Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Analysis of Large Graphs: Link Analysis, PageRank

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon
http://cs246.stanford.edu

New Topic: Graph Data!

Graph Data: Social Networks

Facebook social graph 4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]

Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]

Graph Data: Communication Networks

Graph Data: Technological Networks

Seven Bridges of Königsberg
[Euler, 1735]
Return to the starting point by traveling each link of the graph once and only once.

Web as a Graph

- Web as a directed graph:

- Nodes: Webpages
- Edges: Hyperlinks

Stanford
University

Web as a Graph

- Web as a directed graph:
- Nodes: Webpages
- Edges: Hyperlinks

Web as a Directed Graph

Broad Question

- How to organize the Web?
- First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart
- Second try: Web Search

- Information Retrieval investigates:

Find relevant docs in a small and trusted set

- Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
- Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
- No single right answer
- Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- All web pages are not equally "important" thispersondoesnotexist.com vs. www.stanford.edu
- There is a large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importance of nodes in a graph:
- PageRank
- Topic-Specific (Personalized) PageRank
- Web Spam Detection Algorithms

PageRank:
The "Flow" Formulation

Links as Votes

- Idea: Links as votes
- Page is more important if it has more links
- In-coming links? Out-going links?
- Think of in-links as votes:
- www.stanford.edu has millions in-links
- thispersondoesnotexist.com has a few thousands in-link
- Are all in-links equal?
- Links from important pages count more
- Recursive question!

Intuition - (1)

- Web pages are important if people visit them a lot.
- But we can't watch everybody using the Web.
- A good surrogate for visiting pages is to assume people follow links randomly.
- Leads to random surfer model:
- Start at a random page and follow random outlinks repeatedly, from whatever page you are at.
- PageRank = limiting probability of being at a page.

Intuition - (2)

- Solve the recursive equation: "importance of a page $=$ its share of the importance of each of its predecessor pages"
- Equivalent to the random-surfer definition of PageRank

Technically, importance = the principal eigenvector of the transition matrix of the Web

- A few fix-ups needed

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page \boldsymbol{j} with importance r_{j} has \boldsymbol{n} out-links, each link gets r_{j} / n votes
- Page j's own importance is the sum of the votes on its in-links

$$
r_{j}=r_{i} / 3+r_{k} / 4
$$

PageRank:The "Flow" Model

 pages- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important
- Define a "rank" r_{j} for page j

The web in 1839

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}
$$

$d_{i} \ldots$ out-degree of node i

"Flow" equations:

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

r_{j} are the solutions to the "flow" equation

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
- No unique solution
- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
$r_{y}+r_{a}+r_{m}=1$
- Solution: $r_{y}=\frac{2}{5}, r_{a}=\frac{2}{5}, r_{m}=\frac{1}{5}$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- \boldsymbol{M} is a column stochastic ${ }_{i}^{i}$ matrix
- Columns sum to 1
- Rank vector r : vector with an entry per page
- r_{i} is the importance score of page i
- $\sum_{i} r_{i}=1$
- The flow equations can be written

$$
\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}
$$

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}
$$

Example

- Remember the flow equation: $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}$

$$
M \cdot r=r
$$

- Suppose page i links to 3 pages, including j

Example: Flow Equations \& M

	$\mathbf{r}_{\mathbf{y}}$	$\mathbf{r}_{\mathbf{a}}$	$\mathbf{r}_{\mathbf{m}}$
	$\mathbf{r}_{\mathbf{y}}$	$1 / 2$	$1 / 2$
	\mathbf{r}_{a}	$1 / 2$	0
	\mathbf{r}_{m}	0	$1 / 2$
		0	

$$
r_{y}=r_{y} / 2+r_{a} / 2
$$

$$
r_{a}=r_{y} / 2+r_{m}
$$

$$
r_{m}=r_{a} / 2
$$

$$
\begin{gathered}
r=M \cdot r \\
\left.\begin{array}{l}
\mathrm{r}_{\mathrm{y}} \\
\mathrm{r}_{\mathrm{a}} \\
\mathrm{r}_{\mathrm{m}}
\end{array}=\begin{array}{|rrr|}
\hline 1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 \\
0 & 1 / 2 & 0
\end{array} \right\rvert\, \begin{array}{|c}
\mathrm{r}_{\mathrm{y}} \\
\mathrm{r}_{\mathrm{a}} \\
\mathrm{r}_{\mathrm{m}}
\end{array}
\end{gathered}
$$

