
CS246: Mining Massive Datasets Winter 2019

Spark Tutorial
Due Thursday January 24, 2019 at 11:59pm Pacific time

General Instructions

The purpose of this tutorial is (1) to get you started with Spark and (2) to get you acquainted
with the code and homework submission system. Completing the tutorial is optional but by
handing in the results in time students will earn 5 points. This tutorial is to be completed
individually.

Here you will learn how to write, compile, debug and execute a simple Spark program. First
part of the assignment serves as a tutorial and the second part asks you to write your own
Spark program.

Section 1 explains how to download and install a stand-alone Spark instance. All operations
done in this Spark instance will be performed against the files in your local file system.
You may setup a full (single-node) spark cluster if you prefer; the results will be the same.
You can find instructions online. If you’d like to experiment with a full Spark environment
where Spark workloads are executed by YARN against files stored in HDFS, we recom-
mend the Cloudera Quickstart Virtual Machine: https://www.cloudera.com/downloads/

quickstart_vms.html for a pre-installed single-node.

Section 2 explains how to launch the Spark shell for interactively building Spark applications.

Section 3 explains how to use Spark to launch Spark applications written in an IDE or editor.

Section 4 gives an example of writing a simple word count application for Spark.

Section 5 is the actual homework assignment. There are no deliverables for sections 2, 3,
and 4. In section 5, you are asked to write and submit your own Spark application based on
the word count example.

This assignment requires you to upload the code and hand-in the output for Section 5.

All students should submit the output via Gradescope and upload the code

Gradescope: create account at https://gradescope.com class code: MNPBKE

Upload the code: http://snap.stanford.edu/submit/

https://www.cloudera.com/downloads/quickstart_vms.html
https://www.cloudera.com/downloads/quickstart_vms.html
https://gradescope.com
http://snap.stanford.edu/submit/

CS246: Mining Massive Datasets - Problem Set 0 2

Questions

1 Setting up a stand-alone Spark instance

• Download and install Spark 2.2.1 on your machine: https://www.apache.org/dyn/

closer.lua/spark/spark-2.2.1/spark-2.2.1-bin-hadoop2.7.tgz

• Unpack the compressed TAR ball.

Spark requires JDK 8, which is installed by default on the rice.stanford.edu clusters. Do
not install JDK 9; Spark is currently incompatible with JDK 9. If you need to download
the JDK, please visit Oracle’s download site: http://www.oracle.com/technetwork/java/
javase/downloads/index.html. If you plan to use Scala, you will also need Scala 2.11, and
if you plan to use python, you will need python 2.7 or higher (which is also preinstalled on
rice) or 3.4 or higher.

To make Spark, Scala, Maven, etc. work on rice, we had to add the following to our .profile
file:

JAVA_HOME="/usr/bin/java"

SCALA_HOME="$HOME/scala-2.12.4"

SPARK_HOME="$HOME/spark-2.2.1-bin-hadoop2.7"

SPARK_LOCAL_IP="127.0.0.1"

PATH="$HOME/bin:$HOME/.local/bin:$SCALA_HOME/bin:$SPARK_HOME/bin:

$HOME/apache-maven-3.5.2/bin:$PATH"

These commands are just guidelines, and what you have to add to your file may vary de-
pending on your specific computer setup.

2 Running the Spark shell

Spark gives you two different ways to run your applications. The easiest is using the Spark
shell, a REPL that let’s you interactively compose your application. The Spark shell supports
two languages: Scala/Java and python. In this tutorial we will only discuss using python
and Scala. We highly recommend python as both the language itself and the python Spark
API are straightforward.

