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Data contains value and knowledge



 But to extract the knowledge data 
needs to be

▪ Stored (systems)

▪Managed (databases)

▪ And ANALYZED this class

Data Mining ≈ Big Data ≈ 
Predictive Analytics ≈ 

Data Science  ≈ Machine Learning
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 Data mining = extraction of actionable 
information from (usually) very large 
datasets, is the subject of extreme hype, 
fear, and interest

 It’s not all about machine learning
 But most of it is

 Emphasis in CS246 on algorithms that scale

▪ Parallelization often essential

4Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu



 Descriptive methods

▪ Find human-interpretable patterns that 
describe the data

▪ Example: Clustering

 Predictive methods

▪ Use some variables to predict unknown 
or future values of other variables

▪ Example: Recommender systems
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 This combines best of machine learning, 
statistics, artificial intelligence, databases but 
more stress on

▪ Scalability (big data)

▪ Algorithms

▪ Computing architectures

▪ Automation for handling 
large data
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 We will learn to mine different types of data:

▪ Data is high dimensional

▪ Data is a graph

▪ Data is infinite/never-ending

▪ Data is labeled

 We will learn to use different models of 
computation:

▪ MapReduce

▪ Streams and online algorithms

▪ Single machine in-memory
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 We will learn to solve real-world problems:

▪ Recommender systems

▪ Market Basket Analysis

▪ Spam detection

▪ Duplicate document detection

 We will learn various “tools”:

▪ Linear algebra (SVD, Rec. Sys., Communities)

▪ Optimization (stochastic gradient descent)

▪ Dynamic programming (frequent itemsets)

▪ Hashing (LSH, Bloom filters)
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How do you want that data?
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Lectures: Tue/Thu 1:30-3:00pm PST
Live in-person (in NVIDIA classroom), 
recording available on Canvas
 ~70 min lecture:

▪ If you have a clarification question, post it in Ed, 
TAs will answer

 ~20 min Q&A:

▪ Ask questions, Jure will answer and discuss
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 Ed:

▪ Use Ed for all questions and public 
communication
▪ Search the feed before asking a duplicate question

▪ Please tag your posts and please no one-liners

 For e-mailing course staff always use:

▪ cs246-win2122-staff@lists.stanford.edu

 We will post course announcements to 
Ed (hence check it regularly!)
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Auditors are welcome! 
(please send request to Lata Nair <lnairp24@stanford.edu>  to add you to Canvas)
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 High-frequency feedback:

▪ Weekly survey about class morale

▪ Randomly select students to give us feedback

▪ Content

▪ Course setup

▪ Anything the teaching team should know/improve

▪ Anything that is confusing to you

▪ … 
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 Course website: http://cs246.stanford.edu

▪ Lecture slides (at least 30min before the lecture)

▪ Homework, solutions, readings posted on Ed/Canvas

 Class textbook: Mining of Massive Datasets by 
A. Rajaraman, J. Ullman, and J. Leskovec

▪ Sold by Cambridge Uni. Press but available for free 
at http://mmds.org

 MOOC: www.youtube.com /channel/UC_Oao2FYkLAUlUVkBfze4jg/videos
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 Office hours:

▪ See course website http://cs246.stanford.edu for 
TA office hours

▪ We start Office Hours this Friday!

▪ Office hours will be held on Zoom and use 
QueueStatus

▪ Links will be posted on Ed and Canvas

▪ We will hold special group office hours, homework 
review office hours as well as one-on-one office hours
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 Videos and materials on Canvas
 Spark tutorial:

▪ Video

▪ Follows Colab 0

 Review of basic probability and proof 
techniques:

▪ Video and handout

 Review of linear algebra:

▪ Video and handout
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 4 longer homeworks: 40%
▪ Four major assignments, involving programming, proofs, 

algorithm development.

▪ Assignments take lots of time (+20h). Start early!!
 How to submit?
▪ Homework write-up:
▪ Submit via Gradescope

▪ Enroll to CS246 on Canvas, and you will be automatically added to 
the course Gradescope

▪ Homework code:
▪ If the homework requires a code submission, you will find a 

separate assignment for it on Gradescope, e.g., HW1 (Code)

▪ Forgetting to submit code will result in point deduction.
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 Homework schedule:

▪ Two late periods for HWs for the quarter:

▪ Late period expires on the following Monday 23:59 PST

▪ Can use max 1 late period per HW

Date (23:59 PT) Out In

01/06, Thu HW1

01/20, Thu HW2 HW1

02/03, Thu HW3 HW2

02/17, Thu HW4 HW3

03/03, Thu HW4
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 Short weekly Colab notebooks: 30%

▪ Colab notebooks are posted every Thursday

▪ 10 in total, from 0 to 9, each worth 3%

▪ Due one week later on Thursday 23:59 PST. No late days!

