
CS246: Mining Massive Data Sets
Jure Leskovec, Stanford University

Mina Gashami, Amazon

http://cs246.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to
modify them to fit your own needs. If you make use of a significant portion of these slides
in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

http://www.mmds.org/

2Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Data contains value and knowledge

 But to extract the knowledge data
needs to be

▪ Stored (systems)

▪Managed (databases)

▪ And ANALYZED this class

Data Mining ≈ Big Data ≈
Predictive Analytics ≈

Data Science ≈ Machine Learning
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 3

 Data mining = extraction of actionable
information from (usually) very large
datasets, is the subject of extreme hype,
fear, and interest

 It’s not all about machine learning
 But most of it is

 Emphasis in CS246 on algorithms that scale

▪ Parallelization often essential

4Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Descriptive methods

▪ Find human-interpretable patterns that
describe the data

▪ Example: Clustering

 Predictive methods

▪ Use some variables to predict unknown
or future values of other variables

▪ Example: Recommender systems

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 5

 This combines best of machine learning,
statistics, artificial intelligence, databases but
more stress on

▪ Scalability (big data)

▪ Algorithms

▪ Computing architectures

▪ Automation for handling
large data

6Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Machine

Learning

Theory,
Algorithms

Data Mining

Database
systems

 We will learn to mine different types of data:

▪ Data is high dimensional

▪ Data is a graph

▪ Data is infinite/never-ending

▪ Data is labeled

 We will learn to use different models of
computation:

▪ MapReduce

▪ Streams and online algorithms

▪ Single machine in-memory

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 7

 We will learn to solve real-world problems:

▪ Recommender systems

▪ Market Basket Analysis

▪ Spam detection

▪ Duplicate document detection

 We will learn various “tools”:

▪ Linear algebra (SVD, Rec. Sys., Communities)

▪ Optimization (stochastic gradient descent)

▪ Dynamic programming (frequent itemsets)

▪ Hashing (LSH, Bloom filters)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 8

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

PageRank,
SimRank

Graph
Neural

Networks

Spam
Detection

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning

Learning
Embeddings

Decision
Trees

Experiment
ation

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 9

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 10

How do you want that data?

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 12

Lectures: Tue/Thu 1:30-3:00pm PST
Live in-person (in NVIDIA classroom),
recording available on Canvas
 ~70 min lecture:

▪ If you have a clarification question, post it in Ed,
TAs will answer

 ~20 min Q&A:

▪ Ask questions, Jure will answer and discuss

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 13

 Ed:

▪ Use Ed for all questions and public
communication
▪ Search the feed before asking a duplicate question

▪ Please tag your posts and please no one-liners

 For e-mailing course staff always use:

▪ cs246-win2122-staff@lists.stanford.edu

 We will post course announcements to
Ed (hence check it regularly!)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 14

Auditors are welcome!
(please send request to Lata Nair <lnairp24@stanford.edu> to add you to Canvas)

mailto:cs246-win2122-staff@lists.stanford.edu
mailto:lnairp24@stanford.edu

 High-frequency feedback:

▪ Weekly survey about class morale

▪ Randomly select students to give us feedback

▪ Content

▪ Course setup

▪ Anything the teaching team should know/improve

▪ Anything that is confusing to you

▪ …

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 15

 Course website: http://cs246.stanford.edu

▪ Lecture slides (at least 30min before the lecture)

▪ Homework, solutions, readings posted on Ed/Canvas

 Class textbook: Mining of Massive Datasets by
A. Rajaraman, J. Ullman, and J. Leskovec

▪ Sold by Cambridge Uni. Press but available for free
at http://mmds.org

 MOOC: www.youtube.com /channel/UC_Oao2FYkLAUlUVkBfze4jg/videos

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 16

http://cs246.stanford.edu/
http://mmds.org/

 Office hours:

▪ See course website http://cs246.stanford.edu for
TA office hours

▪ We start Office Hours this Friday!

