Submodular Optimization
Tim Althoff & Hima Lakkaraju
Course evaluation is open on Axess

- Please fill out the form! Thanks!!!
- You’ll get to see your grades earlier!
- We appreciate your feedback!
Motivation

- Learned about: LSH/Similarity search & recommender systems

- **Search:** “jaguar”

- **Uncertainty** about the user’s information need
 - Don’t put all eggs in one basket!

- **Relevance** isn’t everything – need diversity!
Many applications need diversity!

- **Recommendation:** NETFLIX
- **Summarization:** “Robert Downey Jr.” WIKIPEDIA
- **News Media:**
Person

- **Goal:** Timeline should express his *relationships* to other people through *events* (personal, collaboration, mentorship, etc.)

Timeline

- **Why timelines?**
 - Easier: Wikipedia article is 18 pages long
 - Context: Through relationships & event descriptions
 - Exploration: Can “jump” to other people
Problem Definition

- **Given:**
 - Relevant *relationships*
 - *Events* covering some relationships each

- **Goal:** Given a large set of *events*, pick a small subset that explains most known *relationships* ("the timeline")
“RDJr starred in Chaplin in 1992 together with Anthony Hopkins.”
Why diversity?

- User studies: People hate redundancy!

Iron Man
US Release

Iron Man
Award Ceremony

Iron Man
EU Release

Iron Man
US Release

Chaplin
Academy Award N.

Rented Lips
US Release

Want to see more diverse set of relationships
Diversity as Coverage
Encode Diversity as Coverage

- **Idea:** Encode diversity as coverage problem
- **Example:** Selecting events for timeline
 - Try to cover all important relationships
Q: What is being covered?
A: Relationships
- Captain America
- Anthony Hopkins
- Gwyneth Paltrow
- Susan Downey

Downey Jr. starred in *Chaplin* together with Anthony Hopkins

Q: Who is doing the covering?
A: Events
Suppose we are given a set of events E:
- Each event e covers a set $X_e \subseteq U$ of relationships.

For a set of events $S \subseteq E$ we define:

$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

Goal: We want to maximize $F(S)$ subject to $|S| \leq k$.

Note: $F(S)$ is a set function: $F(S) : 2^E \rightarrow \mathbb{N}$.
Maximum Coverage Problem

- Given universe of elements and sets $\{X_1, \ldots, X_m\} \subseteq U$

 \[U = \{u_1, \ldots, u_n\} \]

- Goal: Find set of k events $X_1 \ldots X_k$ covering most of U
 - More precisely: Find set of k events $X_1 \ldots X_k$ whose size of the union is the largest

- U: all relationships
- X_i: relationships covered by event i
Simple Greedy Heuristic:

Simple Heuristic: Greedy Algorithm:

- Start with $S_0 = \emptyset$
- For $i = 1 \ldots k$
 - Take event e that max $F(S_{i-1} \cup e)$
 - Let $S_i = S_{i-1} \cup \{e\}$

Example:

- Eval. $F(\{e_1\}), \ldots, F(\{e_m\})$, pick best (say e_1)
- Eval. $F(\{e_1\} \cup \{e_2\}), \ldots, F(\{e_1\} \cup \{e_m\})$, pick best (say e_2)
- Eval. $F(\{e_1, e_2\} \cup \{e_3\}), \ldots, F(\{e_1, e_2\} \cup \{e_m\})$, pick best
- And so on...
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Simple Greedy Heuristic

- Goal: Maximize the covered area
Goal: Maximize the size of the covered area
Greedy first picks A and then C
But the optimal way would be to pick B and C
Bad News & Good News

- **Bad news:** Maximum Coverage is NP-hard

- **Good news:** Good approximations exist
 - Problem has certain structure to it that even simple greedy algorithms perform reasonably well
 - Details in 2nd half of lecture

- **Now:** Generalize our objective for timeline generation
Not all relationships are equal

- **Objective values all relationships equally**
 \[F(S) = \bigcup_{e \in S} X_e = \sum_{r \in R} 1 \quad \text{where} \quad R = \bigcup_{e \in S} X_e \]

- **Unrealistic**: Some relationships are more important than others
 - use **different weights** ("weighted coverage function")
 \[F(S) = \sum_{r \in R} w(r) \quad w : R \to \mathbb{R}^+ \]
Example weight function

- Use **global importance** weights
- How much interest is there?
- Could be measured as
 - \(w(x) = \# \text{ search queries} \) for person X
 - \(w(x) = \# \text{ Wikipedia article views} \) for X
 - \(w(x) = \# \text{ news article mentions} \) for X
Some relationships are not (too) globally important but (not) highly relevant to timeline.