2.1 Spark Shell for Python

To start the Spark shell for python, do the following:

https://www.apache.org/dyn/closer.lua/spark/spark-2.2.1/spark-2.2.1-bin-hadoop2.7.tgz
https://www.apache.org/dyn/closer.lua/spark/spark-2.2.1/spark-2.2.1-bin-hadoop2.7.tgz
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

CS246: Mining Massive Datasets - Problem Set 0 3

1. Open a terminal window on Mac or Linux or a command window on Windows.

2. Change into the directory where you unpacked the Spark binary.

3. Run: bin/pyspark on Mac or Linux or bin\pyspark on Windows.

As the Spark shell starts, you may see large amounts of logging information displayed on the
screen, possibly including several warnings. You can ignore that output for now. Regardless,
the startup is complete when you see something like:

Welcome to

____ __

/ __/__ ___ _____/ /__

_\ \/ _ \/ _ ‘/ __/ ’_/

/__ / .__/_,_/_/ /_/_\ version 2.2.1

/_/

Using Python version 2.7.10 (default, Feb 7 2017 00:08:15)

SparkSession available as ’spark’.

>>>

The Spark shell is a full python interpreter and can be used to write and execute regular
python programs. For example:

>>> print "Hello!"

Hello!

The Spark shell can also be used to write Spark applications in python. (Surprise!) To
learn about writing Spark applications, please read through the Spark programming guide:
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

2.2 Spark Shell for Scala

To start the Spark shell for Scala, do the following:

1. Open a terminal window on Mac or Linux or a command window on Windows.

2. Change into the directory where you unpacked the Spark binary.

3. Run: bin/spark-shell on Mac or Linux or bin\spark-shell on Windows.

As the Spark shell starts, you may see large amounts of logging information displayed on the
screen, possibly including several warnings. You can ignore that output for now. Regardless,
the startup is complete when you see something like:

https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

CS246: Mining Massive Datasets - Problem Set 0 4

Welcome to

____ __

/ __/__ ___ _____/ /__

_\ \/ _ \/ _ ‘/ __/ ’_/

/___/ .__/_,_/_/ /_/_\ version 2.2.1

/_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131)

Type in expressions to have them evaluated.

Type :help for more information.

scala>

The Spark shell is a full Scala interpreter and can be used to write and execute regular Scala
programs. For example:

scala> print("Hello!")

Hello!

The Spark shell can also be used to write Spark applications in Scala. (Surprise!) To
learn about writing Spark applications, please read through the Spark programming guide:
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

3 Submitting Spark applications

The Spark shell is great for exploring a data set or experimenting with the API, but it’s
often best to write your Spark applications outside of the Spark interpreter using an IDE
or other smart editor. One of the advantages of this approach for this class is that you will
have created a submittable file that contains your application, rather than having to piece it
together from the Spark shell’s command history. Spark accepts applications written in four
languages: Scala, Java, python, and R. In this tutorial we will discuss using Java, Scala, and
python. If you choose to use R, you will find resources online, but the TA staff may not be
able to help you if you run into issues. We highly recommend python as both the language
itself and the python Spark API are straightforward.

3.1 Submitting Python Applications

Python is a convenient choice of language as your python application doesn’t not need to be
compiled or linked. Assume you have the following program in a text file called myapp.py:

import sys

https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

CS246: Mining Massive Datasets - Problem Set 0 5

from pyspark import SparkConf, SparkContext

conf = SparkConf()

sc = SparkContext(conf=conf)

print "%d lines" % sc.textFile(sys.argv[1]).count()

This short application opens the file path given as the first argument from the local working
directory and prints the number of lines in it. To run this application, do the following:

1. Open a terminal window on Mac or Linux or a command window on Windows.

2. Change into the directory where you unpacked the Spark binary.

3. Run: bin/spark-submit path/to/myapp.py path/to/pg100.txt on Mac or Linux
or bin\spark-submit path\to\myapp.py path\to\pg100.txt on Windows.

(See section 4 for where to find the pg100.txt file.)

As Spark starts, you may see large amounts of logging information displayed on the screen,
possibly including several warnings. You can ignore that output for now. Regardless, near
the bottom of the output you will see the output from the application:

17/12/18 11:55:40 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1)

in 633 ms on localhost (executor driver) (2/2)

17/12/18 11:55:40 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks

have all completed, from pool

17/12/18 11:55:40 INFO DAGScheduler: ResultStage 0 (count at myapp.py:6)

finished in 0.690 s

17/12/18 11:55:40 INFO DAGScheduler: Job 0 finished: count at myapp.py:6,

took 0.841068 s

124787 lines

17/12/18 11:55:40 INFO SparkContext: Invoking stop() from shutdown hook

17/12/18 11:55:40 INFO SparkUI: Stopped Spark web UI at

http://192.168.86.218:4040

17/12/18 11:55:40 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint

stopped!