▪ First 2 Colabs will be posted on Thu, including detailed 
submission instructions to Gradescope

▪ Colab 0 (Spark Tutorial) is solved step-by-step in the Spark 
Recitation video.

▪ Colabs require around 1hr of work.

▪ And a few lines of code.

▪ “Colab” is a free cloud service from Google, hosting Jupyter
notebooks with free access to GPU and TPU
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 Final exam: 30%
▪ Exact format will be announced later.

▪ Most likely we will do a take-home 3h exam which 
you will be able to take at any time during a 24h 
time window.

 Extra credit: Proportional to your contribution 
(up to 2%)
▪ Course attendance, asking questions, discussion

▪ For participating in Ed discussions
▪ Especially valuable are answers to questions posed by 

other students

▪ Reporting bugs in course materials
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 Programming:  Python or Java
 Basic Algorithms: CS161 is surely sufficient
 Probability: e.g., CS109 or Stats116

▪ There will be a review session and a review doc is 
linked from the class home page

 Linear algebra:

▪ Another review doc + review session is available

 Multivariable calculus
 Database systems (SQL, relational algebra):

▪ CS145 is sufficient but not necessary
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 Each of the topics listed is important for a 
part of the course:

▪ If you are missing an item of background, you 
could consider just-in-time learning of the needed 
material.

 The exception is programming:

▪ To do well in this course, you really need to be 
comfortable with writing code in Python or Java.
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 We’ll follow the standard CS Dept. approach: 
You can get help, but you MUST acknowledge 
the help on the work you hand in

 Failure to acknowledge your sources is a 
violation of the Honor Code

 We use MOSS to check the originality of your 
code
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 You can talk to others about the algorithm(s) to 
be used to solve a homework problem;

▪ As long as you then mention their name(s) on the 
work you submit.

 You should not use code of others or be looking 
at code of others when you write your own:

▪ (don’t search/post code on Github, and similar)

▪ You can talk to people but have to write your own 
solution/code

▪ If you fail to mention your sources, MOSS will catch it, 
which will result in an HC violation.
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 CS246 is fast paced!

▪ Requires programming maturity

▪ Strong math skills

▪ SCPD students tend to be rusty on math/theory

 Course time commitment:

▪ Homeworks take +20h

▪ Colab notebooks take about 1h

 Form study groups

 It’s going to be fun and hard work. ☺
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 Large-scale computing for data mining 
problems on commodity hardware

 Challenges:

▪ How do you distribute computation?

▪ How can we make it easy to write distributed 
programs?

▪ Machines fail:

▪ One server may stay up 3 years (1,000 days)

▪ If you have 1,000 servers, expect to lose 1/day

▪ With 1M machines 1,000 machines fail every day!
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 Issue:
Copying data over a network takes time

 Idea:

▪ Bring computation to data

▪ Store files multiple times for reliability

 Spark/Hadoop address these problems

▪ Storage Infrastructure – File system

▪ Google: GFS. Hadoop: HDFS

▪ Programming model

▪ MapReduce

▪ Spark
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 Problem:

▪ If nodes fail, how to store data persistently? 
 Answer:

▪ Distributed File System

▪ Provides global file namespace
 Typical usage pattern:

▪ Huge files (100s of GB to TB)

▪ Data is rarely updated in place

▪ Reads and appends are common
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 Chunk servers
▪ File is split into contiguous chunks
▪ Typically each chunk is 16-64MB
▪ Each chunk replicated (usually 2x or 3x)
▪ Try to keep replicas in different racks

 Master node
▪ a.k.a. Name Node in Hadoop’s HDFS
▪ Stores metadata about where files are stored
▪ Master nodes are typically more robust to hardware 

failure and run critical cluster services.
 Client library for file access
▪ Talks to master to find chunk servers 
▪ Connects directly to chunk servers to access data
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 Reliable distributed file system
 Data kept in “chunks” spread across machines
 Each chunk replicated on different machines 

▪ Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0
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Chunk servers also serve as compute servers

Notation: C2… chunk no. 2 of file C





 MapReduce is a style of programming
designed for:
1. Easy parallel programming

2. Invisible management of hardware and software 
failures

3. Easy management of very-large-scale data

 It has several implementations, including 
Hadoop, Spark (used in this class), Flink, and 
the original Google implementation just called 
“MapReduce”
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3 steps of MapReduce
 Map:
▪ Apply a user-written Map function to each input element
▪ Mapper applies the Map function to a single element
▪ Many mappers grouped in a Map task (the unit of parallelism)

▪ The output of the Map function is a set of 0, 1, or more 
key-value pairs.

