Mining Massive Datasets: Review

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
Models and tools for discovering patterns and answering queries that are:

- **Valid**: Hold on new data with some certainty
- **Useful**: Should be possible to act on the item
- **Unexpected**: Non-obvious to the system
- **Understandable**: Humans should be able to interpret the pattern
Mining Massive Datasets

- Overlaps with machine learning, statistics, artificial intelligence, databases, but more stress on:
 - **Scalability** of number of features and instances
 - **Algorithms** and **architectures**
 - Automation for handling large data
What We Have Covered

- Apriori
- MapReduce
- Association rules
- Frequent itemsets
- PCY
- Recommender systems
- PageRank
- TrustRank
- HITS
- SVM
- Decision Trees
- Perceptron
- Web Advertising
- DGIM
- Bandits
- BFR
- Regret
- LSH
- MinHash
- SVD
- Clustering
- Matrix factorization
- CUR
- Bloom filters
- Flajolet-Martin
- CURE
- Submodularity
- SGD
- Collaborative Filtering
- SimRank
- Random hyperplanes
- Trawling
- AND-OR constructions
- k-means
How It All Fits Together

- **Based on different types of data:**
 - Data is **high dimensional**
 - Data is a **graph**
 - Data is **never-ending**
 - Data is **labeled**

- **Based on different models of computation:**
 - Single machine in-memory
 - MapReduce
 - Streams
 - Batch (offline) vs. Active (online) algorithms
Based on different applications:
- Recommender systems
- Market basket analysis
- Link analysis, spam detection
- Duplicate detection and similarity search
- Web advertising

Based on different “tools”:
- Linear algebra: SVD, Matrix factorization
- Optimization: Stochastic gradient descent
- Dynamic programming: Frequent itemsets
- Hashing: LSH, Bloom filters
How It All Fits Together

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection
- Spam Detection

Infinite data
- Filtering data streams
- Web advertising
- Queries on streams

Machine learning
- SVM
- Decision Trees
- Perceptron, kNN, Bandits

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
How it all fits together?

Data is High-dimensional:
- Locality Sensitive Hashing
- Dimensionality reduction
- Clustering

Data is a graph:
- Link Analysis: PageRank, TrustRank, Hubs & Authorities

Data is Labeled (Machine Learning):
- kNN, Perceptron, SVM, Decision Trees

Data is infinite:
- Mining data streams
- Advertising on the Web

Applications:
- Association Rules
- Recommender systems
(1) Finding “similar” sets

1. **Shingling**: Convert docs to sets
2. **Minhashing**: Convert large sets to short signatures, while preserving similarity
3. **Locality-sensitive hashing**: Focus on pairs of signatures likely to be of similar documents

Candidate pairs: those pairs of signatures that we need to test for similarity

- **Docum-**
- **Shingling**
- **Minhashing**
- **Locality-sensitive Hashing**

Signatures: short integer vectors that represent the sets, and reflect their similarity

- **The set of strings of length \(k \) that appear in the document**
(2) Dimensionality Reduction

\[A \approx U\Sigma V^T = \sum_i \sigma_i u_i \circ v_i \]
(3) Clustering

- **Hierarchical:**
 - **Agglomerative** (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two “nearest” clusters into one
 - Represent a cluster by its centroid or clustroid

- **Point Assignment:** k-means, BFR
 - Maintain a set of clusters
 - Points belong to “nearest” cluster
High-dim data methods: Comparison

- **LSH:**
 - Find *somewhat* similar pairs of items while avoiding $O(N^2)$ comparisons

- **Clustering:**
 - Assign points into a *pre-specified* number of clusters
 - Each point belongs to a single cluster
 - Summarize the cluster by a centroid

- **SVD (dimensionality reduction):**
 - Want to explore/exploit *correlations* in the data
 - Some dimensions may be irrelevant
 - Useful for visualization, removing noise from the data, detecting anomalies
Find all similar pairs of items: **LSH**
- Have to know the threshold ahead of time
- Allow for some error

Identify clusters (structure in data): **k-means**
- k is usually relatively small (10~1000)
- Useful for identifying ‘types’ or ‘classes’ of datapoints

Build low-dimensional representation of data: **SVD**
- More robust (noise-free) similarity computation
- Data compression (memory saving, speed-up)
How it all fits together?

