Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Clustering

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Stanford University
http://cs246.stanford.edu

High Dimensional Data

High dim. **Infinite** Machine Graph **Apps** learning data data data Filtering Locality Recommen sensitive der systems hashing streams Community Web Decision Association Clustering Detection advertising Rules Trees Dimensiona Duplicate Queries on Spam Perceptron, document -lity Detection **kNN** streams reduction detection

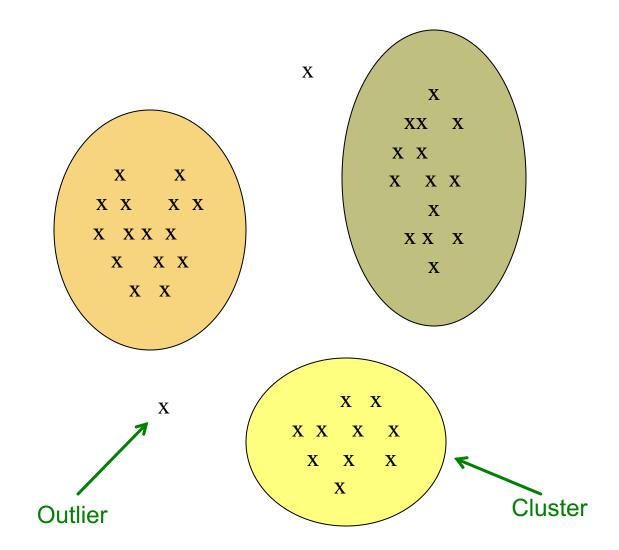
The Problem of Clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of the same cluster are close/similar to each other
 - Members of different clusters are dissimilar

Usually:

- Points are in a high-dimensional space
- Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, edit distance, ...

Example: Clusters & Outliers



Clustering Problem: Galaxies

- A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands)
- Problem: Cluster similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Digital Sky Survey

Clustering Problem: Music CDs

- Intuitively: Music can be divided into categories, and customers prefer a few genres
 - But what are categories really?
- Represent a CD by a set of customers who bought it
- Similar CDs have similar sets of customers, and vice-versa

Clustering Problem: Music CDs

Space of all CDs:

- Think of a space with one dim. for each customer
 - Values in a dimension may be 0 or 1 only
 - A CD is a "point" in this space $(x_1, x_2, ..., x_d)$, where $x_i = 1$ iff the i th customer bought the CD
- For Amazon, the dimension is tens of millions
- Task: Find clusters of similar CDs

Clustering Problem: Documents

Finding topics:

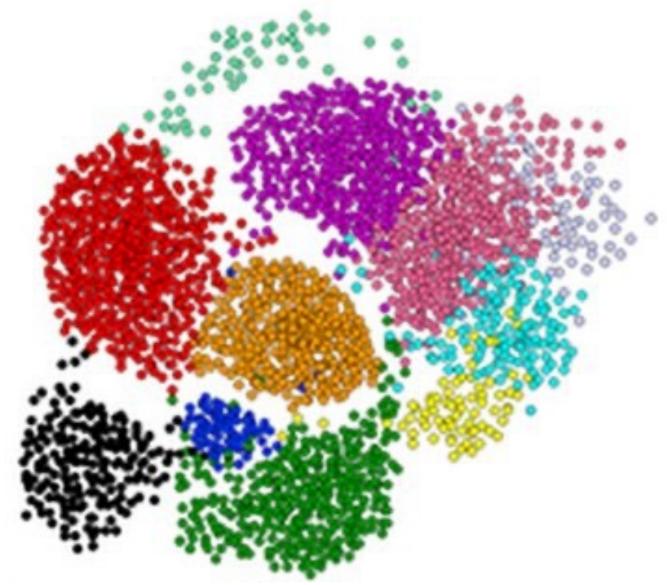
Represent a document by a vector $(x_1, x_2,..., x_k)$, where $x_i = 1$ iff the i th word (in some order) appears in the document

 Documents with similar sets of words may be about the same topic

Cosine, Jaccard, and Euclidean

- We have a choice when we think of documents as sets of words or shingles:
 - as vectors: Measure similarity by the cosine distance
 - as sets: Measure similarity by the Jaccard distance
 - as points: Measure similarity by Euclidean distance

Clustering is a hard problem!



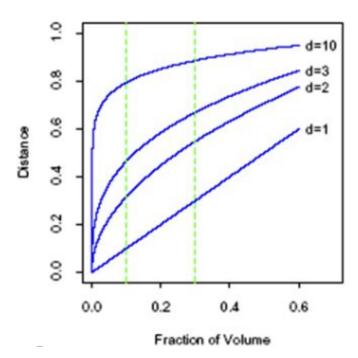
Why is it hard?

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy

- Many applications involve not 2, but 10 or 10,000 dimensions
- High-dimensional spaces look different:
 Almost all pairs of points are very far from each other --> The Curse of Dimensionality!