Eigenvector Formulation

- The flow equations can be written

$$
\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}
$$

- So the rank vector r is an eigenvector of the stochastic web matrix \boldsymbol{M}
- Starting from any stochastic vector \boldsymbol{u}, the limit $\boldsymbol{M}(\boldsymbol{M}(\ldots \boldsymbol{M}(\boldsymbol{M u})))$ is the long-term distribution of the surfers.
- The math: limiting distribution = principal eigenvector of $M=$ PageRank.
- Note: If \boldsymbol{r} is the limit of $\boldsymbol{M} \boldsymbol{M} . . . \boldsymbol{M u}$, then \boldsymbol{r} satisfies

NOTE: x is an
eigenvector with
the corresponding eigenvalue $\boldsymbol{\lambda}$ if:
$A x=\lambda x$ the equation $\boldsymbol{r}=\boldsymbol{M r}$, so r is an eigenvector of \boldsymbol{M} with eigenvalue 1

- We can now efficiently solve for r ! The method is called Power iteration

Power Iteration Method

- Given a web graph with N nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
- Suppose there are N web pages
- Initialize: $\mathbf{r}^{(0)}=[1 / \mathrm{N}, \ldots ., 1 / \mathrm{N}]^{\top}$
- Iterate: $\mathbf{r}^{(\mathrm{t}+1)}=\mathbf{M} \cdot \mathbf{r}^{(\mathrm{t})}$
- Stop when $\left|\mathbf{r}^{(t+1)}-\mathbf{r}^{(t)}\right|_{1}<\varepsilon$ $|\mathbf{x}|_{1}=\sum_{1 \leq i \leq N}\left|x_{i}\right|$ is the L_{1} norm So that \mathbf{r} is a distribution (sums to 1)

About 50 iterations is sufficient to estimate the limiting solution.

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- $1: r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1
- Example:

Iteration 0, 1, 2, ...

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

PageRank: How to solve?

- Power Iteration:
- Set $r_{j}=1 / N$
- $1: r_{j}^{\prime}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r=r^{\prime}$
- Goto 1
- Example:
\(\left(\begin{array}{l}r_{y}

r_{\mathrm{a}}

\mathrm{r}_{\mathrm{m}}\end{array}\right)=\)| $1 / 3$ | $1 / 3$ | $5 / 12$ | $9 / 24$ | | $6 / 15$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $3 / 6$ | $1 / 3$ | $11 / 24$ | \ldots | $6 / 15$ |
| $1 / 3$ | $1 / 6$ | $3 / 12$ | $1 / 6$ | | $3 / 15$ |

Iteration 0, 1, 2, ...

6/15
6/15
3/15

	y	a	
m			
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

Random Walk Interpretation

- Imagine a random web surfer:
- At any time \boldsymbol{t}, surfer is on some page \boldsymbol{i}
- At time $\boldsymbol{t}+\mathbf{1}$, the surfer follows an out-link from \boldsymbol{i} uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}

- Process repeats indefinitely
- Let:
- $\boldsymbol{p}(\boldsymbol{t}) \ldots$... vector whose $\boldsymbol{i}^{\text {th }}$ coordinate is the prob. that the surfer is at page \boldsymbol{i} at time \boldsymbol{t}
- So, $\boldsymbol{p}(\boldsymbol{t})$ is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time $t+1$?
- Follows a link uniformly at random

$$
p(t+1)=M \cdot p(t)
$$

- Suppose the random walk reaches a state $p(t+1)=M \cdot p(t)=p(t)$ then $\boldsymbol{p}(\boldsymbol{t})$ is stationary distribution of a random walk
- Our original rank vector \boldsymbol{r} satisfies $\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}$
- So, r is a stationary distribution for the random walk

Existence and Uniqueness

- A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what is the initial probability distribution at time $\mathbf{t}=\mathbf{0}$

PageRank for Undirected Graphs

- Given an undirected graph with N nodes, where the nodes are pages and edges are hyperlinks
- Claim [Existence]: For node v ,
$r_{v}=d_{v} / 2 m$ is a solution.
- Proof:
- Iteration step: $\mathbf{r}^{(t+1)}=\mathbf{M} \cdot \mathbf{r}^{(\mathbf{t})} \quad r_{v}^{(t+1)}=\frac{r_{x}^{t}}{d_{x}}+\frac{r_{y}^{t}}{d_{y}}+\frac{r_{z}^{t}}{d_{z}}$
- Substitute $\mathrm{r}_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}} / 2 \mathrm{~m}$:

$$
r_{v}^{(t+1)}=\frac{3}{2 m}
$$

- Done! Uniqueness: exercise! m = \#edges

PageRank: test your intuition 1

- Which node has highest PageRank? Second highest?