▪ Office hours will be held on Zoom and use
QueueStatus

▪ Links will be posted on Ed and Canvas

▪ We will hold special group office hours, homework
review office hours as well as one-on-one office hours

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 17

http://cs246.stanford.edu/
https://queuestatus.com/queues/1773

 Videos and materials on Canvas
 Spark tutorial:

▪ Video

▪ Follows Colab 0

 Review of basic probability and proof
techniques:

▪ Video and handout

 Review of linear algebra:

▪ Video and handout

18Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

https://stanford-pilot.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=463177ba-82be-451c-97ff-ae130189eb2a
https://stanford-pilot.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=a94e8505-a2d3-48b8-852b-ae130189ea8b&query=cs246
https://web.stanford.edu/class/cs246/handouts/CS246_Proof_Probability.pdf
https://stanford-pilot.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=a94e8505-a2d3-48b8-852b-ae130189ea8b&query=cs246
https://web.stanford.edu/class/cs246/handouts/CS246_LinAlg_review.pdf

 4 longer homeworks: 40%
▪ Four major assignments, involving programming, proofs,

algorithm development.

▪ Assignments take lots of time (+20h). Start early!!
 How to submit?
▪ Homework write-up:
▪ Submit via Gradescope

▪ Enroll to CS246 on Canvas, and you will be automatically added to
the course Gradescope

▪ Homework code:
▪ If the homework requires a code submission, you will find a

separate assignment for it on Gradescope, e.g., HW1 (Code)

▪ Forgetting to submit code will result in point deduction.

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 19

http://www.gradescope.com/

 Homework schedule:

▪ Two late periods for HWs for the quarter:

▪ Late period expires on the following Monday 23:59 PST

▪ Can use max 1 late period per HW

Date (23:59 PT) Out In

01/06, Thu HW1

01/20, Thu HW2 HW1

02/03, Thu HW3 HW2

02/17, Thu HW4 HW3

03/03, Thu HW4

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 20

 Short weekly Colab notebooks: 30%

▪ Colab notebooks are posted every Thursday

▪ 10 in total, from 0 to 9, each worth 3%

▪ Due one week later on Thursday 23:59 PST. No late days!

▪ First 2 Colabs will be posted on Thu, including detailed
submission instructions to Gradescope

▪ Colab 0 (Spark Tutorial) is solved step-by-step in the Spark
Recitation video.

▪ Colabs require around 1hr of work.

▪ And a few lines of code.

▪ “Colab” is a free cloud service from Google, hosting Jupyter
notebooks with free access to GPU and TPU

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 21

https://stanford-pilot.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=463177ba-82be-451c-97ff-ae130189eb2a

 Final exam: 30%
▪ Exact format will be announced later.

▪ Most likely we will do a take-home 3h exam which
you will be able to take at any time during a 24h
time window.

 Extra credit: Proportional to your contribution
(up to 2%)
▪ Course attendance, asking questions, discussion

▪ For participating in Ed discussions
▪ Especially valuable are answers to questions posed by

other students

▪ Reporting bugs in course materials
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 22

 Programming: Python or Java
 Basic Algorithms: CS161 is surely sufficient
 Probability: e.g., CS109 or Stats116

▪ There will be a review session and a review doc is
linked from the class home page

 Linear algebra:

▪ Another review doc + review session is available

 Multivariable calculus
 Database systems (SQL, relational algebra):

▪ CS145 is sufficient but not necessary

23Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Each of the topics listed is important for a
part of the course:

▪ If you are missing an item of background, you
could consider just-in-time learning of the needed
material.

 The exception is programming:

▪ To do well in this course, you really need to be
comfortable with writing code in Python or Java.

24Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 We’ll follow the standard CS Dept. approach:
You can get help, but you MUST acknowledge
the help on the work you hand in

 Failure to acknowledge your sources is a
violation of the Honor Code

 We use MOSS to check the originality of your
code

25Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 You can talk to others about the algorithm(s) to
be used to solve a homework problem;

▪ As long as you then mention their name(s) on the
work you submit.