Data is high-dimensional:
- Locality Sensitive Hashing
- Dimensionality reduction
- Clustering

The data is a graph:
- Link Analysis: PageRank, TrustRank, Hubs & Authorities

Data is labeled (Machine Learning):
- kNN, Perceptron, SVM, Decision Trees

Data is infinite:
- Mining data streams
- Advertising on the Web

Applications:
- Association Rules
- Recommender systems
Rank nodes using the network link structure

PageRank:
- **Link voting:**
 - Page of importance x has n out-links, each gets x/n votes
 - Page R’s importance is the sum of the votes on its in-links

Complications: Spider traps, Dead-ends

Solution: At each step, random surfer has 2 options
- With probability β, follow a link at random
- With prob. $1-\beta$, jump to some page uniformly at random

Power method to compute PageRank
PPR, SimRank, HITS

- **Personalized (topic specific) PageRank**
 - Random walker teleports to a preselected set of nodes

- **Random Walk with Restarts**
 - Random walker always jumps back to the starting node

- **SimRank**
 - Measure similarity between items
 - k-partite graph with k types of nodes
 - Perform a random-walk with restarts from node N
 - Resulting prob. distrib. is similarity of other nodes to N

- **Hubs & Authorities**
 - Experts vs. Content provides
 - Principle of repeated improvement
WebSpam and PageRank

- Web spam farming
 - Architecture of a spam farm
 - Effect of spam farms on PageRank score
- TrustRank
 - Topic specific PageRank with a teleport set of “trusted” pages
 - Spam Mass of a page
Analysis of Large Graphs

- **AGM (Affiliation Graph Model)**

 Generative model

 MLE estimation

- **BigCLAM (CLuster Affiliation Model)**

 Generative model

 MLE estimation
How it all fits together?

Data is high-dimensional:
- Locality Sensitive Hashing
- Dimensionality reduction
- Clustering

The data is a graph:
- Link Analysis: PageRank, TrustRank, Hubs & Authorities

Data is labeled (Machine Learning):
- kNN, Perceptron, SVM, Decision Trees

Data is infinite:
- Mining data streams
- Advertising on the Web

Applications:
- Association Rules
- Recommender systems
Support Vector Machines

- **Prediction** = \(\text{sign}(w \cdot x + b) \)
 - Model parameters \(w, b \)
- **Margin**: \(\gamma = \frac{||w||}{w \cdot w} = \frac{1}{||w||} \)
- **SVM optimization problem**:
 \[
 \min_{w,b,\xi_i \geq 0} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i \\
 \text{s.t.} \forall i, y_i(w \cdot x_i + b) \geq 1 - \xi_i
 \]
- Find \(w,b \) using **Stochastic gradient descent**
Building decision trees using MapReduce

- **How to predict?**
 - **Predictor**: avg. y_i of the examples in the leaf

- **When to stop?**
 - # of examples in the leaf is small

- **How to build?**
 - One MapReduce job per level
 - Need to compute split quality for each attribute and each split value for each current leaf

Algorithm 1: FindBestSplit

Require: Node n, Data $D \subseteq D^*$

1. $(n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$
2. if StoppingCriteria(D_L) then
3. $n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)$
4. else
5. FindBestSplit($n \rightarrow \text{left}, D_L$)
6. if StoppingCriteria(D_R) then
7. $n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)$
8. else
9. FindBestSplit($n \rightarrow \text{right}, D_R$)
Learning Through Experimentation

- Learning through experimentation
 - Exploration-Exploitation tradeoff
 - Regret
- Multiarmed Bandits
 - Epsilon-Greedy
 - UCB1 algorithm
- Submodular function optimization
 - Coverage
 - Greedy and Lazy-Greedy algorithms
 - Multiplicative Weights algorithm
When to use which method?