17/12/18 11:55:41 INFO MemoryStore: MemoryStore cleared

Executing the application this way causes it to be run single-threaded. To run the application
with 4 threads, launch it as bin/spark-submit --master ’local[4]’ path/to/myapp.py

path/to/pg100.txt. You can replace the “4” with any number. To use as many threads
as are available on your system, launch the application as bin/spark-submit --master

’local[*]’ path/to/myapp.py path/to/pg100.txt.

To learn about writing Spark applications, please read through the Spark programming
guide: https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

CS246: Mining Massive Datasets - Problem Set 0 6

3.2 Submitting Java Applications

Building a Spark application in Java will require you to have Maven installed: https:

//maven.apache.org/install.html. Follow these steps:

1. Create (or clone) a Maven project. If you’re using an IDE, this step can typically be
accomplished by choosing to create a new project from the IDE’s menus and selecting
“Maven project” as the type. If you’re not using an IDE, you can follow these steps:
https://maven.apache.org/guides/getting-started/. Using an IDE is highly rec-
ommended. IntelliJ is generally a good choice, though NetBeans and Eclipse will also
work.

2. Modify the pom.xml file to include the Spark artifact. In an IDE this can typically be
accomplished through a menu-driven process or by editing the pom.xml file directly.
You can find instructions for IntelliJ and Eclipse here: https://sparktutorials.

github.io/2015/04/02/setting-up-a-spark-project-with-maven.html. If you’re
not using an IDE, you’ll need to add the following snipet to the pom.xml file using an
editor:

<dependencies>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_2.11</artifactId>

<version>2.2.1</version>

</dependency>

</dependencies>

Your resulting pom.xml file should look something like:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>edu.stanford.cs246</groupId>

<artifactId>MyApp</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>jar</packaging>

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

</properties>

https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/guides/getting-started/
https://sparktutorials.github.io/2015/04/02/setting-up-a-spark-project-with-maven.html
https://sparktutorials.github.io/2015/04/02/setting-up-a-spark-project-with-maven.html

CS246: Mining Massive Datasets - Problem Set 0 7

<dependencies>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_2.11</artifactId>

<version>2.2.1</version>

</dependency>

</dependencies>

</project>

Note that the exact file contents may vary depending on how you created your project.

3. Create your application. Assume that you have the following Java file in your Maven
project:

package edu.stanford.cs246;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.SparkConf;

public class MyApp {

public static void main(String[] args) throws Exception {

SparkConf conf = new SparkConf();

JavaSparkContext sc = new JavaSparkContext(conf);

System.out.printf("%d lines\n", sc.textFile(args[0]).count());

}

}

This short application opens the file path given as the first argument from the local
working directory and prints the number of lines in it.

4. Build your project. Most IDEs provide a way to build a Maven project from the menu
or toolbar. You can also build your project from the command line in a terminal or
command window by changing to the directory that contains your pom.xml file and
running: mvn clean package. This command will create a JAR file from your project
in the target directory. Note that the first time you build your Maven project, Maven
will try to download all needed dependencies. For Spark that list can be quite long. Be
sure you’re on a network with reasonable bandwidth and allow yourself enough time.

5. To run your application, do the following:

(a) Open a terminal window on Mac or Linux or a command window on Windows.

(b) Change into the directory where you unpacked the Spark binary.

(c) Run:

CS246: Mining Massive Datasets - Problem Set 0 8

bin/spark-submit --class edu.stanford.cs246.MyApp

path/to/MyApp-1.0-SNAPSHOT.jar path/to/pg100.txt

on Mac or Linux or

bin\spark-submit --class edu.stanford.cs246.MyApp

path\to\MyApp-1.0-SNAPSHOT.jar path\to\pg100.txt

on Windows.

(See section 4 for where to find the pg100.txt file.)