 You should not use code of others or be looking
at code of others when you write your own:

▪ (don’t search/post code on Github, and similar)

▪ You can talk to people but have to write your own
solution/code

▪ If you fail to mention your sources, MOSS will catch it,
which will result in an HC violation.

26Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 CS246 is fast paced!

▪ Requires programming maturity

▪ Strong math skills

▪ SCPD students tend to be rusty on math/theory

 Course time commitment:

▪ Homeworks take +20h

▪ Colab notebooks take about 1h

 Form study groups

 It’s going to be fun and hard work. ☺

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 28

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 30

 Large-scale computing for data mining
problems on commodity hardware

 Challenges:

▪ How do you distribute computation?

▪ How can we make it easy to write distributed
programs?

▪ Machines fail:

▪ One server may stay up 3 years (1,000 days)

▪ If you have 1,000 servers, expect to lose 1/day

▪ With 1M machines 1,000 machines fail every day!

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 31

 Issue:
Copying data over a network takes time

 Idea:

▪ Bring computation to data

▪ Store files multiple times for reliability

 Spark/Hadoop address these problems

▪ Storage Infrastructure – File system

▪ Google: GFS. Hadoop: HDFS

▪ Programming model

▪ MapReduce

▪ Spark
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 32

 Problem:

▪ If nodes fail, how to store data persistently?
 Answer:

▪ Distributed File System

▪ Provides global file namespace
 Typical usage pattern:

▪ Huge files (100s of GB to TB)

▪ Data is rarely updated in place

▪ Reads and appends are common

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 33

 Chunk servers
▪ File is split into contiguous chunks
▪ Typically each chunk is 16-64MB
▪ Each chunk replicated (usually 2x or 3x)
▪ Try to keep replicas in different racks

 Master node
▪ a.k.a. Name Node in Hadoop’s HDFS
▪ Stores metadata about where files are stored
▪ Master nodes are typically more robust to hardware

failure and run critical cluster services.
 Client library for file access
▪ Talks to master to find chunk servers
▪ Connects directly to chunk servers to access data

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 34

 Reliable distributed file system
 Data kept in “chunks” spread across machines
 Each chunk replicated on different machines

▪ Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 35

Chunk servers also serve as compute servers

Notation: C2… chunk no. 2 of file C

 MapReduce is a style of programming
designed for:
1. Easy parallel programming

2. Invisible management of hardware and software
failures

3. Easy management of very-large-scale data

 It has several implementations, including
Hadoop, Spark (used in this class), Flink, and
the original Google implementation just called
“MapReduce”

37Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

3 steps of MapReduce
 Map:
▪ Apply a user-written Map function to each input element
▪ Mapper applies the Map function to a single element
▪ Many mappers grouped in a Map task (the unit of parallelism)

▪ The output of the Map function is a set of 0, 1, or more
key-value pairs.

 Group by key: Sort and shuffle
▪ System sorts all the key-value pairs by key, and

outputs key-(list of values) pairs
 Reduce:
▪ User-written Reduce function is applied to each

key-(list of values)

Outline stays the same, Map and Reduce change to fit the problem
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 38

39

Mappers Reducers

Input Output

key-value
pairs

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Example MapReduce task:
 We have a huge text document
 Count the number of times each

distinct word appears in the file

 Many applications of this:

▪ Analyze web server logs to find popular URLs

▪ Statistical machine translation:

▪ Need to count number of times every 5-word sequence
occurs in a large corpus of documents

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 40

The crew of the space

shuttle Endeavor recently

returned to Earth as
ambassadors, harbingers of

a new era of space
exploration. Scientists at

NASA are saying that the

recent assembly of the
Dextre bot is the first step in

a long-term space-based
man/mache partnership.