- **SVM**: Classification
 - Millions of sparse numerical features (e.g., documents)
 - Simple (linear) decision boundary
 - Somewhat hard to interpret model

- **k-NN**: Classification or regression
 - (Many) numerical features
 - Many design decisions – distance metric, k, weighting, ... there is no simple way to set them!

- **Decision Trees**: Classification or Regression
 - Relatively few dense features (handles categorical features)
 - Complicated decision boundary: Overfitting!
 - Easy to explain/interpret the classification
 - Bagged Decision Trees – very, very hard to beat!

- **Bandits**: Learning through experimentation
 - Exploration-Exploitation tradeoff
What if “ML alg. doesn’t work”?

- **Over- vs. under-fitting**
 - Compare error on the train/test set
 - Plot error vs. (regularization) parameter

- **Debugging:**
 - Compare performance to a simple baseline
 - Build synthetic datasets for which you know your method should work

- **Think about:**
 - The prediction problem
 - Error metrics
 - Model assumptions
 - Properties of the data
Get more training data
- Sometimes more data doesn't help but often it does

Try a smaller set of features
- Carefully select small subset
- You can do this by hand, or use SVD

Try getting additional features
- LOOK at the data
- Can be very time consuming

Adding polynomial features
- Include x and x^2 as features

Building your own, new, better features
- Based on your knowledge of the problem

Try decreasing or increasing regularization parameter
- Change how important the regularization term is
How it all fits together?

Data is high-dimensional:
- Locality Sensitive Hashing
- Dimensionality reduction
- Clustering

The data is a graph:
- Link Analysis: PageRank, TrustRank, Hubs & Authorities

Data is labeled (Machine Learning):
- kNN, Perceptron, SVM, Decision Trees

Data is infinite:
- Mining data streams
- Advertising on the Web

Applications:
- Association Rules
- Recommender systems
Mining Data Streams

- Ad-Hoc Queries
- Processor
- Limited Working Storage
- Archival Storage
- Streams Entering
 - ... 1, 5, 2, 7, 0, 9, 3
 - ... a, r, v, t, y, h, b
 - ... 0, 0, 1, 0, 1, 1, 0
 - time
Problems on data streams

- Sampling data from a stream:
 - Each element is included with prob. \(\frac{k}{N} \)

- Queries over sliding windows:
 How many 1s are in last \(k \) bits?

- Filtering a stream: Bloom filters
 - Filter elements with property \(x \)

- Counting distinct elements:
 - Number of distinct elements in the last \(k \) elements of the stream

- Estimating moments
Online algorithms & Advertising

- You get to see one input piece at a time, and need to make irrevocable decisions

- **Competitive ratio** = \(\min_{\text{all inputs}} \left(\frac{|M_{my_alg}|}{|M_{opt}|} \right) \)

- **Adwords problem:**
 - Query arrives to a search engine
 - Several advertisers bid on the query
 - Pick a subset of advertisers whose ads are shown

- **Greedy online matching:** competitive ratio \(\geq 1/2 \)
How it all fits together?

Data is high-dimensional:
- Locality Sensitive Hashing
- Dimensionality reduction
- Clustering

The data is a graph:
- Link Analysis: PageRank, TrustRank, Hubs & Authorities

Data is labeled (Machine Learning):
- kNN, Perceptron, SVM, Decision Trees

Data is infinite:
- Mining data streams
- Advertising on the Web

Applications:
- Association Rules
- Recommender systems

Market-basket model:
- **Goal:** To identify items that are bought together by sufficiently many customers
- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items

Discovering frequent items: A-priori, PCY

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Rules Discovered:
- \{Milk\} \rightarrow \{Coke\}
- \{Diaper, Milk\} \rightarrow \{Beer\}
Recommender Systems