Need relevant to timeline instead of globally relevant.

\[w(\text{Susan Downey} | \text{RDJr}) > w(\text{Justin Bieber} | \text{RDJr}) \]
Capturing relevance to timeline

- Can use co-occurrence statistics
 \[w(X \mid RDJr) = \frac{\#(X \text{ and } RDJr)}{(\#(RDJr) \times \#(X))} \]
 - Pointwise mutual information (PMI)
 - How often do X and Y occur together compared to what you would expect if they were independent
 - Accounts for popular entities (e.g., Justin Bieber)
Differentiating between events

- How to differentiate between two events that cover the same relationships?

- **Example:** Robert and Susan Downey
 - **Event 1:** Wedding, August 27, 2005
 - **Event 2:** Minor charity event, Nov 11, 2006

- We need to be able to distinguish these!
Further improvement when we not only score relationships but also **score the event timestamp**

\[
F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e)
\]

where

\[
R = \bigcup_{e \in S} X_e
\]

- **Relationship (as before)**
- **Timestamps**

- Again, use co-occurrences for weights \(w_T\)
Co-occurrences on Web Scale

- “Robert Downey Jr” and “May 4, 2012” occurs 173 times on 71 different webpages
- US Release date of The Avengers
- Use MapReduce on 10B web pages
Complete Optimization Problem

- Generalized earlier coverage function to linear combination of weighted coverage functions

\[F(S) = \sum_{r \in R} w_R(r) + \sum_{e \in S} w_T(t_e) \]

- Goal: \[\max_{|S| \leq k} F(S) \]

- Still NP-hard (because generalization of NP-hard problem)
How can we **actually optimize** this function?

What **structure** is there that will help us do this efficiently?

Any questions so far?
For this optimization problem, Greedy produces a solution S s.t. $F(S) \geq (1-1/e) \times \text{OPT}$ \quad ($F(S) \geq 0.63 \times \text{OPT}$)

[Neumhauser, Fisher, Wolsey ‘78]

Claim holds for functions $F(\cdot)$ which are:
- Submodular, Monotone, Normal, Non-negative
 (discussed next)
Definition:

Set function $F(\cdot)$ is called **submodular** if:

For all $P, Q \subseteq U$:

$$F(P) + F(Q) \geq F(P \cup Q) + F(P \cap Q)$$
Submodularity: Definition 2

- Checking the previous definition is not easy in practice
- Substitute $P = A \cup \{d\}$ and $Q = B$ where $A \subseteq B$ and $d \notin B$ in the definition above

\[
F(A \cup \{d\}) + F(B) \geq F(A \cup \{d\} \cup B) + F((A \cup \{d\}) \cap B)
\]

\[
F(A \cup \{d\}) + F(B) \geq F(B \cup \{d\}) + F(A)
\]

\[
F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)
\]
Submodularity: Definition 2

- **Diminishing returns characterization**

\[
F(A \cup d) - F(A) \geq F(B \cup d) - F(B)
\]

- Gain of adding \(d\) to a small set
- Gain of adding \(d\) to a large set

B

E

A

+ \(\bullet \) d \rightarrow Large improvement

+ \(\bullet \) d \rightarrow Small improvement
Submodularity: Diminishing Returns

\[F(A \cup d) - F(A) \geq F(B \cup d) - F(B) \]

Gain of adding \(d \) to a small set \quad Gain of adding \(d \) to a large set

\[\forall A \subseteq B \]

Adding \(d \) to \(B \) helps less than adding it to \(A \)!

Gain of adding \(d \) to a small set

Gain of adding \(d \) to a large set
Two Faces of Submodular Functions

Submodularity is discrete analogue of convexity/concavity
Let $F_1 \ldots F_M$ be submodular functions and $\lambda_1 \ldots \lambda_M \geq 0$ and let S denote some solution set, then the non-negative linear combination $F(S)$ (defined below) of these functions is also submodular.

$$F(S) = \sum_{i=1}^{M} \lambda_i F_i(S)$$
Submodularity: Approximation Guarantee

- When maximizing a submodular function with cardinality constraints, Greedy produces a solution S for which $F(S) \geq (1-1/e)\cdot OPT$
 i.e., $(F(S) \geq 0.63\cdot OPT)$
 [Nemhauser, Fisher, Wolsey ‘78]