'"The work we're doing now

-- the robotics we're doing -
- is what we're going to

need……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)

(space, 1)
(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)

(recently, 1)
…

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs
with same key

Reduce:
Collect all values
belonging to the
key and output

(key, value)

Provided by the

programmer

Provided by the

programmer

(key, value)(key, value)

S
eq

ue
n

ti
al

ly
 re

ad
 th

e
d

at
a

O
n

ly

se
q

ue
n

ti
al

 r

ea
d

s

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 41

map(key, value):

key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):

key: a word; value: an iterator over counts

result = 0

for each count v in values:

result += v

emit(key, result)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 42

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 43

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs with

same key
(Hash merge, Shuffle,

Sort, Partition)

Reduce:
Collect all values
belonging to the
key and output

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 44

All phases are distributed with many tasks doing the work

MapReduce environment takes care of:
 Partitioning the input data
 Scheduling the program’s execution across a

set of machines
 Performing the group by key step

▪ In practice this is is the bottleneck
 Handling machine failures
 Managing required inter-machine communication

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 45

 Map worker failure

▪ Map tasks completed or in-progress at
worker are reset to idle and rescheduled

▪ Reduce workers are notified when map task is
rescheduled on another worker

 Reduce worker failure

▪ Only in-progress tasks are reset to idle and the
reduce task is restarted

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 46

 MapReduce:

▪ Incurs substantial overheads due to data
replication, disk I/O, and serialization

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 48

 Two major limitations of MapReduce:
▪ Difficulty of programming directly in MapReduce
▪ Many problems aren’t easily described as map-reduce

▪ Performance bottlenecks, or batch not fitting the
use cases
▪ Persistence to disk typically slower than in-memory work

 In short, MapReduce doesn’t compose well
for large applications
▪ Many times, one needs to chain multiple map-

reduce steps.

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 49

 MapReduce uses two “ranks” of tasks:
One for Map the second for Reduce

▪ Data flows from the first rank to the second

 Data-Flow Systems generalize this in two ways:

1. Allow any number of tasks/ranks

2. Allow functions other than Map and Reduce

▪ As long as data flow is in one direction only, we can
have the blocking property and allow recovery of
tasks rather than whole jobs

50Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 51

 Expressive computing system, not limited to
the map-reduce model

 Additions to MapReduce model:

▪ Fast data sharing

▪ Avoids saving intermediate results to disk

▪ Caches data for repetitive queries (e.g. for machine learning)

▪ General execution graphs (DAGs)

▪ Richer functions than just map and reduce

 Compatible with Hadoop

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 52

 Open source software (Apache Foundation)
 Supports Java, Scala and Python

 Key construct/idea: Resilient Distributed Dataset
(RDD)

 Higher-level APIs: DataFrames & DataSets

▪ Introduced in more recent versions of Spark

▪ Different APIs for aggregate data, which allowed to
introduce SQL support

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 53

Key concept Resilient Distributed Dataset (RDD)
▪ Partitioned collection of records
▪ Generalizes (key-value) pairs

 Spread across the cluster, Read-only
 Caching dataset in memory
▪ Different storage levels available

▪ Fallback to disk possible

 RDDs can be created from Hadoop, or by
transforming other RDDs (you can stack RDDs)

 RDDs are best suited for applications that
apply the same operation to all elements of a
dataset

54Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Transformations build RDDs through
deterministic operations on other RDDs:

▪ Transformations include map, filter, join, union,
intersection, distinct

▪ Lazy evaluation: Nothing computed until an action
requires it

 Actions to return value or export data

▪ Actions include count, collect, reduce, save

▪ Actions can be applied to RDDs; actions force
calculations and return values

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 55

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

= cached partition

= RDD

map

 Supports general task graphs
 Pipelines functions where possible
 Cache-aware data reuse & locality
 Partitioning-aware to avoid shuffles

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 56

 DataFrame:
▪ Unlike an RDD, data organized into named

columns, e.g. a table in a relational database.

