CS246: Mining Massive Data Sets Winter 2019

Problem Set 3

Please read the homework submission policies at http://cs246.stanford.edu.

1 Dead ends in PageRank computations (25 points)

Let the matriz of the Web M be an n-by-n matrix, where n is the number of Web pages.
The entry m;; in row ¢ and column j is 0, unless there is an arc from node (page) j to node
i. In that case, the value of m;; is 1/k, where k is the number of arcs (links) out of node j.
Notice that if node j has k > 0 arcs out, then column j has k values of 1/k and the rest 0’s.
If node j is a dead end (i.e., it has zero arcs out), then column j is all 0’s.

Let r = [ry,72,...,7,]7 be (an estimate of) the PageRank vector; that is, r; is the estimate
of the PageRank of node i. Define w(r) to be the sum of the components of r; that is

w(r) =30 7

In one iteration of the PageRank algorithm, we compute the next estimate r’ of the PageRank
as: 1’ = Mr. Specifically, for each i we compute r; = > 7| M;;r;. Define w(r’) to be the
sum of components of r’; that is w(r') = Y1, 7.

You may use D (the set of dead nodes) in your equation.

(a) [6pts]

Suppose the Web has no dead ends. Prove that w(r’) = w(r).

(b) [9pts]

Suppose there are still no dead ends, but we use a teleportation probability of 1 — 5, where
0 < B < 1. The expression for the next estimate of r; becomes r; = 337 | M;r;+(1—f)/n.
Under what circumstances will w(r’) = w(r)? Prove your conclusion.

(c) [10pts]

Now, let us assume a teleportation probability of 1 — £ in addition to the fact that there are
one or more dead ends. Call a node “dead” if it is a dead end and “live” if not. Assume
w(r) = 1. At each iteration, each live node j distributes (1 —)r;/n PageRank to each of
the other nodes, and each dead node j distributes r;/n PageRank to each of the other nodes.

http://cs246.stanford.edu

CS 246: Mining Massive Data Sets - Problem Set 3 2

Write the equation for 7/ in terms of #, M, r, n, and D (where D is the set of dead nodes).
Then, prove that w(r’) is also 1.

What to submit
(i) Proof [1(a)]
(ii) Condition for w(r’) = w(r) and Proof [1(b)]

(iii) Equation for r; and Proof [1(c)]

2 Implementing PageRank and HITS (30 points)

In this problem, you will learn how to implement the PageRank and HITS algorithms in
Spark. You will be experimenting with a small randomly generated graph (assume graph
has no dead-ends) provided at graph-full.txt.

There are 100 nodes (n = 100) in the small graph and 1000 nodes (n = 1000) in the full
graph, and m = 8192 edges, 1000 of which form a directed cycle (through all the nodes)
which ensures that the graph is connected. It is easy to see that the existence of such a cycle
ensures that there are no dead ends in the graph. There may be multiple directed edges
between a pair of nodes, and your solution should treat them as the same edge. The first
column in graph-full.txt refers to the source node, and the second column refers to the
destination node.

Implementation hint: You may choose to store the PageRank vector r either in memory or
as an RDD. Only the matriz of links is too large to store in memory.

(a) PageRank Implementation [15 points]

Assume the directed graph G = (V, E') has n nodes (numbered 1,2,...,n) and m edges, all
nodes have positive out-degree, and M = [Mj;],xn is @ an n X n matrix as defined in class
such that for any 4,5 € [1,n]:

M. —

Jr

dwm H(—))€E,
0 otherwise.

Here, deg(i) is the number of outgoing edges of node i in G. If there are multiple edges
in the same direction between two nodes, treat them as a single edge. By the definition of
PageRank, assuming 1 — /3 to be the teleport probability, and denoting the PageRank vector
by the column vector r, we have the following equation:

r— 2200 4 s, (1)
n

CS 246: Mining Massive Data Sets - Problem Set 3 3

where 1 is the n x 1 vector with all entries equal to 1.

Based on this equation, the iterative procedure to compute PageRank works as follows:

1. Initialize: r® =11

2. For i from 1 to k, iterate: r(®) = %1 + BM =Y
Run the aforementioned iterative process in Spark for 40 iterations (assuming § = 0.8) and
obtain the PageRank vector r. In particular, you don’t have to implement the blocking

algorithm from lecture. The matrix M can be large and should be processed as an RDD in
your solution. Compute the following:

e List the top 5 node ids with the highest PageRank scores.

e List the bottom 5 node ids with the lowest PageRank scores.

For a sanity check, we have provided a smaller dataset (graph-small.txt). In that dataset,
the top node has id 53 with value 0.036.

(b) HITS Implementation [15 points]

Assume the directed graph G = (V, F) has n nodes (numbered 1,2,...,n) and m edges, all
nodes have non-negative out-degree, and L = [L;;],xn IS a an n X n matrix referred to as the
link matriz such that for any 7,5 € [1,n]:

;1)) eEER
Y1 0 otherwise.

Given the link matrix L and some scaling factors A, u, the hubbiness vector h and the
authority vector a can be expressed using the equations:

h = ALa,a = pL"h (2)

where 1 is the n x 1 vector with all entries equal to 1.