PageRank: test your intuition 1

- Node 1 has the highest PR, followed by Node 3
- Degree \neq PageRank

PageRank: test your intuition 2

- Add edge 3 -> 2 . Now, which node has highest PageRank? Second highest?

PageRank: test your intuition 2

- Node 3 has the highest PR, followed by 2.
- Small changes to graph can change PR!

PageRank:
The Google Formulation

PageRank: Three Questions

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}} \underset{\text { equivalently }}{\text { or }} \quad r=M r
$$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

Example:

Iteration $0,1,2, \ldots$

Does it converge to what we want?

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

- Example:

PageRank: Problems

Two problems:

- (1) Dead ends: Some pages have no out-links
- Random walk has "nowhere" to go to
- Such pages cause importance to "leak out"
- (2) Spider traps:
(all out-links are within the group)
- Random walk gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

- Power Iteration:
- Set $r_{j}=1 / N$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	0	$1 / 2$	1

m is a spider trap $\quad \mathrm{r}_{\mathrm{y}}=\mathrm{r}_{\mathrm{y}} / 2+\mathrm{r}_{\mathrm{a}} / 2$
$r_{a}=r_{y} / 2$
$r_{m}=r_{a} / 2+r_{m}$

- Example:
\(\left(\begin{array}{l}r_{y}

r_{\mathrm{a}}

\mathrm{r}_{\mathrm{m}}\end{array}\right)=\)| $1 / 3$ | $2 / 6$ | $3 / 12$ | $5 / 24$ | | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $1 / 6$ | $2 / 12$ | $3 / 24$ | \cdots | 0 |
| $1 / 3$ | $3 / 6$ | $7 / 12$ | $16 / 24$ | | 1 |

Iteration 0, 1, 2, ...
All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
- With prob. $\boldsymbol{\beta}$, follow a link at random
- With prob. 1- $\boldsymbol{\beta}$, jump to some random page
- β is typically in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

- Power Iteration:
- Set $r_{j}=1 / N$
- $r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- And iterate

	y		c
m			
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	m	0	$1 / 2$
	0	0	

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / 2+\mathbf{r}_{\mathrm{a}} / 2 \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / 2 \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / 2
\end{aligned}
$$

- Example:
\(\left(\begin{array}{l}r_{y}

r_{a}

r_{m}\end{array}\right)=\)| $1 / 3$ | $2 / 6$ | $3 / 12$ | $5 / 24$ | | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $1 / 6$ | $2 / 12$ | $3 / 24$ | \ldots | 0 |
| $1 / 3$ | $1 / 6$ | $1 / 12$ | $2 / 24$ | | 0 |

Iteration $0,1,2, \ldots$
Here the PageRank score "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly

	y	a	m
y	y	2	$1 / 2$
a	0		
m	$1 / 2$	0	0
	0	$1 / 2$	0

	y	a	m
y	$1 / 2$	$1 / 2$	$1 / 3$
a	$1 / 2$	0	$1 / 3$
m	0	$1 / 2$	$1 / 3$

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps PageRank scores are not what we want
- Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
- The matrix is not column stochastic so our initial assumptions are not met
- Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:

At each step, random surfer has two options:

- With probability β, follow a link at random
- With probability $\mathbf{1 - \beta}$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N} \quad \begin{gathered}
\substack{d_{1} \ldots . . \text { out-degree } \\
\text { of ofode } i}
\end{gathered}
$$

This formulation assumes that M has no dead ends. We can either preprocess matrix \boldsymbol{M} to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

- PageRank equation [Brin-Page, '98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

- The Google Matrix A:

$$
A=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
$$

- We have a recursive problem: $\boldsymbol{r}=\boldsymbol{A} \cdot \boldsymbol{r}$ And the Power method still works!
- What is β ?
- In practice $\beta=0.8,0.9$ (jump every 5 steps on avg.)