▪ Imposes a structure onto a distributed collection
of data, allowing higher-level abstraction

 Dataset:
▪ Extension of DataFrame API which provides type-

safe, object-oriented programming interface
(compile-time error detection)

Both built on Spark SQL engine. Both can be
converted back to an RDD.

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 57

 Spark SQL

 Spark Streaming – stream processing of live
datastreams

 MLlib – scalable machine learning
 GraphX – graph manipulation

▪ Extends Spark RDD with Graph abstraction: a
directed multigraph with properties attached to
each vertex and edge

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 58

 Performance: Spark normally faster but with caveats

▪ Spark can process data in-memory; Hadoop MapReduce
persists back to the disk after a map or reduce action

▪ Spark generally outperforms MapReduce, but it often
needs lots of memory to perform well; if there are
other resource-demanding services or can’t fit in
memory, Spark degrades

▪ MapReduce easily runs alongside other services with
minor performance differences, & works well with the
1-pass jobs it was designed for

 Ease of use: Spark is easier to program (higher-level APIs)

 Data processing: Spark more general
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 59

 Suppose we have a large web corpus
 Look at the metadata file

▪ Lines of the form: (URL, size, date, …)
 For each host, find the total number of bytes

▪ That is, the sum of the page sizes for all URLs from
that particular host

 Other examples:

▪ Link analysis and graph processing

▪ Machine Learning algorithms

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 61

 Statistical machine translation:

▪ Need to count number of times every 5-word
sequence occurs in a large corpus of documents

 Very easy with MapReduce:

▪ Map:

▪ Extract (5-word sequence, count) from document

▪ Reduce:

▪ Combine the counts

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 62

 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 63

A B

a1 b1

a2 b1

a3 b2

a4 b3

B C

b2 c1

b2 c2

b3 c3

⋈
A C

a3 c1

a3 c2

a4 c3

=

R

S

 Use a hash function h from B-values to 1...k
 A Map process turns:

▪ Each input tuple R(a,b) into key-value pair (b,(a,R))

▪ Each input tuple S(b,c) into (b,(c,S))

 Map processes send each key-value pair with
key b to Reduce process h(b)

▪ Hadoop does this automatically; just tell it what k is.

 Each Reduce process matches all the pairs
(b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 64

 MapReduce is great for:

▪ Problems that require sequential data access

▪ Large batch jobs (not interactive, real-time)

 MapReduce is inefficient for problems where
random (or irregular) access to data required:

▪ Graphs

▪ Interdependent data

▪ Machine learning

▪ Comparisons of many pairs of items

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 65

 In MapReduce we quantify the cost of an
algorithm using

1. Communication cost = total I/O of all
processes

2. Elapsed communication cost = max of I/O
along any path

3. (Elapsed) computation cost analogous, but
count only running time of processes

Note that here the big-O notation is not the most useful

(adding more machines is always an option)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 66

 For a map-reduce algorithm:

▪ Communication cost = input file size + 2 (sum of
the sizes of all files passed from Map processes to
Reduce processes) + the sum of the output sizes of
the Reduce processes.

▪ Elapsed communication cost is the sum of the
largest input + output for any map process, plus
the same for any reduce process

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 67

 Either the I/O (communication) or processing
(computation) cost dominates

▪ Ignore one or the other

 Total cost tells what you pay in rent from
your friendly neighborhood cloud

 Elapsed cost is wall-clock time using
parallelism

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 68

 Total communication cost
= O(|R|+|S|+|R ⋈ S|)

 Elapsed communication cost = O(s)
▪ We’re going to pick k and the number of Map

processes so that the I/O limit s is respected

▪ We put a limit s on the amount of input or output
that any one process can have. s could be:
▪ What fits in main memory

▪ What fits on local disk

 With proper indexes, computation cost is
linear in the input + output size
▪ So, computation cost is like communication cost

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 69