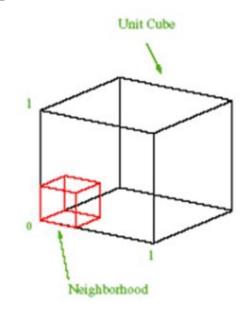
Curse of Dimensionality

- Assume data lives in [0,1]^d
- To capture a neighborhood which represents a fraction s of the hypercube volume, we need the edge length to be s^{1/d}
 - s = 0.1, d = 10, $s^{1/d} = 0.8$
 - s = 0.01, d = 10, $s^{1/d} = 0.63$



Curse of Dimensionality

- Neighborhoods are no longer local
- All points are very far from each other
- Points in high-dim space are isolated
 - Volume of a hypercube with edge length r=0.1 is 0.1^d
 - When d grows, it quickly becomes so small that the probability to capture points becomes very very small



Overview: Clustering Strategies (1)

 $0.9 \, \mathrm{r}$

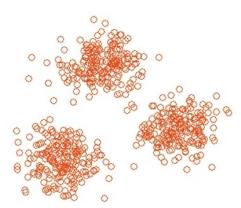
8.0

Two group of methods:

- Hierarchical:
 - Agglomerative (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one



- Divisive (top down):
 - Start with one cluster and recursively split it
- Point assignment:
 - Maintain a set of clusters
 - Points belong to the "nearest" cluster



Overview: Clustering Strategies (2)

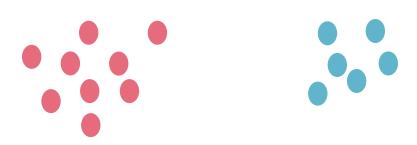
- Is the space Euclidean or non-Euclidean?
- In Euclidean:
 - Points are vectors of real numbers, i.e. coordinates
 - It is possible to summarize a collection of points as their average. We call it *centroid*.
 - Distance measure: L2 norm, L1 norm
- In non-Euclidean:
 - There is no notion of location, and centroid
 - We summarize a collection of points differently
 - Distance measures: Jaccard, Hamming, cosine

Overview: Clustering Strategies (3)

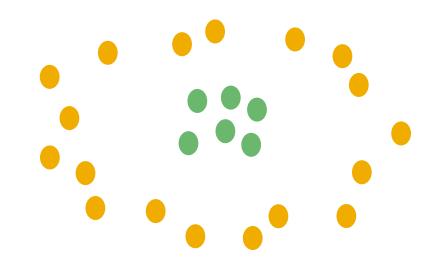
- Does the data fit in memory or does it reside on disk?
 - In-memory clustering is more straightforward
 - Example: K-means
 - Large-data clustering requires loading one batch of data at a time, cluster them in memory and keep summaries of clusters
 - Example: BFR, CURE

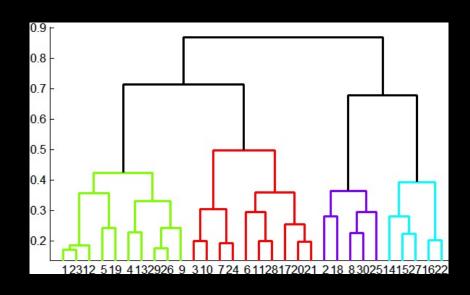
Hierarchical vs point-assignment

 Point assignment good when clusters are nice, convex shapes:



- Hierarchical can win when shapes are weird:
 - Note both clusters have essentially the same centroid.

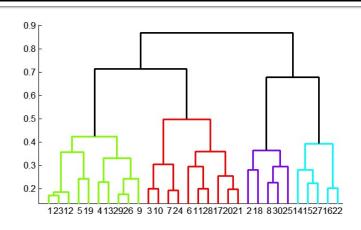




Hierarchical Clustering

Hierarchical Clustering

Key operation:
 Repeatedly merge two "nearest" clusters



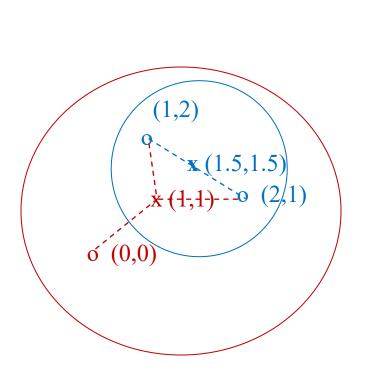
- Three important questions:
 - 1) How to represent a cluster?
 - 2) How to determine the nearness of clusters?
 - **3)** When to stop merging clusters?

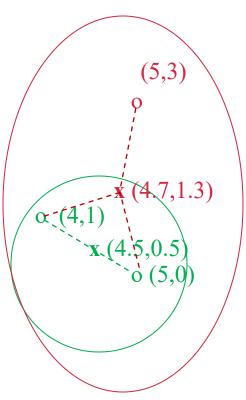
Hierarchical Clustering: Euclidean

In Euclidean case:

- (1) How to represent a cluster of many points?
 - As we merge clusters, we represent the "location" of each cluster by its
 - **centroid** = average of its (data)points
- (2) How to determine the nearness of clusters?
 - Measure cluster distances by distances of centroids
 - Merge two clusters with the shortest distance

Example: Hierarchical clustering

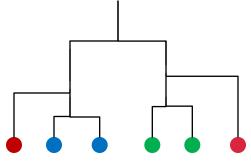




Data:

o ... data point

x ... centroid



Dendrogram

Hierarchical Clustering: Non-Euclidean

In non-Euclidean case:

The only "locations" we can talk about are the points themselves. There are three main approaches:

(1) How to represent a cluster of many points?