As Spark starts, you may see large amounts of logging information displayed on the
screen, possibly including several warnings. You can ignore that output for now. Re-
gardless, near the bottom of the output you will see the output from the application:

17/12/18 13:18:16 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0)

in 406 ms on localhost (executor driver) (2/2)

17/12/18 13:18:16 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks

have all completed, from pool

17/12/18 13:18:16 INFO DAGScheduler: ResultStage 0 (count at MyApp.java:10)

finished in 0.441 s

17/12/18 13:18:16 INFO DAGScheduler: Job 0 finished: count at MyApp.java:10,

took 0.694674 s

124787 lines

17/12/18 13:18:16 INFO SparkContext: Invoking stop() from shutdown hook

17/12/18 13:18:16 INFO SparkUI: Stopped Spark web UI at

http://192.168.86.218:4040

17/12/18 13:18:16 INFO MapOutputTrackerMasterEndpoint:

MapOutputTrackerMasterEndpoint stopped!

17/12/18 13:18:16 INFO MemoryStore: MemoryStore cleared

Executing the application this way causes it to be run single-threaded. To run the
application with 4 threads, launch it as bin/spark-submit --master ’local[4]’

--class edu.stanford.cs246.MyApp path/to/MyApp-1.0-SNAPSHOT.jar path/to/pg100.txt.
You can replace the “4” with any number. To use as many threads as are available
on your system, launch the application as bin/spark-submit --master ’local[*]’

--class edu.stanford.cs246.MyApp path/to/MyApp-1.0-SNAPSHOT.jar path/to/pg100.txt.

To learn about writing Spark applications, please read through the Spark programming
guide: https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

CS246: Mining Massive Datasets - Problem Set 0 9

3.3 Submitting Scala Applications

Building a Spark application in Scala will require you to have Maven installed: https:

//maven.apache.org/install.html. Follow these steps:

1. Create (or clone) a Maven project. If you’re using an IDE, this step can typically
be accomplished by choosing to create a new project from the IDE’s menus and
selecting “Maven project” as the type. If you’re not using an IDE, you can fol-
low these steps: https://maven.apache.org/guides/getting-started/. Using an
IDE is highly recommended. IntelliJ is generally a good choice, though Eclipse will
also work. If you want to use Netbeans, you will need to install the Scala plugin:
https://github.com/dcaoyuan/nbscala.

2. Modify the pom.xml file to include the Spark and Scala artifacts and enable the Scala
build process. In an IDE this can typically be accomplished through a menu-driven pro-
cess or by editing the pom.xml file directly. You can find instructions for IntelliJ here:
http://knowdimension.com/en/data/create-a-spark-application-with-Scala-using-maven-on-intellij/.
If you’re not using an IDE, you’ll need to add the following snipet to the pom.xml file
using an editor:

<dependencies>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_2.11</artifactId>

<version>2.2.1</version>

</dependency>

<dependency>

<groupId>org.scala-tools</groupId>

<artifactId>maven-scala-plugin</artifactId>

<version>2.11</version>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>org.scala-tools</groupId>

<artifactId>maven-scala-plugin</artifactId>

<executions>

<execution>

<goals>

<goal>compile</goal>

<goal>testCompile</goal>

</goals>

</execution>

https://maven.apache.org/install.html
https://maven.apache.org/install.html
https://maven.apache.org/guides/getting-started/
https://github.com/dcaoyuan/nbscala
http://knowdimension.com/en/data/create-a-spark-application-with-Scala-using-maven-on-intellij/

CS246: Mining Massive Datasets - Problem Set 0 10

</executions>

</plugin>

</plugins>

</build>

Your resulting pom.xml file should look something like:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>edu.stanford.cs246</groupId>

<artifactId>MyApp</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>jar</packaging>

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

</properties>

<dependencies>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_2.11</artifactId>

<version>2.2.1</version>

</dependency>

<dependency>

<groupId>org.scala-tools</groupId>

<artifactId>maven-scala-plugin</artifactId>

<version>2.11</version>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>org.scala-tools</groupId>

<artifactId>maven-scala-plugin</artifactId>

<executions>

<execution>

<goals>

<goal>compile</goal>

<goal>testCompile</goal>

</goals>

CS246: Mining Massive Datasets - Problem Set 0 11

</execution>

</executions>

</plugin>

</plugins>

</build>

</project>

Note that the exact file contents may vary depending on how you created your project.