- **User-user collaborative filtering**
 - Consider user c
 - Find set D of other users whose ratings are “similar” to c’s ratings
 - Estimate user’s ratings based on the ratings of users in D

- **Item-item collaborative filtering**
 - Estimate rating for item based on ratings for similar items

- **Profile based**
Latent Factor Models: Netflix

User bias
- Characterizes the matching between users and movies
- Attracts most research in the field

Movie bias
- Baseline predictor
 - Separates users and movies
 - Benefits from insights into user’s behavior

User-movie interaction
- User-Movie interaction
 - Characterizes the matching between users and movies
 - Attracts most research in the field

\[
\min_{Q,P} \sum_{(u,i) \in R} \left(r_{ui} - (\mu + b_u + b_i + q_i p_u^T) \right)^2 \\
+ \lambda \left(\sum_i \|q_i\|^2 + \sum_u \|p_u\|^2 + \sum_u \|b_u\|^2 + \sum_i \|b_i\|^2 \right)
\]
When to use which method?

- **Lots of rating data: CF**
 - Easy to tweak, easy to add lots of features/signals
 - Use optimization to learn weights on how to combine features

- **Lots2 of rating data: CF + Latent factors**
 - Many ratings per user, many ratings per item
 - Depending on the amount of data make the model more/less complex (more/less parameters)

- **Cold start, little data: Profile based**
 - Need to have good user/item features and similarity metric
In closing...
What we’ve learned this quarter

- MapReduce
- Association Rules
- Apriori algorithm
- Finding Similar Items
- Locality Sensitive Hashing
- Random Hyperplanes
- Dimensionality Reduction
- Singular Value Decomposition
- CUR method
- Clustering
- Recommender systems
- Collaborative filtering
- PageRank and TrustRank
- Hubs & Authorities
- k-Nearest Neighbors
- Perceptron
- Support Vector Machines
- Stochastic Gradient Descent
- Decision Trees
- Mining data streams
- Bloom Filters
- Flajolet-Martin
- Advertising on the Web
Map of Superpowers

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection
- Spam Detection

Infinite data
- Filtering data streams
- Web advertising
- Queries on streams

Machine learning
- SVM
- Decision Trees
- Perceptron, kNN

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Applying Your Superpowers
How to analyze large datasets to discover models and patterns that are:

- **Valid**: Hold on new data with some certainty
- **Novel**: Non-obvious to the system
- **Useful**: Should be possible to act on the item
- **Understandable**: Humans should be able to interpret the pattern
What next? Seminars

- **Seminars:**
 - InfoSeminar: http://i.stanford.edu/infoseminar
 - RAIN Seminar: http://rain.stanford.edu

- **Conferences:**
 - **KDD**: ACM Conf. on Knowledge Discovery & Data Mining
 - **WSDM**: ACM Conf. on Web Search and Data Mining
 - **ICDM**: IEEE International Conf. on Data Mining
 - **WWW**: World Wide Web Conference
 - **ICML**: International Conf. on Machine Learning
 - **VLDB**: Very Large Data Bases
Data mining research project on real data

- Groups of 3 students
- We provide interesting data, computing resources (Amazon EC2) and mentoring
- You provide project ideas
- There are (practically) no lectures, only individual group mentoring

Information session:
Today 6pm in Gates 415
(there will be pizza)
What Next? Courses

- **Other relevant courses**
 - **CS224W**: Social and Information Network Analysis
 - **CS276**: Information Retrieval and Web Search
 - **CS229**: Machine Learning
 - **CS245**: Database System Principles
 - **CS347**: Distributed Databases
 - **CS448g**: Interactive Data Analysis
What Next? Final Exam

DON'T PANIC
In Closing

- You Have Done a Lot!!!
- And (hopefully) learned a lot!!!
 - Answered questions and proved many interesting results
 - Implemented a number of methods
 - And did excellently on the final!

Thank You for the Hard Work!!!