- 1. pick a *clustroid* = point "<u>closest</u>" to other points
- 2,3. As the collection of points it is.

(2) How to determine the nearness of clusters?

- 1. Treat clustroid as if it were centroid
- 2. Various distance measures between points of two clusters
- 3. Various cohesion measures of the union of two clusters

Hierarchical Clustering: Non-Euclidean

Approach 1:

(1) How to represent a cluster:

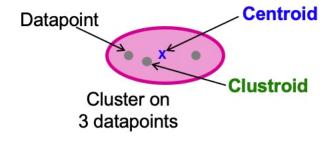
- pick a clustroid = (data)point "closest" to other points
 Possible meanings of "closest":
 - Smallest maximum distance to other points
 - Smallest average distance to other points
 - Smallest sum of squares of distances to other points
 - For distance metric d clustroid c of cluster c is $\arg\min_{c} \sum_{x \in C} d(x,c)^2$

(2) How to determine the nearness of clusters?

Treat clustroid as if it were centroid

Centroid vs Clusteroid

- Centroid is the avg. of all (data)points in the cluster.
 - This means centroid is an "artificial" point.
- Clustroid is an existing (data)point that is "closest" to all other points in the cluster.



Hierarchical Clustering: Non-Euclidean

Approach 2:

(1) How to represent a cluster? As the collection of points it is

(2) How to determine the nearness of clusters? Define *inter-cluster distance*:

- Minimum of the distances between any two points, one from each cluster
- Average distance of all pairs of points, one from each cluster

Hierarchical Clustering: Non-Euclidean

Approach 3:

(1) How to represent a cluster? As the collection of points it is

(2) How to determine the nearness of clusters?

Define a notion of *cohesion*, and merge clusters whose *union* is most cohesive

Possible notions of cohesion (the smaller, the more cohesive):

- diameter of the merged cluster = maximum distance between points in the cluster
- average distance between points in the cluster
- Density of the merged cluster = divide by the number of points in the cluster by diameter or avg. distance

When to Stop?

(3) When do we stop merging clusters?

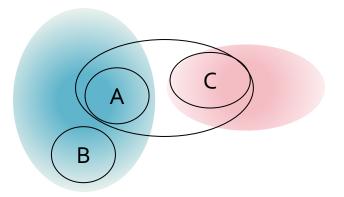
- When some number k of clusters are found (assumes we know the number of clusters)
- When stopping criterion is met
 - Stop if diameter exceeds threshold
 - Stop if density is below some threshold
 - Stop if merging clusters yields a bad cluster
 - E.g., diameter suddenly jumps
- Keep merging until there is only 1 cluster left

Which design choice is the best?

- It really depends on the shape of clusters.
 - Which you may not know in advance.
- Example: we'll compare two approaches:
 - Merge clusters with smallest distance between centroids (or clustroids for non-Euclidean)
 - 2. Merge clusters with the smallest distance between two points, one from each cluster

Case 1: Convex Clusters

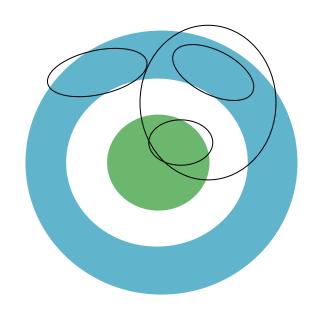
- Centroid-based merging works well.
- But merger based on closest members might accidentally merge incorrectly.

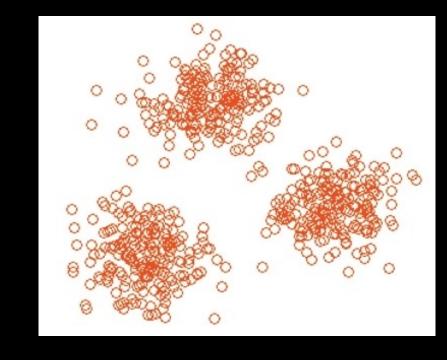


A and B have closer centroids than A and C, but closest points are from A and C.

Case 2: Concentric Clusters

- Linking based on closest members works well
- But Centroid-based linking might cause errors





k-means Clustering

k–means Algorithm(s)

- It is a problem formulation, not an algorithm.
- Problem: Given Euclidean space/distance and k = number of clusters, find cluster centers that minimizes sum of squared distances from each point to its cluster center
- Finding an exact solution is NP-hard.
- The approximate solution is Lloyd's algorithm or the k-means algorithm.

k–means Algorithm(s)

Initialize clusters by picking k centers

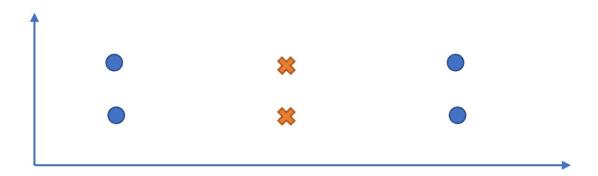
Until convergence:

- 1) For each point, assign it to the cluster whose current centroid is the closest
- 2) After all points are assigned, update the centroids of the k clusters as average of datapoints within each cluster

Convergence means Points don't move between clusters and centroids stabilize

Shortcoming of k-means

Convergence of k-means heavily depends on the initial pick of centroids. It can perform arbitrarily bad.