3. Create your application. Assume that you have the following Scala file in your Maven
project:

package edu.stanford.cs246

import org.apache.spark.{SparkConf,SparkContext}

import org.apache.spark.SparkContext._

object MyApp {

def main(args: Array[String]) {

val conf = new SparkConf();

val sc = new SparkContext(conf)

printf("%d lines\n", sc.textFile(args(0)).count);

}

}

This short application opens the file path given as the first argument from the local
working directory and prints the number of lines in it.

4. Build your project. Most IDEs provide a way to build a Maven project from the menu
or toolbar. You can also build your project from the command line in a terminal or
command window by changing to the directory that contains your pom.xml file and
running: mvn clean package. This command will create a JAR file from your project
in the target directory. Note that the first time you build your Maven project, Maven
will try to download all needed dependencies. For Spark that list can be quite long. Be
sure you’re on a network with reasonable bandwidth and allow yourself enough time.

5. To run your application, do the following:

(a) Open a terminal window on Mac or Linux or a command window on Windows.

(b) Change into the directory where you unpacked the Spark binary.

(c) Run:

bin/spark-submit --class edu.stanford.cs246.MyApp

path/to/MyApp-1.0-SNAPSHOT.jar path/to/pg100.txt

CS246: Mining Massive Datasets - Problem Set 0 12

on Mac or Linux or

bin\spark-submit --class edu.stanford.cs246.MyApp

path\to\MyApp-1.0-SNAPSHOT.jar path\to\pg100.txt

on Windows.

(See section 4 for where to find the pg100.txt file.)

As Spark starts, you may see large amounts of logging information displayed on the
screen, possibly including several warnings. You can ignore that output for now. Re-
gardless, near the bottom of the output you will see the output from the application:

17/12/18 13:18:16 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0)

in 406 ms on localhost (executor driver) (2/2)

17/12/18 13:18:16 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks

have all completed, from pool

17/12/18 13:18:16 INFO DAGScheduler: ResultStage 0 (count at MyApp.java:10)

finished in 0.441 s

17/12/18 13:18:16 INFO DAGScheduler: Job 0 finished: count at MyApp.java:10,

took 0.694674 s

124787 lines

17/12/18 13:18:16 INFO SparkContext: Invoking stop() from shutdown hook

17/12/18 13:18:16 INFO SparkUI: Stopped Spark web UI at

http://192.168.86.218:4040

17/12/18 13:18:16 INFO MapOutputTrackerMasterEndpoint:

MapOutputTrackerMasterEndpoint stopped!

17/12/18 13:18:16 INFO MemoryStore: MemoryStore cleared

Executing the application this way causes it to be run single-threaded. To run the
application with 4 threads, launch it as bin/spark-submit --master ’local[4]’

--class edu.stanford.cs246.MyApp path/to/MyApp-1.0-SNAPSHOT.jar path/to/pg100.txt.
You can replace the “4” with any number. To use as many threads as are available
on your system, launch the application as bin/spark-submit --master ’local[*]’

--class edu.stanford.cs246.MyApp path/to/MyApp-1.0-SNAPSHOT.jar path/to/pg100.txt.

To learn about writing Spark applications, please read through the Spark programming
guide: https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

4 Word Count

The typical “Hello, world!” app for Spark applications is known as word count. The map/re-
duce model is particularly well suited to applications like counting words in a document. In

https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html

CS246: Mining Massive Datasets - Problem Set 0 13

this section, you will see how to develop a word count application in python, Java, and Scala.
Prior to reading this section, you should read through the Spark programming guide if you
haven’t already.