- Claim holds for functions $F(\cdot)$ which are:
 - Monotone: if $A \subseteq B$ then $F(A) \leq F(B)$
 - Normal: $F(\emptyset) = 0$
 - Non-negative: For any A, $F(A) \geq 0$
 - In addition to being submodular
Back to our Timeline Problem
Suppose we are given a set of events E

- Each event e covers a set X_e of relationships U

For a set of events $S \subseteq E$ we define:

$$F(S) = \left| \bigcup_{e \in S} X_e \right|$$

- Goal: We want to \(\max_{|S| \leq k} F(S) \)

- Note: $F(S)$ is a set function: $F(S) : 2^E \rightarrow \mathbb{N}$
Claim: $F(S) = \bigcup_{e \in S} X_e$ is submodular.

Gain of adding X_e to a smaller set

Gain of adding X_e to a larger set

$\forall A \subseteq B$
Claim: $F(S) = \bigcup_{e \in S} X_e$ is normal & monotone

Normality: When S is empty, $\bigcup_{e \in S} X_e$ is empty.

Monotonicity: Adding a new event to S can never decrease the number of relationships covered by S.

What about non-negativity?
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normality</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Claim: $F(S)$ is submodular.

- Consider two sets A and B s.t. $A \subseteq B \subseteq S$ and let us consider an event $e \notin B$
- Three possibilities when we add e to A or B:
 - Case 1: e does not cover any new relationships w.r.t both A and B

 \[
 F(A \cup \{e\}) - F(A) = 0 = F(B \cup \{e\}) - F(B)
 \]
Claim: $F(S)$ is submodular.

- Three possibilities when we add e to A or B:
 - Case 2: e covers some new relationships w.r.t A but not w.r.t B
 - $F(A \cup \{e\}) - F(A) = \nu$ where $\nu \geq 0$
 - $F(B \cup \{e\}) - F(B) = 0$
 - Therefore, $F(A \cup \{e\}) - F(A) \geq F(B \cup \{e\}) - F(B)$
Weighted Coverage (Relationships)

\[F(S) = \sum_{r \in R} w(r) \quad w : R \to \mathbb{R}^+ \]

- **Claim:** \(F(S) \) is submodular.
 - Three possibilities when we add \(e \) to \(A \) or \(B \):
 - Case 3: \(e \) covers some new relationships w.r.t both \(A \) and \(B \)
 - \(F(A \cup \{e\}) - F(A) = \nu \) where \(\nu \geq 0 \)
 - \(F(B \cup \{e\}) - F(B) = \mu \) where \(\mu \geq 0 \)
 - But, \(\nu \geq \mu \) because \(e \) will always cover fewer (or equal number of) new relationships w.r.t \(B \) than w.r.t \(A \)
Weighted Coverage (Relationships)

\[F(S) = \sum_{r \in R} w(r) \quad w : R \to \mathbb{R}^+ \]

- **Claim:** \(F(S) \) is monotone and normal.

- **Normality:** When \(S \) is empty, \(\bigcup_{e \in S} X_e \) is empty.

- **Monotonicity:** Adding a new event to \(S \) can never decrease the number of relationships covered by \(S \).
<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Normality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Weighted Coverage (Timestamps)

\[F(S') = \sum_{e \in S} w_T(t_e) \]

- Claim: \(F(S) \) is submodular, monotone and normal

- Analogous arguments to that of weighted coverage (relationships) are applicable
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Normality</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Generalized earlier coverage function to linear combination of weighted coverage functions

\[F(S) = F_1(S) + F_2(S) \]

Goal: \(\max_{|S| \leq k} F(S) \)

Claim: \(F(S) \) is submodular, monotone and normal

where

\[R = \bigcup_{e \in S} X_e \]
- **Submodularity:** F(S) is a non-negative linear combination of two submodular functions. Therefore, it is submodular too.