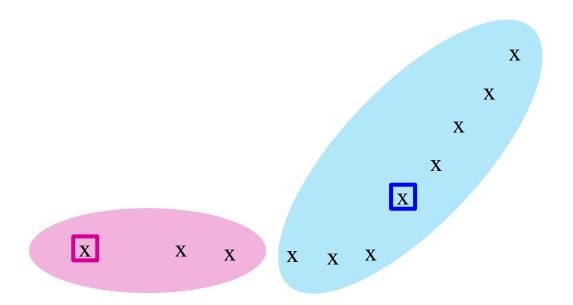


- Different strategies for picking k centers:
 - Pick k datapoints at random
 - K-means ++

k-Means++

- Basic idea: Pick a small sample of points S, cluster them by any algorithm, and use the centroids as a seed
- In **k-means++**, sample size |S| = k times a factor that is logarithmic in the total number of points
- How to pick sample points: Visit points in random order, but the probability of adding a point p to the sample is proportional to $D(p)^2$.
 - D(p) = distance between p and the nearest already picked point.

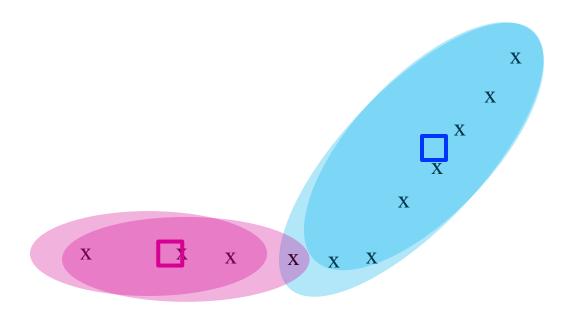
Example: Assigning Clusters



x ... data point ... centroid

Clusters after round 1

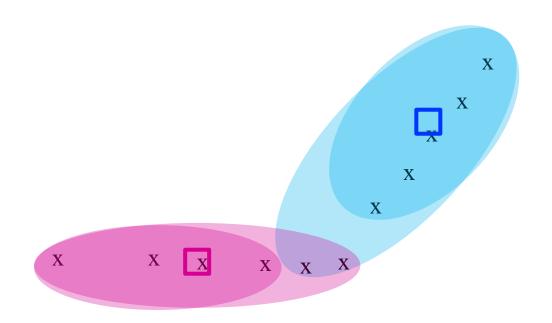
Example: Assigning Clusters



x ... data point ... centroid

Clusters after round 2

Example: Assigning Clusters



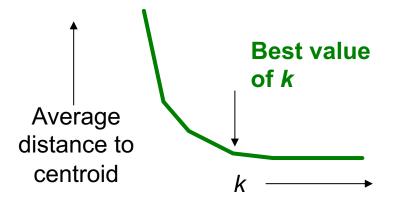
x ... data point ... centroid

Clusters at the end

Getting the k right

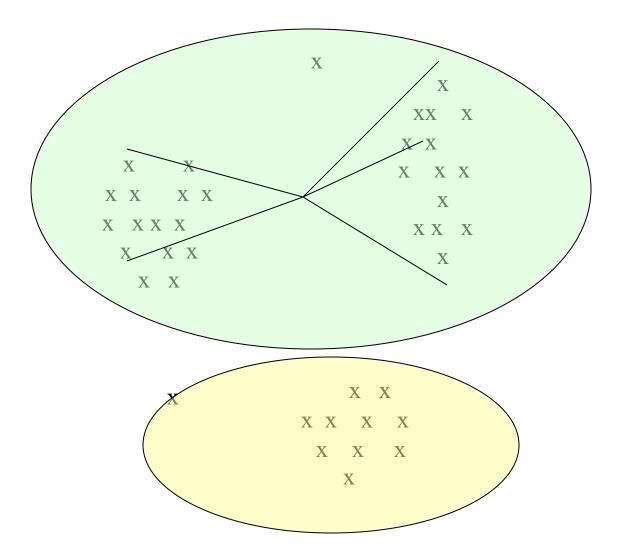
How to select *k*?