All operations in Spark operate on data structures called RDDs, Resilient Distributed
Datasets. An RDD is nothing more than a collection of objects. If you read a file into
an RDD, each line will become an object (a string, actually) in the collection that is the
RDD. If you ask Spark to count the number of elements in the RDD, it will tell you how
many lines are in the file. If an RDD contains only two-element tuples, the RDD is known
as a “pair RDD” and offers some additional functionality. The first element of each tuple
is treated as a key, and the second element as a value. Note that all RDDs are immutable,
and any operations that would mutate an RDD will instead create a new RDD.

4.1 Word Count in python

For this example, you will create your application in an editor instead of using the Spark
shell. The first step of every such Spark application is to create a Spark context:

import re

import sys

from pyspark import SparkConf, SparkContext

conf = SparkConf()

sc = SparkContext(conf=conf)

Next, you’ll need to read the target file into an RDD:

lines = sc.textFile(sys.argv[1])

You now have an RDD filled with strings, one per line of the file.

Next you’ll want to split the lines into individual words:

words = lines.flatMap(lambda l: re.split(r’[^\w]+’, l))

The flatMap() operation first converts each line into an array of words, and then makes
each of the words an element in the new RDD. If you asked Spark to count the number of
elements in the words RDD, it would tell you the number of words in the file.

Next, you’ll want to replace each word with a tuple of that word and the number 1. The
reason will become clear shortly.

pairs = words.map(lambda w: (w, 1))

CS246: Mining Massive Datasets - Problem Set 0 14

The map() operation replaces each word with a tuple of that word and the number 1. The
pairs RDD is a pair RDD where the word is the key, and all of the values are the number
1.

Now, to get a count of the number of instances of each word, you need only group the
elements of the RDD by key (word) and add up their values:

counts = pairs.reduceByKey(lambda n1, n2: n1 + n2)

The reduceByKey() operation keeps adding elements’ values together until there are no
more to add for each key (word).

Finally, you can store the results in a file and stop the context:

counts.saveAsTextFile(sys.argv[2])

sc.stop()

The complete file should look like:

import re

import sys

from pyspark import SparkConf, SparkContext

conf = SparkConf()

sc = SparkContext(conf=conf)

lines = sc.textFile(sys.argv[1])

words = lines.flatMap(lambda l: re.split(r’[^\w]+’, l))

pairs = words.map(lambda w: (w, 1))

counts = pairs.reduceByKey(lambda n1, n2: n1 + n2)

counts.saveAsTextFile(sys.argv[2])

sc.stop()

Save it in a file called wc.py. To run this application, do the following:

1. You can find a copy of the complete works of Shakespeare in the pg100.txt file included
in the assignment bundle.

2. Open a terminal window on Mac or Linux or a command window on Windows.

3. Change into the directory where you unpacked the Spark binary.

4. Run:

bin/spark-submit path/to/wc.py path/to/pg100.txt path/to/output

CS246: Mining Massive Datasets - Problem Set 0 15

on Mac or Linux or

bin\spark-submit path\to\wc.py path\to\pg100.txt

path\to\output

on Windows.

After the application completes, you will find the results in the output directory you specified
as the second argument to the application.

4.2 Word Count in Java

Before you start, create a new Maven project for your application. The bare minimum
requirements are a pom.xml file and a source code directory. The source code directory should
be path/to/project/src/main/java, and the pom.xml file should contain something like:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>edu.stanford.cs246</groupId>

<artifactId>WordCount</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>jar</packaging>

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

</properties>

<dependencies>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_2.11</artifactId>

<version>2.2.1</version>

</dependency>

</dependencies>

</project>

Once you have your project created, you can begin writing the application. The first step of
every Java Spark application is to create a Spark context:

CS246: Mining Massive Datasets - Problem Set 0 16

package edu.stanford.cs246;

import java.util.Arrays;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import scala.Tuple2;

public class WordCount {

public static void main(String[] args) throws Exception {

SparkConf conf = new SparkConf();

JavaSparkContext sc = new JavaSparkContext(conf);

...

}

}

Next, you’ll need to read the target file into an RDD:

JavaRDD<String> lines = sc.textFile(args[0]);

You now have an RDD filled with strings, one per line of the file.