 Group by key: Sort and shuffle
▪ System sorts all the key-value pairs by key, and

outputs key-(list of values) pairs
 Reduce:
▪ User-written Reduce function is applied to each 

key-(list of values)

Outline stays the same, Map and Reduce change to fit the problem
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Example MapReduce task:
 We have a huge text document
 Count the number of times each 

distinct word appears in the file

 Many applications of this:

▪ Analyze web server logs to find popular URLs

▪ Statistical machine translation:

▪ Need to count number of times every 5-word sequence 
occurs in a large corpus of documents
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The crew of the space

shuttle Endeavor recently

returned to Earth as
ambassadors, harbingers of

a new era of space
exploration. Scientists at

NASA are saying that the

recent assembly of the
Dextre bot is the first step in

a long-term space-based
man/mache partnership.

'"The work we're doing now

-- the robotics we're doing -
- is what we're going to

need……………………..
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map(key, value):

# key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):

# key: a word; value: an iterator over counts

result = 0

for each count v in values:

result += v

emit(key, result)
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MAP:
Read input and 

produces a set of 
key-value pairs

Group by key:
Collect all pairs with 

same key
(Hash merge, Shuffle, 

Sort, Partition)

Reduce:
Collect all values 
belonging to the 
key and output
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All phases are distributed with many tasks doing the work



MapReduce environment takes care of:
 Partitioning the input data
 Scheduling the program’s execution across a 

set of machines
 Performing the group by key step

▪ In practice this is is the bottleneck
 Handling machine failures
 Managing required inter-machine communication
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 Map worker failure

▪ Map tasks completed or in-progress at 
worker are reset to idle and rescheduled

▪ Reduce workers are notified when map task is 
rescheduled on another worker

 Reduce worker failure

▪ Only in-progress tasks are reset to idle and the 
reduce task is restarted
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 MapReduce:

▪ Incurs substantial overheads due to data 
replication, disk I/O, and serialization
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 Two major limitations of MapReduce:  
▪ Difficulty of programming directly in MapReduce 
▪ Many problems aren’t easily described as map-reduce

▪ Performance bottlenecks, or batch not fitting the 
use cases 
▪ Persistence to disk typically slower than in-memory work

 In short, MapReduce doesn’t compose well 
for large applications
▪ Many times, one needs to chain multiple map-

reduce steps.
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 MapReduce uses two “ranks” of tasks:
One for Map the second for Reduce

▪ Data flows from the first rank to the second

 Data-Flow Systems generalize this in two ways:

1. Allow any number of tasks/ranks

2. Allow functions other than Map and Reduce

▪ As long as data flow is in one direction only, we can 
have the blocking property and allow recovery of 
tasks rather than whole jobs
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 Expressive computing system, not limited to 
the map-reduce model

 Additions to MapReduce model: 

▪ Fast data sharing 

▪ Avoids saving intermediate results to disk

▪ Caches data for repetitive queries (e.g. for machine learning)

▪ General execution graphs (DAGs)

▪ Richer functions than just map and reduce

 Compatible with Hadoop
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 Open source software (Apache Foundation)
 Supports Java, Scala and Python

 Key construct/idea: Resilient Distributed Dataset 
(RDD)

 Higher-level APIs: DataFrames & DataSets

▪ Introduced in more recent versions of Spark

▪ Different APIs for aggregate data, which allowed to 
introduce SQL support
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Key concept Resilient Distributed Dataset (RDD)
▪ Partitioned collection of records
▪ Generalizes (key-value) pairs

 Spread across the cluster, Read-only
 Caching dataset in memory
▪ Different storage levels available

▪ Fallback to disk possible

 RDDs can be created from Hadoop, or by 
transforming other RDDs (you can stack RDDs)

 RDDs are best suited for applications that 
apply the same operation to all elements of a 
dataset
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 Transformations build RDDs through 
deterministic operations on other RDDs:

▪ Transformations include map, filter, join, union, 
intersection, distinct

▪ Lazy evaluation: Nothing computed until an action 
requires it

 Actions to return value or export data

▪ Actions include count, collect, reduce, save

▪ Actions can be applied to RDDs; actions force 
calculations and return values
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join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

= cached partition

= RDD

map

 Supports general task graphs
 Pipelines functions where possible
 Cache-aware data reuse & locality
 Partitioning-aware to avoid shuffles
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 DataFrame:
▪ Unlike an RDD, data organized into named 

columns, e.g. a table in a relational database.