- Try different k, looking at the change in the average distance to centroid as k increases
- Average falls rapidly until right k, then changes little



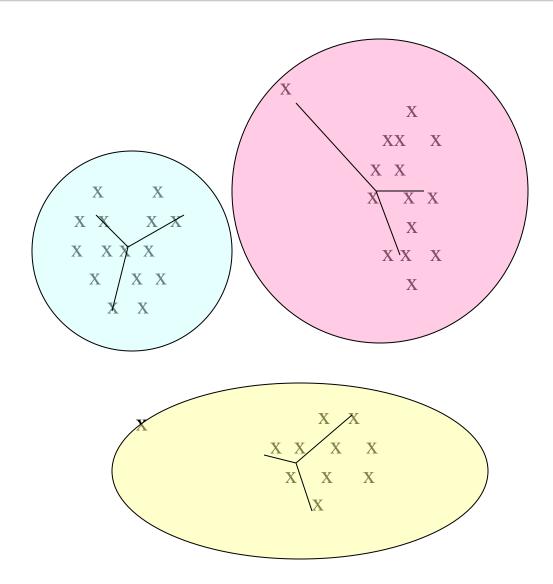
Example: Picking k

Too few; many long distances to centroid



Example: Picking k

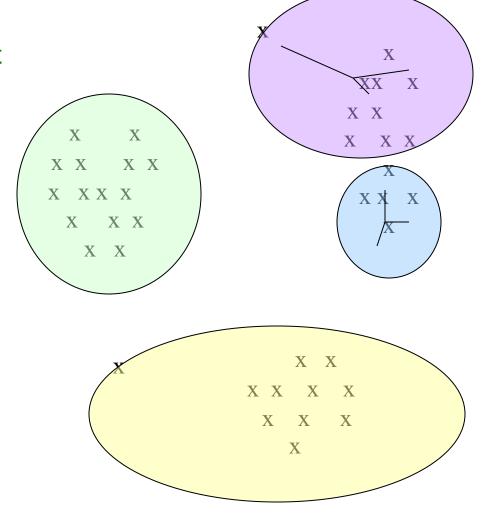
Just right; distances rather short



Example: Picking k

Too many;

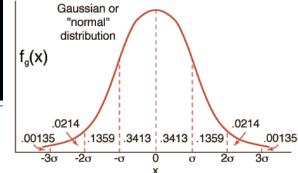
little improvement in average distance



The BFR Algorithm

Extension of k-means to large data

BFR Algorithm



- BFR [Bradley-Fayyad-Reina] is a variant of k-means designed to handle very large (disk-resident) data sets
- Assumes that clusters are normally distributed around a centroid in a Euclidean space
 - Standard deviations in different dimensions may vary
 - Clusters are axis-aligned ellipses
- Goal is to find cluster centroids; point assignment can be done in a second pass through the data.

BFR Overview

- Efficient way to summarize clusters: Want memory required O(clusters) and not O(data)
- IDEA: Rather than keeping points, BFR keeps summary statistics of groups of points
 - 3 sets: Discard set, Compressed set, Retained set
- Overview of the algorithm:
 - **1.** Initialize *K* clusters/centroids
 - 2. Load in a bag of points from disk
 - 3. Assign new points to one of the K original clusters, if they are within some distance threshold of the cluster
 - 4. Cluster the remaining points, and create new clusters
 - 5. Try to merge new clusters from step 4 with any of the existing clusters
 - 6. Repeat steps 2-5 until all points are examined

BFR Algorithm

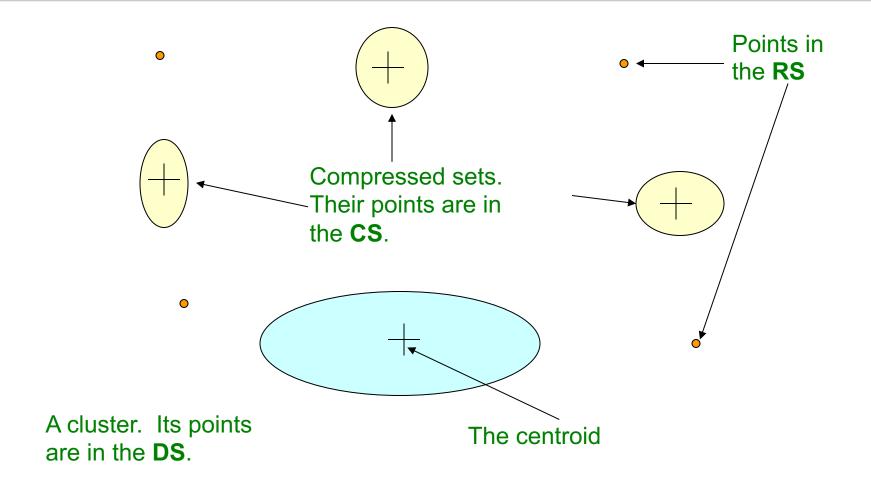
- Points are read from disk one main-memoryfull at a time
- Most points from previous memory loads are summarized by simple statistics
- Step 1) From the initial load we select the initial k centroids by some sensible approach:
 - Take k random points
 - Take a small random sample and cluster optimally
 - Take a sample; pick a random point, and then
 k-1 more points, each as far from the previously selected points as possible

Three Classes of Points

3 sets of points which we keep track of:

- Discard set (DS):
 - Points close enough to a centroid to be summarized
- Compressed set (CS):
 - Groups of points that are close together but not close to any existing centroid
 - These points are summarized, but not assigned to a cluster
- Retained set (RS):
 - Isolated points waiting to be assigned to a compressed set