Next you’ll want to split the lines into individual words:

JavaRDD<String> words =

lines.flatMap(l -> Arrays.asList(l.split("[^\\w]+")).iterator());

The flatMap() operation first converts each line into an array of words, and then makes
each of the words an element in the new RDD. If you asked Spark to count the number of
elements in the words RDD, it would tell you the number of words in the file. Note that the
lambda argument to the method must return an iterator, not a list or array.

Next, you’ll want to replace each word with a tuple of that word and the number 1. The
reason will become clear shortly.

JavaPairRDD<String, Integer> pairs =

words.mapToPair(w -> new Tuple2<>(w, 1));

The mapToPair() operation replaces each word with a tuple of that word and the number
1. The pairs RDD is a pair RDD where the word is the key, and all of the values are the
number 1. Note that the type of the RDD is now JavaPairRDD. Also note that the use of
the Scala Tuple2 class is the normal and intended way to perform this operation.

CS246: Mining Massive Datasets - Problem Set 0 17

Now, to get a count of the number of instances of each word, you need only group the
elements of the RDD by key (word) and add up their values:

JavaPairRDD<String, Integer> counts =

pairs.reduceByKey((n1, n2) -> n1 + n2);

The reduceByKey() operation keeps adding elements’ values together until there are no
more to add for each key (word).

Finally, you can store the results in a file and stop the context:

counts.saveAsTextFile(args[1]);

sc.stop();

The complete file should look like:

package edu.stanford.cs246;

import java.util.Arrays;

import org.apache.spark.api.java.JavaSparkContext;

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import scala.Tuple2;

public class WordCount {

public static void main(String[] args) throws Exception {

SparkConf conf = new SparkConf();

JavaSparkContext sc = new JavaSparkContext(conf);

JavaRDD<String> lines = sc.textFile(args[0]);

JavaRDD<String> words =

lines.flatMap(l -> Arrays.asList(l.split("[^\\w]+")).iterator());

JavaPairRDD<String, Integer> pairs =

words.mapToPair(w -> new Tuple2<>(w, 1));

JavaPairRDD<String, Integer> counts =

pairs.reduceByKey((n1, n2) -> n1 + n2);

counts.saveAsTextFile(args[1]);

sc.stop();

}

}

CS246: Mining Massive Datasets - Problem Set 0 18

Save it in a file called edu/stanford/cs246/WordCount.java in your project’s source code
directory. To run this application, do the following:

1. You can find a copy of the complete works of Shakespeare in the pg100.txt file included
in the assignment bundle.

2. Open a terminal window on Mac or Linux or a command window on Windows.

3. Change into the project directory.

4. Build the project by running mvn clean package.

5. Change into the directory where you unpacked the Spark binary.

6. Run:

bin/spark-submit --class edu.stanford.cs246.WordCount

path/to/WordCount-1.0-SNAPSHOT.jar path/to/pg100.txt path/to/output

on Mac or Linux or

bin\spark-submit --class edu.stanford.cs246.WordCount

path\to\WordCount-1.0-SNAPSHOT.jar path\to\pg100.txt path\to\output

on Windows.

After the application completes, you will find the results in the output directory you specified
as the second argument to the application.

4.3 Word Count in Scala

Before you start, create a new Maven project for your application. The bare minimum
requirements are a pom.xml file and a source code directory. The source code directory should
be path/to/project/src/main/scala, and the pom.xml file should contain something like:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>edu.stanford.cs246</groupId>

CS246: Mining Massive Datasets - Problem Set 0 19

<artifactId>WordCount</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>jar</packaging>

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<maven.compiler.source>1.8</maven.compiler.source>

<maven.compiler.target>1.8</maven.compiler.target>

</properties>

<dependencies>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_2.11</artifactId>

<version>2.2.1</version>

</dependency>

<dependency>

<groupId>org.scala-tools</groupId>

<artifactId>maven-scala-plugin</artifactId>

<version>2.11</version>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>org.scala-tools</groupId>

<artifactId>maven-scala-plugin</artifactId>

<executions>

<execution>

<goals>

<goal>compile</goal>

<goal>testCompile</goal>

</goals>

</execution>

</executions>

</plugin>

</plugins>

</build>

</project>

Once you have your project created, you can begin writing the application. The first step of
every Scala Spark application is to create a Spark context:

package edu.stanford.cs246

import org.apache.spark.{SparkConf,SparkContext}

CS246: Mining Massive Datasets - Problem Set 0 20

import org.apache.spark.SparkContext._

object WordCount {

def main(args: Array[String]) {

val conf = new SparkConf();

val sc = new SparkContext(conf)

...

