 - Use words in the anchor text (words that appear underlined to represent the link) and its surrounding text

PageRank as a tool to measure the "importance" of Web pages

Why Does It Work?

Our hypothetical shirt-seller loses

- Saying he is about movies doesn't help, because others don't say he is about movies
- His page isn't very important, so it won't be ranked high for shirts or movies

Example:

- Shirt-seller creates 1,000 pages, each links to his with "movie" in the anchor text
- These pages have no links in, so they get little PageRank
- So the shirt-seller can't beat truly important movie pages, like IMDB

Why Does It NOT Work?

Google	Web	Images	Groups	News	Froogle	Local	more »
	misera	miserable failure					Search Advanced Search Preferences

Web

Results 1 - 10 of about 969,000 for miserable failure. (0.06 seconds)

Biography of President George W. Bush

Biography of the president from the official White House web site. www.whitehouse.gov/president/gwbbio.html - 29k - <u>Cached</u> - <u>Similar pages</u> <u>Past Presidents</u> - <u>Kids Only</u> - <u>Current News</u> - <u>President</u> <u>More results from www.whitehouse.gov</u> »

Welcome to MichaelMoore.com!

Official site of the gadfly of corporations, creator of the film Roger and Me and the television show The Awful Truth. Includes mailing list, message board, ... www.michaelmoore.com/ - 35k - Sep 1, 2005 - Cached - Similar pages

BBC NEWS | Americas | 'Miserable failure' links to Bush

Web users manipulate a popular search engine so an unflattering description leads to the president's page. news.bbc.co.uk/2/hi/americas/3298443.stm - 31k - Cached - Similar pages

Google's (and Inktomi's) Miserable Failure

A search for **miserable failure** on Google brings up the official George W. Bush biography from the US White House web site. Dismissed by Google as not a ... searchenginewatch.com/sereport/article.php/3296101 - 45k - Sep 1, 2005 - Cached - Similar pages

Google vs. Spammers: Round 2!

- Once Google became the dominant search engine, spammers began to work out ways to fool Google
- Spam farms were developed to concentrate
 PageRank on a single page

Link spam:

 Create link structures that boost PageRank of a particular page

Link Spamming

- Three kinds of web pages from a spammer's point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., blog comments pages
 - spammer can post links to his pages
 - Owned pages
 - Completely controlled by spammer
 - May span multiple domain names

Link Farms

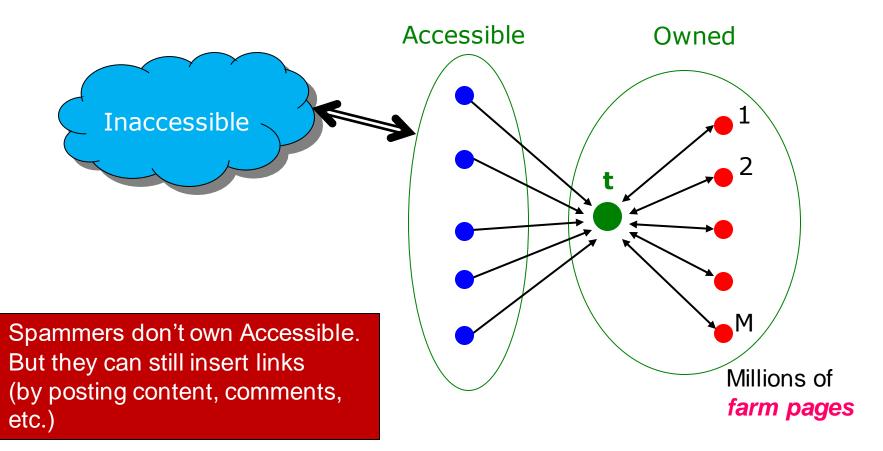
Spammer's goal:

Maximize the PageRank of target page t

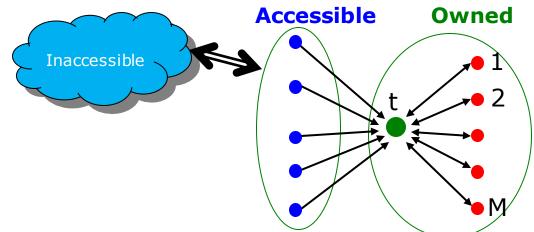
Technique:

- Get as many links from accessible pages as possible to target page *t*
- Construct "link farm" to get PageRank multiplier effect

Link Farms



One of the most common and effective organizations for a link farm



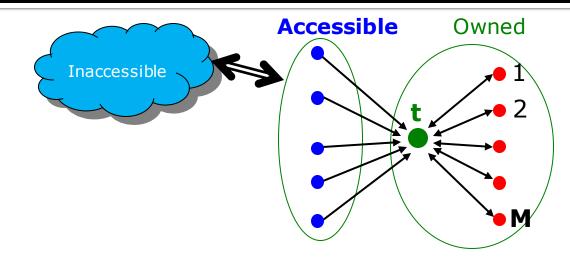
N...# pages on the web M...# of pages spammer owns