BFR: "Galaxies" Picture

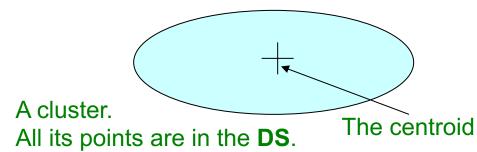


Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points, we store them as they are

Summarizing Sets of Points

For each cluster, the discard set (DS) is summarized by:

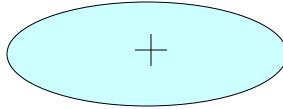
- The number of points, N
- The vector SUM, whose i^{th} component is the sum of the coordinates of the points in the i^{th} dimension
- The vector SUMSQ: i^{th} component = sum of squares of coordinates in i^{th} dimension



Summarizing Points: Comments

- 2d + 1 values represent any size cluster
 - d = number of dimensions
- Average in each dimension (the centroid)
 can be calculated as SUM; / N
 - **SUM**_i = i^{th} component of SUM
- Variance of a cluster's discard set in dimension i is: (SUMSQ_i / N) – (SUM_i / N)²
 - And standard deviation is the square root of that
- Next step: Actual clustering

Note: Dropping the "axis-aligned" clusters assumption would require storing full covariance matrix to summarize the cluster. So, instead of **SUMSQ** being a *d*-dim vector, it would be a *d x d* matrix, which is too big!



The "Memory-Load" of Points

Steps 3-5) Processing "Memory-Load" of points:

- Step 3) Find those points that are "sufficiently close" to a cluster centroid and add those points to that cluster and the DS
 - These points are so close to the centroid that they can be summarized and then discarded
- Step 4) Use any in-memory clustering algorithm to cluster the remaining points and the old RS
 - Clusters go to the CS; outlying points to the RS

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

The "Memory-Load" of Points

Steps 3-5) Processing "Memory-Load" of points:

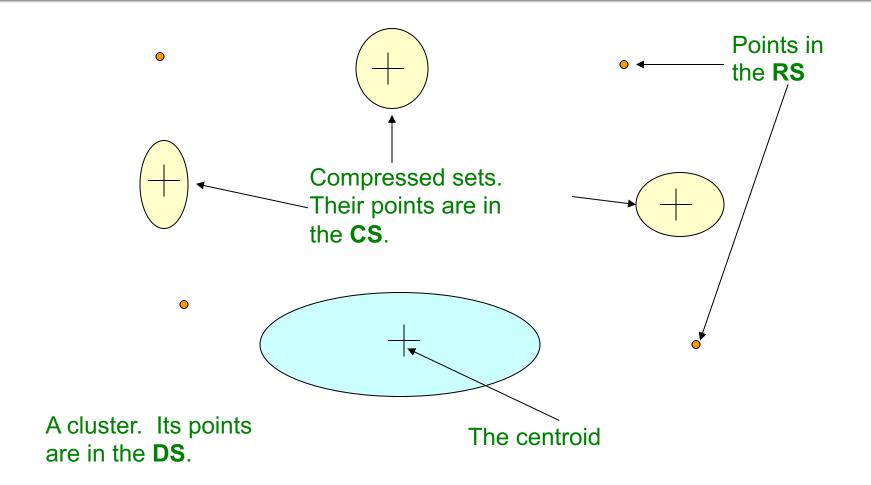
- Step 5) DS set: Adjust statistics of the clusters to account for the new points
 - Add Ns, SUMs, SUMSQs
 - Consider merging compressed sets in the DS

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

Summary: BFR



Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

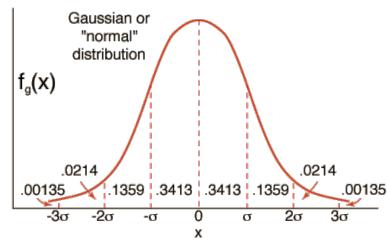
A Few Details...

- Q1) How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- Q2) How do we decide whether two compressed sets (CS) deserve to be combined into one?

How Close is Close Enough?

- Q1) We need a way to decide whether to put a new point into a cluster (and discard)
- BFR suggests two ways:
 - The Mahalanobis distance is less than a threshold
 - High likelihood of the point belonging to

currently nearest centroid



Mahalanobis Distance

Normalized Euclidean distance from centroid

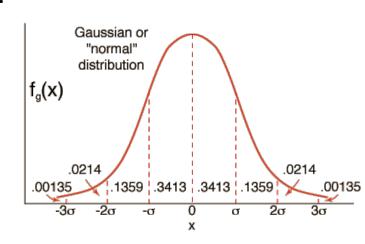
- For a given point $(x_1, ..., x_d)$ and a given centroid $(c_1, ..., c_d)$
 - 1. Normalize in each dimension: $\mathbf{y}_i = (\mathbf{x}_i \mathbf{c}_i) / \sigma_i$
 - 2. Take sum of the squares of the y_i
 - 3. Take the square root