▪ Imposes a structure onto a distributed collection 
of data, allowing higher-level abstraction

 Dataset:
▪ Extension of DataFrame API which provides type-

safe, object-oriented programming interface 
(compile-time error detection)

Both built on Spark SQL engine. Both can be 
converted back to an RDD.
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 Spark SQL

 Spark Streaming – stream processing of live 
datastreams

 MLlib – scalable machine learning
 GraphX – graph manipulation

▪ Extends Spark RDD with Graph abstraction: a 
directed multigraph with properties attached to 
each vertex and edge
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 Performance: Spark normally faster but with caveats

▪ Spark can process data in-memory; Hadoop MapReduce 
persists back to the disk after a map or reduce action

▪ Spark generally outperforms MapReduce, but it often 
needs lots of memory to perform well; if there are 
other resource-demanding services or can’t fit in 
memory, Spark degrades

▪ MapReduce easily runs alongside other services with 
minor performance differences, & works well with the 
1-pass jobs it was designed for

 Ease of use: Spark is easier to program (higher-level APIs)

 Data processing: Spark more general
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 Suppose we have a large web corpus
 Look at the metadata file

▪ Lines of the form: (URL, size, date, …)
 For each host, find the total number of bytes

▪ That is, the sum of the page sizes for all URLs from 
that particular host

 Other examples: 

▪ Link analysis and graph processing

▪ Machine Learning algorithms
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 Statistical machine translation:

▪ Need to count number of times every 5-word 
sequence occurs in a large corpus of documents

 Very easy with MapReduce:

▪ Map:

▪ Extract (5-word sequence, count) from document

▪ Reduce: 

▪ Combine the counts
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 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)
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A B

a1 b1

a2 b1

a3 b2

a4 b3

B C

b2 c1

b2 c2

b3 c3

⋈
A C

a3 c1

a3 c2

a4 c3

=

R

S



 Use a hash function h from B-values to 1...k
 A Map process turns:

▪ Each input tuple R(a,b) into key-value pair (b,(a,R))

▪ Each input tuple S(b,c) into (b,(c,S))

 Map processes send each key-value pair with 
key b to Reduce process h(b)

▪ Hadoop does this automatically; just tell it what k is.

 Each Reduce process matches all the pairs 
(b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).
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 MapReduce is great for: 

▪ Problems that require sequential data access

▪ Large batch jobs (not interactive, real-time)

 MapReduce is inefficient for problems where 
random (or irregular) access to data required:

▪ Graphs

▪ Interdependent data 

▪ Machine learning

▪ Comparisons of many pairs of items
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 In MapReduce we quantify the cost of an 
algorithm using 

1. Communication cost = total I/O of all 
processes

2. Elapsed communication cost = max of I/O 
along any path

3. (Elapsed) computation cost analogous, but 
count only running time of processes

Note that here the big-O notation is not the most useful 

(adding more machines is always an option)
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 For a map-reduce algorithm:

▪ Communication cost = input file size + 2  (sum of 
the sizes of all files passed from Map processes to 
Reduce processes) + the sum of the output sizes of 
the Reduce processes.

▪ Elapsed communication cost is the sum of the 
largest input + output for any map process, plus 
the same for any reduce process
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 Either the I/O (communication) or processing 
(computation) cost dominates

▪ Ignore one or the other

 Total cost tells what you pay in rent from 
your friendly neighborhood cloud

 Elapsed cost is wall-clock time using 
parallelism
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 Total communication cost
= O(|R|+|S|+|R ⋈ S|)

 Elapsed communication cost = O(s)
▪ We’re going to pick k and the number of Map 

processes so that the I/O limit s is respected

▪ We put a limit s on the amount of input or output 
that any one process can have. s could be:
▪ What fits in main memory

▪ What fits on local disk

 With proper indexes, computation cost is 
linear in the input + output size
▪ So, computation cost is like communication cost
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