Random Teleports $(\beta=0.8)$

M
$0.8 \|$$1 / 2$ $1 / 2$ 0 $1 / 2$ 0 0 0 $1 / 2$ 1

$[1 / \mathrm{N}]_{\mathrm{NxN}}$

| $1 / 3$ | $1 / 3$ | $1 / 3$ |
| :--- | :--- | :--- | :--- |
| $1 / 3$ | $1 / 3$ | $1 / 3$ |
| $1 / 3$ | $1 / 3$ | $1 / 3$ |

y	$7 / 15$	$7 / 15$	$1 / 15$
a	$7 / 15$	$1 / 15$	$1 / 15$
m	$1 / 15$	$7 / 15$	$13 / 15$

y	$1 / 3$	0.33	0.24	0.26		$7 / 33$
$\mathrm{a}=$	$1 / 3$	0.20	0.20	0.18	\ldots	$5 / 33$
m	$1 / 3$	0.46	0.52	0.56		$21 / 33$

How do we actually compute the PageRank?

Computing PageRank

- Key step is matrix-vector multiplication
- $\boldsymbol{r}^{\text {new }}=\boldsymbol{A} \cdot \boldsymbol{r}^{\text {old }}$
- Easy if we have enough main memory to hold A, $\mathbf{r}^{\text {old }}$, r $^{\text {new }}$
- Say N = 1 billion pages
- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has N^{2} entries
- 10^{18} is a large number!

$$
\begin{aligned}
& \mathbf{A}=\beta \cdot \mathbf{M}+(1-\beta)[1 / \mathrm{N}]_{\mathrm{N} \times \mathrm{N}} \\
&\left.\boldsymbol{A}=0.8\left[\begin{array}{lll}
1 / 21 / 2 & 0 \\
1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]+0.2 \begin{array}{lll}
1 / 31 / 3 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] \\
&=\begin{array}{lll}
7 / 15 & 7 / 15 & 1 / 15 \\
7 / 15 & 1 / 15 & 1 / 15 \\
1 / 15 & 7 / 15 & 13 / 15
\end{array}
\end{aligned}
$$

Rearranging the Equation

- $r=A \cdot r, \quad$ where $A_{j i}=\beta M_{j i}+\frac{1-\beta}{N}$
- $r_{j}=\sum_{i=1}^{N} A_{j i} \cdot r_{i}$
- $r_{j}=\sum_{i=1}^{N}\left[\beta M_{j i}+\frac{1-\beta}{N}\right] \cdot r_{i}$
$=\sum_{\mathrm{i}=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \sum_{\mathrm{i}=1}^{N} r_{i}$
$=\sum_{\mathrm{i}=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \quad$ since $\sum r_{i}=1$
- So we get: $r=\beta \boldsymbol{M} \cdot \boldsymbol{r}+\left[\frac{1-\beta}{N}\right]_{N}$

Sparse Matrix Formulation

- We just rearranged the PageRank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / \mathbf{N}]_{N}$ is a vector with all \boldsymbol{N} entries $(1-\beta) / \mathbf{N}$
- \boldsymbol{M} is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10 N entries
- So in each iteration, we need to:
- Compute $\boldsymbol{r}^{\text {new }}=\beta \boldsymbol{M} \cdot \boldsymbol{r}^{\text {old }}$
- Add a constant value (1- $\boldsymbol{\beta}$)/N to each entry in $\boldsymbol{r}^{\text {new }}$
- Note if M contains dead-ends then $\sum_{j} r_{j}^{\text {new }}<1$ and we also have to renormalize $r^{\text {new }}$ so that it sums to 1

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
- Directed graph \boldsymbol{G} (can have spider traps and dead ends)
- Parameter $\boldsymbol{\beta}$
- Output: PageRank vector $r^{\text {new }}$
- Set: $r_{j}^{\text {old }}=\frac{1}{N}$
- repeat until convergence: $\sum_{j}\left|r_{j}^{\text {new }}-r_{j}^{\text {old }}\right|<\varepsilon$
- $\forall j: \boldsymbol{r}_{j}^{\text {new }}=\sum_{i \rightarrow j} \boldsymbol{\beta} \frac{r_{i}^{\text {old }}}{d_{i}}$
$\boldsymbol{r}_{\boldsymbol{j}}^{\boldsymbol{\prime n} \boldsymbol{w}}=\mathbf{0}$ if in-degree of \boldsymbol{j} is $\mathbf{0}$
- Now re-insert the leaked PageRank:
$\forall \boldsymbol{j}: \boldsymbol{r}_{\boldsymbol{j}}^{\text {new }}=\boldsymbol{r}_{\boldsymbol{j}}^{\boldsymbol{\prime} \boldsymbol{n e w}}+\frac{\mathbf{1 - S}}{\boldsymbol{N}}$ where: $S=\sum_{j} r_{j}^{\text {mew }}$
- $r^{o l d}=r^{n e w}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing \mathbf{S}.

Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
- Space proportional roughly to number of links
- Say 10N, or 4*10*1 billion = 40GB
- Still won't fit in memory, but will fit on disk

source node
degree
0

Basic Algorithm: Update Step

- Assume enough RAM to fit $r^{\text {new }}$ into memory
- Store $\boldsymbol{r}^{\text {old }}$ and matrix M on disk
- 1 step of power-iteration is:

Initialize all entries of $\mathbf{r}^{\text {new }}=(1-\beta) / \mathbf{N}$
Assuming no
For each page \boldsymbol{i} (of out-degree $\boldsymbol{d}_{\boldsymbol{i}}$):
Read into memory: $\boldsymbol{i}, \boldsymbol{d}_{\boldsymbol{i}}$, dest $_{\boldsymbol{1}}, \ldots$, dest $_{\boldsymbol{d},}{ }^{\text {pold }}(\boldsymbol{i})$
For $\mathbf{j}=\mathbf{1} . . . \mathbf{d}_{\mathbf{i}}$
$r^{\text {new }}\left(\right.$ dest $\left._{j}\right)+=\beta r^{\text {old }}(\mathbf{i}) / d_{i}$

Analysis

- Assume enough RAM to fit $r^{\text {new }}$ into memory
- Store $\boldsymbol{r}^{\text {old }}$ and matrix \boldsymbol{M} on disk
- In each iteration, we have to:
- Read $\boldsymbol{r}^{\text {old }}$ and \boldsymbol{M}
- Write $\boldsymbol{r}^{\text {new }}$ back to disk
- Cost per iteration of Power method:
$=2|r|+|M|$
- Question:
- What if we could not even fit $\boldsymbol{r}^{\text {new }}$ in memory?

Block-based Update Algorithm

- Break $\boldsymbol{r}^{\text {new }}$ into \boldsymbol{k} blocks that fit in memory
- Scan \boldsymbol{M} and $\boldsymbol{r}^{\text {old }}$ once for each block

Analysis of Block Update

- Similar to nested-loop join in databases
- Break $\boldsymbol{r}^{\text {new }}$ into \boldsymbol{k} blocks that fit in memory
- Scan \boldsymbol{M} and $\boldsymbol{r}^{\text {old }}$ once for each block
- Total cost:
- \boldsymbol{k} scans of \boldsymbol{M} and $\boldsymbol{r}^{\text {old }}$
- Cost per iteration of Power method:
$k(|M|+|r|)+|r|=k|M|+(k+1)|r|$
- Can we do better?
- Hint: \boldsymbol{M} is much bigger than \boldsymbol{r} (approx 10-20x), so we must avoid reading it \boldsymbol{k} times per iteration

Block-Stripe Update Algorithm

src degree destination

0	4	0,1
1	2	0

0	4	3
2	2	3

0	4	5
1	2	5
2	2	4

Break M into stripes! Each stripe contains only destination nodes in the corresponding block of $\boldsymbol{r}^{\text {new }}$

Block-Stripe Analysis

- Break M into stripes
- Each stripe contains only destination nodes in the corresponding block of $\boldsymbol{r}^{\text {new }}$
- Some additional overhead per stripe
- But it is usually worth it
- Cost per iteration of Power method:
$=|M|(1+\varepsilon)+(k+1)|r|$
where ε is a small number.

Some Problems with PageRank

- Measures generic popularity of a page
- Biased against topic-specific authorities
- Solution: Topic-Specific PageRank (next)
- Uses a single measure of importance
- Other models of importance
- Solution: Hubs-and-Authorities
- Susceptible to Link spam
- Artificial link topographies created in order to boost page rank
- Solution: TrustRank

Historical note on Link Analysis

- Classic work: Markov chains, citation analysis
- RankDex patent [Robin Li, '96]
- Key idea: use backlinks (led to Baidu!)
- HITS Algorithm [Kleinberg, SODA '98]
- Key idea: iterative scoring!

Authoritative Sources in a Hyperlinked Environment*
Jon M. Kleinberg ${ }^{\dagger}$

- PageRank work [Page et al, '98]