$$d(x,c) = \sqrt{\sum_{i=1}^{d} \left(\frac{x_i - c_i}{\sigma_i}\right)^2}$$

 σ_i ... standard deviation of points in the cluster in the ith dimension

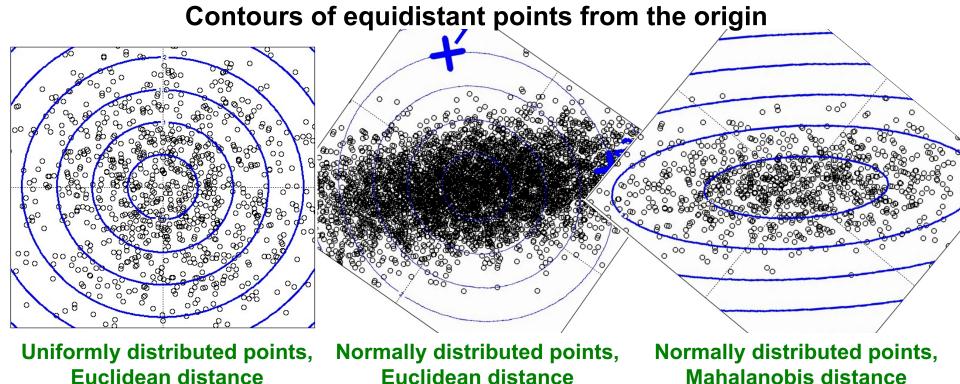
Mahalanobis Distance

- If clusters are normally distributed in d dimensions, then after transformation, one standard deviation = \sqrt{d}
 - i.e., 68% of the points of the cluster will have a Mahalanobis distance $<\sqrt{d}$
- Accept a point for a cluster if its M.D. is < some threshold, e.g. 2 standard deviations



Picture: Equal M.D. Regions

Euclidean vs. Mahalanobis distance



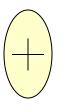
Euclidean distance

Mahalanobis distance

Should 2 CS clusters be combined?

Q2) Should 2 CS clusters be combined?

- Compute the variance of the combined subcluster
 - N, SUM, and SUMSQ allow us to make that calculation quickly
- Combine if the combined variance is below some threshold
- Many alternatives: Treat dimensions differently, consider density



The CURE Algorithm

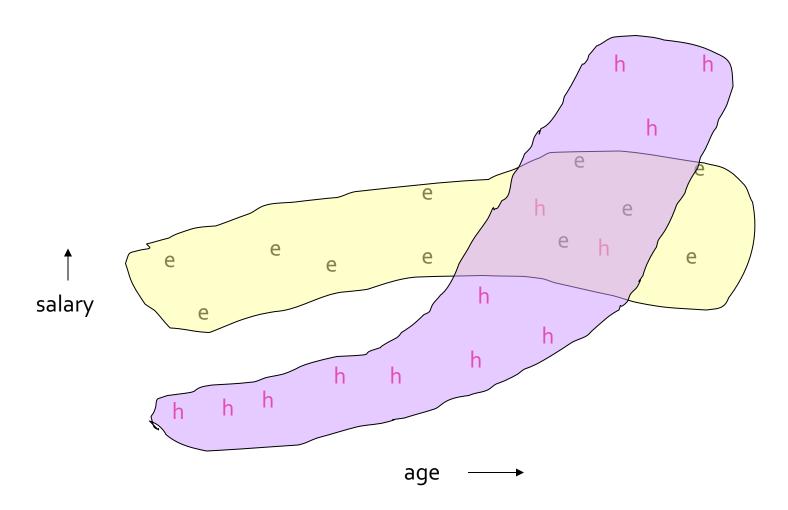
Extension of *k*-means to clusters of arbitrary shapes

CURE Algorithm

CURE (Clustering Using REpresentatives):

- Assumes a Euclidean distance
- No assumption about shape of clusters
 - No need to be normally distributed in each dim
 - No need to have fixed axis
- Instead of centroid, uses a collection of representative points to represent clusters
- Assumes k=number of clusters is given
- In contrast, BFR and k-means assume:
 - clusters are normally distributed in each dimension
 - Axes are fixed ellipses at an angle are not OK