- **Normality:** \(F_1(\emptyset) = 0 = F_2(\emptyset) \)
 \(F_1(\emptyset) + F_2(\emptyset) = 0 \)

- **Monotonicity:** Let \(A \subseteq B \subseteq S \),
 \[F_1(A) \leq F_1(B) \text{ and } F_2(A) \leq F_2(B) \]
 \[F_1(A) + F_2(A) \leq F_1(B) + F_2(B) \]
Summary so far

<table>
<thead>
<tr>
<th></th>
<th>Simple Coverage</th>
<th>Weighted Coverage (Relationships)</th>
<th>Weighted Coverage (Timestamps)</th>
<th>Complete Optimization Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submodularity</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Normality</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Lazy Optimization of Submodular Functions
Greedy Solution

Greedy

Marginal gain:
\[F(S \cup x) - F(S) \]

- **Greedy Algorithm is Slow!**
- At each iteration, we need to evaluate marginal gains of all the remaining elements
- Runtime \(O(|U| \times K) \) for selecting \(K \) elements out of the set \(U \)

Add element with highest marginal gain
In round i:
- So far we have $S_{i-1} = \{e_1 \ldots e_{i-1}\}$
- Now we pick an element $e \not\in S_{i-1}$ which maximizes the marginal benefit $\Delta_i = F(S_{i-1} \cup \{e\}) - F(S_{i-1})$

Observation:
- *Marginal gain of any element e can never increase!*
- For every element e, $\Delta_i(d) \geq \Delta_j(d)$ for all $i < j$
Lazy Greedy

- **Idea:**
 - Use Δ_i as upper-bound on Δ_j ($j > i$)

- **Lazy Greedy:**
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

\[
F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) \quad A \subseteq B
\]
Lazy Greedy

- **Idea:**
 - Use Δ_i as upper-bound on Δ_j ($j > i$)

- **Lazy Greedy:**
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

\[
F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) \quad A \subseteq B
\]
Lazy Greedy

- **Idea:**
 - Use Δ_i as upper-bound on Δ_j ($j > i$)

- **Lazy Greedy:**
 - Keep an ordered list of marginal benefits Δ_i from previous iteration
 - Re-evaluate Δ_i only for top node
 - Re-sort and prune

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) \quad A \subseteq B$$

Upper bound on Marginal gain Δ_2

- $A_1 = \{a\}$
- $A_2 = \{a, b\}$

[Leskovec et al., KDD ’07]
Lazy greedy offers significant speed-up over traditional greedy implementations in practice.

[Leskovec et al., KDD '07]
More about Submodular Optimization

<table>
<thead>
<tr>
<th></th>
<th>Submodular Maximization</th>
<th>Submodular Minimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained</td>
<td>NP-Hard but well-approximable with Greedy-style algorithms for cardinality, matroid constraints; Non-greedy for more complex (connectivity) constraints</td>
<td></td>
</tr>
</tbody>
</table>
More about Submodular Optimization

<table>
<thead>
<tr>
<th></th>
<th>Submodular Maximization</th>
<th>Submodular Minimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained</td>
<td>NP-Hard but well-approximable (if non-negative)</td>
<td></td>
</tr>
<tr>
<td>Constrained</td>
<td>NP-Hard but well-approximable with Greedy-style algorithms for cardinality, matroid constraints; Non-greedy for more complex (connectivity) constraints</td>
<td></td>
</tr>
</tbody>
</table>
More about Submodular Optimization

<table>
<thead>
<tr>
<th></th>
<th>Submodular Maximization</th>
<th>Submodular Minimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained</td>
<td>NP-Hard but well-approximable (if non-negative)</td>
<td>Polynomial time! Generally inefficient (n^6), but can exploit special cases (cuts; symmetry etc.)</td>
</tr>
<tr>
<td>Constrained</td>
<td>NP-Hard but well-approximable with Greedy-style algorithms for cardinality, matroid constraints; Non-greedy for more complex (connectivity) constraints</td>
<td></td>
</tr>
</tbody>
</table>
More about Submodular Optimization

<table>
<thead>
<tr>
<th></th>
<th>Submodular Maximization</th>
<th>Submodular Minimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained</td>
<td>NP-Hard but well-approximable (if non-negative)</td>
<td>Polynomial time! Generally inefficient ((n^6)), but can exploit special cases (cuts; symmetry etc.)</td>
</tr>
<tr>
<td>Constrained</td>
<td>NP-Hard but well-approximable with Greedy-style algorithms for cardinality, matroid constraints; Non-greedy for more complex (connectivity) constraints</td>
<td>NP-Hard, hard to approximate, still useful algorithms</td>
</tr>
</tbody>
</table>
References

- Andreas Krause, Daniel Golovin, Submodular Function Maximization
- Leskovec et. al., Cost-effective Outbreak Detection in Networks, KDD 2007
- Althoff et. al., TimeMachine: Timeline Generation for Knowledge-Base Entities, KDD 2015