- x: PageRank contributed by accessible pages
- y: PageRank of target page t
- Rank of each "owned" page = $\frac{\beta y}{M} + \frac{1-\beta}{N}$

•
$$y = x + \beta M \left[\frac{\beta y}{M} + \frac{1-\beta}{N} \right] + \frac{1-\beta}{N}$$

 $= x + \beta^2 y + \frac{\beta(1-\beta)M}{N} + \frac{1-\beta}{N}$
• $y = \frac{x}{1-\beta^2} + c \frac{M}{N}$ where $c = \frac{\beta}{1+\beta}$

Very small; ignore Now we solve for **y**



N...# pages on the web M...# of pages spammer owns

•
$$y = \frac{x}{1-\beta^2} + c \frac{M}{N}$$
 where $c = \frac{\beta}{1+\beta}$
• For $\beta = 0.85$, $1/(1-\beta^2) = 3.6$

Multiplier effect for acquired PageRank
By making *M* large, we can make *y* as large as we want

TrustRank: Combating Spam on the Web

Combating Spam

Combating term spam

- Analyze text using statistical methods
- Similar to email spam filtering
- Also useful: Detecting approximate duplicate pages

Combating link spam

- Detection and blacklisting of structures that look like spam farms
 - Leads to another war hiding and detecting spam farms
- TrustRank = topic-specific PageRank with a teleport set of trusted pages
 - Example: .edu domains, similar domains for non-US schools

TrustRank: Idea

- Basic principle: Approximate isolation
 - It is rare for a "good" page to point to a "bad" (spam) page
- Sample a set of seed pages from the web
- Have an oracle (human) to identify the good pages and the spam pages in the seed set
 - Expensive task, so we must make seed set as small as possible

Trust Propagation

- Call the subset of seed pages that are identified as good the trusted pages
- Perform a topic-sensitive PageRank with teleport set = trusted pages
 - Propagate trust through links:
 - Each page gets a trust value between 0 and 1

<u>Solution 1:</u> Use a threshold value and mark all pages below the trust threshold as spam

Trust Propagation: Simple Model

- Set trust of each trusted page to 1
- Suppose trust of page *p* is *t_p*
 - Page *p* has a set of out-links *o_p*
- For each $q \in o_p$, p confers the trust to q
 - $\beta t_p / |o_p|$ for $0 < \beta < 1$
- Trust is additive
 - Trust of *p* is the sum of the trust conferred on *p* by all its in-linked pages
- Note similarity to Topic-Specific PageRank
 - Within a scaling factor, TrustRank = PageRank with trusted pages as teleport set

Why is it a good idea?

Trust attenuation:

The degree of trust conferred by a trusted page decreases with the distance in the graph

Trust splitting:

- The larger the number of out-links from a page, the less scrutiny the page author gives each outlink
- Trust is split across out-links

Picking the Seed Set

Two conflicting considerations:

- Human has to inspect each seed page, so seed set must be as small as possible
- Must ensure every good page gets adequate trust rank, so need to make all good pages reachable from seed set by short paths

Approaches to Picking Seed Set

- Suppose we want to pick a seed set of k pages
- How to do that?
- (1) PageRank:
 - Pick the top k pages by PageRank
 - Theory is that bad pages can't get really high ranks
- (2) Use trusted domains whose membership is controlled, like .edu, .mil, .gov

TrustRank

- In the TrustRank model, we start with good pages and propagate trust
- Complementary view: What fraction of a page's PageRank comes from spam pages?
- In practice, we don't know all the spam pages, so we need to estimate

Trusted

set

Web

Spam Mass Estimation

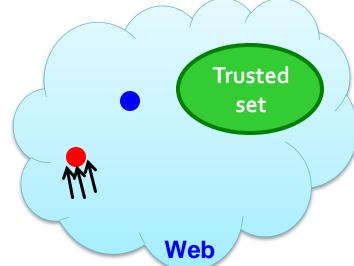
Solution 2:

- *r_p* = PageRank of page *p*
- r⁺_p = PageRank of p with teleport into trusted pages only
- Then: What fraction of a page's PageRank comes from spam pages?

$$r_p^- = r_p - r_p^+$$

• Spam mass of
$$p = \frac{r_p^-}{r_p}$$

 Pages with high spam mass are spam



Summary of Today's lecture

- Topic specific PageRank
 - Custom teleportation vector
- Random Walk with Restarts
 - Recommendations
- Spam farming
- TrustRank and Spam Mass estimation