}

}

Next, you’ll need to read the target file into an RDD:

val lines = sc.textFile(args(0))

You now have an RDD filled with strings, one per line of the file.

Next you’ll want to split the lines into individual words:

val words = lines.flatMap(l => l.split("[^\\w]+"))

The flatMap() operation first converts each line into an array of words, and then makes
each of the words an element in the new RDD. If you asked Spark to count the number of
elements in the words RDD, it would tell you the number of words in the file.

Next, you’ll want to replace each word with a tuple of that word and the number 1. The
reason will become clear shortly.

val pairs = words.map(w => (w, 1))

The map() operation replaces each word with a tuple of that word and the number 1. The
pairs RDD is a pair RDD where the word is the key, and all of the values are the number
1.

Now, to get a count of the number of instances of each word, you need only group the
elements of the RDD by key (word) and add up their values:

val counts = pairs.reduceByKey((n1, n2) => n1 + n2)

CS246: Mining Massive Datasets - Problem Set 0 21

The reduceByKey() operation keeps adding elements’ values together until there are no
more to add for each key (word).

Finally, you can store the results in a file and stop the context:

counts.saveAsTextFile(args(1))

sc.stop

The complete file should look like:

package edu.stanford.cs246

import org.apache.spark.{SparkConf,SparkContext}

import org.apache.spark.SparkContext._

object WordCount {

def main(args: Array[String]) {

val conf = new SparkConf();

val sc = new SparkContext(conf)

val lines = sc.textFile(args(0))

val words = lines.flatMap(l => l.split("[^\\w]+"))

val pairs = words.map(w => (w, 1))

val counts = pairs.reduceByKey((n1, n2) => n1 + n2)

counts.saveAsTextFile(args(1))

sc.stop

}

}

Save it in a file called edu/stanford/cs246/WordCount.scala in your project’s source code
directory. To run this application, do the following:

1. You can find a copy of the complete works of Shakespeare in the pg100.txt file included
in the assignment bundle.

2. Open a terminal window on Mac or Linux or a command window on Windows.

3. Change into the project directory.

4. Build the project by running mvn clean package.

5. Change into the directory where you unpacked the Spark binary.

6. Run:

CS246: Mining Massive Datasets - Problem Set 0 22

bin/spark-submit --class edu.stanford.cs246.WordCount

path/to/WordCount-1.0-SNAPSHOT.jar path/to/pg100.txt path/to/output

on Mac or Linux or

bin\spark-submit --class edu.stanford.cs246.WordCount

path\to\WordCount-1.0-SNAPSHOT.jar path\to\pg100.txt path\to\output

on Windows.

After the application completes, you will find the results in the output directory you specified
as the second argument to the application.

5 Task: Write your own Spark Job

Now you will write your first Spark job to accomplish the following task:

• Write a Spark application which outputs the number of words that start with each
letter. This means that for every letter we want to count the total number of (non-
unique) words that start with that letter. In your implementation ignore the letter case,
i.e., consider all words as lower case. You can ignore all non-alphabetic characters.

• Run your program over the same input data as above.

What to hand-in: Submit the printout of the output file to Gradescope at https://

gradescope.com, and upload the source code at http://snap.stanford.edu/submit.

https://gradescope.com
https://gradescope.com
http://snap.stanford.edu/submit

	Setting up a stand-alone Spark instance
	Running the Spark shell
	Spark Shell for Python
	Spark Shell for Scala

	Submitting Spark applications
	Submitting Python Applications
	Submitting Java Applications
	Submitting Scala Applications

	Word Count
	Word Count in python
	Word Count in Java
	Word Count in Scala

	Task: Write your own Spark Job