Based on this equation, the iterative method to compute h and a is as follows:

1. Initialize h with a column vector (of size n x 1) of all 1’s.
2. Compute a = LT h and scale so that the largest value in the vector a has value 1.

3. Compute h = La and scale so that the largest value in the vector h has value 1.

W

. Go to step 2.

CS 246: Mining Massive Data Sets - Problem Set 3 4

Repeat the iterative process for 40 iterations, assume that A = 1, 4 = 1 and then obtain the
hubbiness and authority scores of all the nodes (pages). The link matrix L can be large and
should be processed as an RDD. Compute the following:

e List the 5 node ids with the highest hubbiness score.

e List the 5 node ids with the lowest hubbiness score.

e List the 5 node ids with the highest authority score.

e List the 5 node ids with the lowest authority score.

For a sanity check, you should confirm that graph-small.txt has highest hubbiness node
id 59 with value 1 and highest authority node id 66 with value 1.

What to submit

(i) List 5 node ids with the highest and least PageRank scores [2(a)]
(i) List 5 node ids with the highest and least hubbiness and authority scores [2(b)]

(iii) Upload all the code to the snap submission site [2(a) & 2(b)]

3 Clique-Based Communities (25 points)

Imagine an undirected graph G with nodes 2,3,4,...,1000000. (Note that there is no node
1.) There is an edge between nodes ¢ and j if and only if i and j have a common factor other
than 1. Put another way, the only edges that are missing are those between nodes that are
relatively prime; e.g., there is no edge between 15 and 56.

We want to find communities by starting with a clique (not a bi-clique) and growing it by
adding nodes. However, when we grow a clique, we want to keep the density of edges at 1;
i.e., the set of nodes remains a clique at all times. A mazimal clique is a clique for which it
is impossible to add a node and still retain the property of being a clique; i.e., a clique C' is
maximal if every node not in C' is missing an edge to at least one member of C.

(a) [5 points]

Prove that if 7 is any integer greater than 1, then the set C; of nodes of G that are divisible
by ¢ is a clique.

CS 246: Mining Massive Data Sets - Problem Set 3 5

(b) [10 points]

Under what circumstances is C; a maximal clique? Prove that your conditions are both
necessary and sufficient. (Trivial conditions, like “C; is a maximal clique if and only if C; is
a maximal clique,” will receive no credit.)

(c) [10 points]

Prove that C5 is the unique largest clique. That is, it has more elements than any other
clique. (Note: Any solution that assumes that all cliques are of the form C; is incorrect.)

What to submit

(i) Proof that the specified nodes are a clique.
(ii) Necessary and sufficient conditions for C; to be a maximal clique, with proof.

(iii) Proof that Cy is the unique largest clique.

4 Dense Communities in Networks (20 points)

In this problem, we study the problem of finding dense communities in networks.

Definitions: Assume G = (V, E) is an undirected graph (e.g., representing a social net-
work).

e For any subset S C V', we let the induced edge set (denoted by E[S]) to be the set of
edges both of whose endpoints belong to S.
e For any v € S, we let degg(v) = [{u € S|(u,v) € E}|.

e Then, we define the density of S to be:

e Finally, the mazximum density of the graph G is the density of the densest induced
subgraph of G, defined as:

p*(G) = max{p(S)}.

SCv

CS 246: Mining Massive Data Sets - Problem Set 3 6

Goal. Our goal is to find an induced subgraph of G whose density is not much smaller
than p*(G). Such a set is very densely connected, and hence may indicate a community
in the network represented by . Also, since the graphs of interest are usually very large
in practice, we would like the algorithm to be highly scalable. We consider the following
algorithm:
Require: G = (V,E) and € > 0
S8« V
while S # () do
A(S):={ie S |degg(i) <2(1+¢€)p(S)}
S+ S\ A(S)
if p(S) > p(S) then
S« S
end if
end while
return S

The basic idea in the algorithm is that the nodes with low degrees do not contribute much to
the density of a dense subgraph, hence they can be removed without significantly influencing
the density.

We analyze the quality and performance of this algorithm. We start with analyzing its
performance.

(a) [10 points]

We show through the following steps that the algorithm terminates in a logarithmic number
of steps.

i. Prove that at any iteration of the algorithm, |A(S)| > —|S].

€

1+e€

ii. Prove that the algorithm terminates in O(log, . (n)) iterations, where n is the initial
number of nodes.

(b) [10 points]

We show through the following steps that the density of the set returned by the algorithm
is at most a factor 2(1 + €) smaller than p*(G).

i. Assume S* is the densest subgraph of G. Prove that for any v € S*, we have: degg.(v) >
P (G).

ii. Consider the first iteration of the while loop in which there exists a node v € S* N A(S).
Prove that 2(1 4+ €)p(S) > p*(G).

iii. Conclude that p(S) > ﬁp*(G).

CS 246: Mining Massive Data Sets - Problem Set 3

What to submit

(a) 1.
(b) i

iii.

Proof of |A(S)] > 15S].

Proof of number of iterations for algorithm to terminate.

Proof of degg.(v) > p*(G).
Proof of 2(1 + €)p(S) > p*(G).

Conclude that p(S) > ﬁp*(G).

	Dead ends in PageRank computations (25 points)
	Implementing PageRank and HITS (30 points)
	Clique-Based Communities (25 points)
	Dense Communities in Networks (20 points)