Example: Stanford Salaries

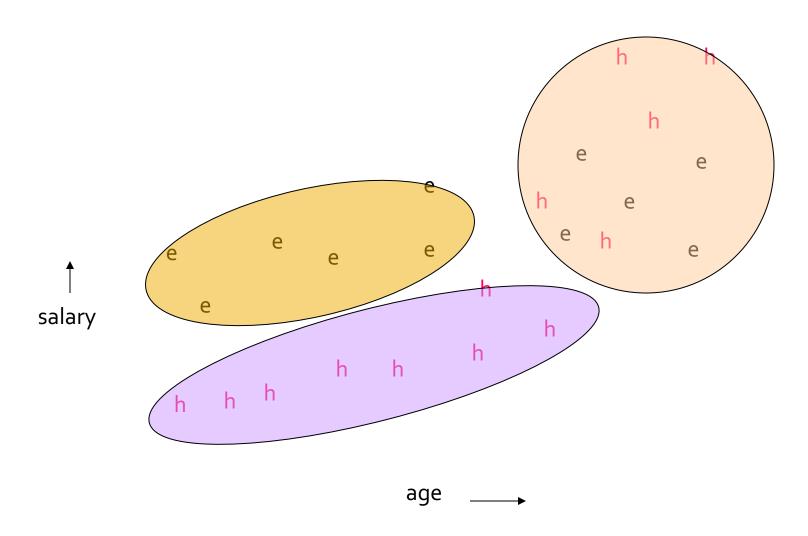


Starting CURE

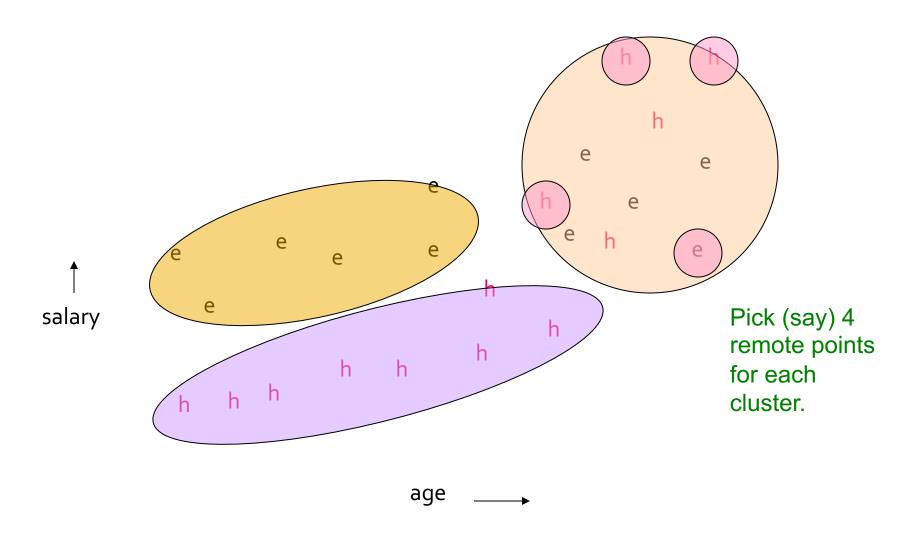
2 Pass algorithm. Pass 1:

- Pick a random sample of data and cluster them in main memory using hierarchical clustering
 - merge two clusters when they have close pair of points
- Pick representative points from each cluster
 - For each cluster, pick a sample of points, as dispersed as possible
 - move representatives a fraction of distance e.g. 20% toward the centroid of the cluster
 - Merge clusters with the closest pair of representatives

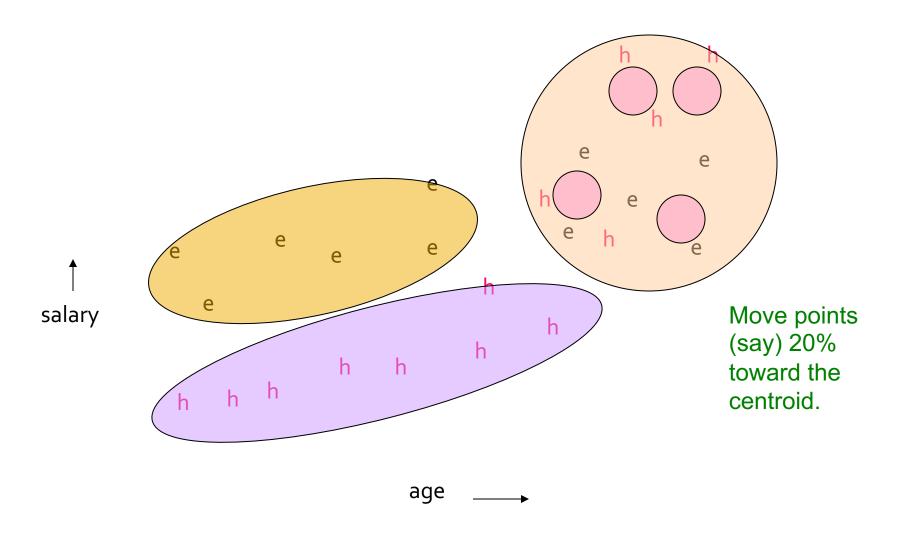
Example: Initial Clusters



Example: Pick Dispersed Points



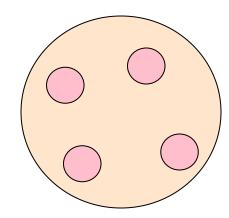
Example: Pick Dispersed Points



Finishing CURE

Pass 2:

 Now, rescan the whole dataset and visit each point p in the data set



- Place it in the "closest cluster"
 - Normal definition of "closest":
 Find the closest representative point to p and assign it to representative's cluster

n

Why the 20% Move Inward?

Intuition:

- If initial sample is large enough, some of the representatives will be on the boundary of clusters
 - Moving them towards centroid, move them inside
- A large, dispersed cluster will have larger moves as opposed to a small, dense cluster
 - Favors a small, dense cluster that is near a larger dispersed cluster

Summary

- Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters
- Algorithms:
 - Agglomerative hierarchical clustering:
 - Centroid and clustroid
 - k-means:
 - Initialization, picking k
 - BFR
 - CURE