Analysis of Large Graphs: Link Analysis, PageRank

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection

Infinite data
- Filtering data streams
- Web advertising
- Queries on streams

Machine learning
- SVM
- Decision Trees
- Perceptron, kNN

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
Citation networks and Maps of science
[Börner et al., 2012]
Graph Data: Communication Nets

Internet

domain1

domain2

domain3

router
The Seven Bridges of Königsberg

Euler, 1735

Return to the starting point by traveling each link of the graph once and only once.
Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer Science Department at Stanford

Stanford University
Web as a directed graph:

- **Nodes**: Webpages
- **Edges**: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer Science Department at Stanford

Stanford University
Web as a Directed Graph
How to organize the Web?

First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart

Second try: Web Search
- Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, random things, web spam, etc.
2 challenges of web search:

1. Web contains many sources of information
 Who to “trust”?
 - Trick: Trustworthy pages may point to each other!

2. What is the “best” answer to query “newspaper”?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers
All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

There is large diversity in the web-graph node connectivity.

Let’s rank the pages by the link structure!
We will cover the following Link Analysis approaches for computing importances of nodes in a graph:

- Page Rank
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms
PageRank: The “Flow” Formulation
Idea: Links as votes

- Page is more important if it has more links
 - In-coming links? Out-going links?

Think of in-links as votes:

- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

Are all in-links are equal?

- Links from important pages count more
- Recursive question!
Example: PageRank Scores

A 3.3
B 38.4
C 34.3
D 3.9
E 8.1
F 3.9

1.6 1.6 1.6
1.6 1.6 1.6
1.6 1.6 1.6
Each link’s vote is proportional to the importance of its source page.

If page j with importance r_j has n out-links, each link gets r_j / n votes.

Page j’s own importance is the sum of the votes on its in-links.

$$r_j = r_i/3 + r_k/4$$
PageRank: The “Flow” Model

- A “vote” from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a “rank” r_j for page j

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$$

d_i … out-degree of node i

Flow” equations:

$$r_y = \frac{r_y}{2} + \frac{r_a}{2}$$

$$r_a = \frac{r_y}{2} + \frac{r_m}{2}$$

$$r_m = \frac{r_a}{2}$$

The web in 1839
Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
 - $r_y + r_a + r_m = 1$
 - Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

Flow equations:

\[
\begin{align*}
 r_y &= r_y/2 + r_a/2 \\
 r_a &= r_y/2 + r_m \\
 r_m &= r_a/2
\end{align*}
\]
PageRank: Matrix Formulation

- **Stochastic adjacency matrix** \(M \)
 - Let page \(i \) has \(d_i \) out-links
 - If \(i \rightarrow j \), then \(M_{ji} = \frac{1}{d_i} \) else \(M_{ji} = 0 \)
 - \(M \) is a column stochastic matrix
 - Columns sum to 1

- **Rank vector** \(r \): vector with an entry per page
 - \(r_i \) is the importance score of page \(i \)
 - \(\sum_i r_i = 1 \)

- **The flow equations can be written**
 \[
 r_{j} = \sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}
 \]
 \[
 r = M \cdot r
 \]
Example

- Remember the flow equation:
 \[r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \]

- Flow equation in the matrix form:
 \[M \cdot r = r \]

- Suppose page \(i \) links to 3 pages, including \(j \)

\[\sum_{i \rightarrow j} \frac{r_i}{d_i} = \]

\[\begin{array}{c}
M \cdot r = r
\end{array} \]
The flow equations can be written
\[r = M \cdot r \]
So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \)
- In fact, its first or principal eigenvector, with corresponding eigenvalue \(1 \)
 - Largest eigenvalue of \(M \) is \(1 \) since \(M \) is column stochastic (with non-negative entries)
 - \textit{We know} \(r \) \textit{is unit length and each column of} \(M \) \textit{sums to one, so} \(M r \leq 1 \)

We can now efficiently solve for \(r \)!
The method is called Power iteration

\textbf{NOTE:} \(x \) is an eigenvector with the corresponding eigenvalue \(\lambda \) if:
\[A x = \lambda x \]
Example: Flow Equations & M

$$r = M \cdot r$$

<table>
<thead>
<tr>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
</tbody>
</table>

$$r_y = r_y / 2 + r_a / 2$$
$$r_a = r_y / 2 + r_m$$
$$r_m = r_a / 2$$
Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.

Power iteration: a simple iterative scheme

- Suppose there are N web pages.
- Initialize: $\mathbf{r}^{(0)} = [1/N, \ldots, 1/N]^T$.
- Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$.
- Stop when $|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}|_1 < \varepsilon$.

$$r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i}$$

d_i out-degree of node i

$|\mathbf{x}|_1 = \sum_{1 \leq i \leq N} |x_i|$ is the L_1 norm.

Can use any other vector norm, e.g., Euclidean.
PageRank: How to solve?

- Power Iteration:
 - Set $r_j = 1/N$
 - $1: r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - $2: r = r'$
 - Goto 1

- Example:
 \[
 \begin{pmatrix}
 r_y \\
 r_a \\
 r_m
 \end{pmatrix} = \begin{pmatrix} 1/3 \\
 1/3 \\
 1/3
 \end{pmatrix}
 \]

 Iteration 0, 1, 2, …
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - 1: $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - 2: $r = r'$
 - Goto 1

- **Example:**

 \[
 \begin{pmatrix}
 r_y \\
 r_a \\
 r_m
 \end{pmatrix}
 =
 \begin{pmatrix}
 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\
 1/3 & 3/6 & 1/3 & 11/24 & \ldots & 6/15 \\
 1/3 & 1/6 & 3/12 & 1/6 & 3/15
 \end{pmatrix}
 \]

 Iteration 0, 1, 2, …

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

 - $r_y = r_y / 2 + r_a / 2$
 - $r_a = r_y / 2 + r_m$
 - $r_m = r_a / 2$
Why Power Iteration works? (1)

- **Power iteration:**
 A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)
 - $r^{(1)} = M \cdot r^{(0)}$
 - $r^{(2)} = M \cdot r^{(1)} = M(Mr^{(1)}) = M^2 \cdot r^{(0)}$
 - $r^{(3)} = M \cdot r^{(2)} = M(M^2r^{(0)}) = M^3 \cdot r^{(0)}$

- **Claim:**
 Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \ldots, M^k \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M
Claim: Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \ldots M^k \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Proof:

- Assume M has n linearly independent eigenvectors, x_1, x_2, \ldots, x_n with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, where $\lambda_1 > \lambda_2 > \cdots > \lambda_n$.
- Vectors x_1, x_2, \ldots, x_n form a basis and thus we can write:
 \[r^{(0)} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \]

- $M r^{(0)} = M (c_1 x_1 + c_2 x_2 + \cdots + c_n x_n)$
 \[= c_1 (Mx_1) + c_2 (Mx_2) + \cdots + c_n (Mx_n) \]
 \[= c_1 (\lambda_1 x_1) + c_2 (\lambda_2 x_2) + \cdots + c_n (\lambda_n x_n) \]

- Repeated multiplication on both sides produces
 \[M^k r^{(0)} = c_1 (\lambda_1^k x_1) + c_2 (\lambda_2^k x_2) + \cdots + c_n (\lambda_n^k x_n) \]
Claim: Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \ldots M^k \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Proof (continued):

- Repeated multiplication on both sides produces
 \[M^k r^{(0)} = c_1 (\lambda_1^k x_1) + c_2 (\lambda_2^k x_2) + \cdots + c_n (\lambda_n^k x_n) \]

- \[M^k r^{(0)} = \lambda_1^k \left[c_1 x_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \cdots + c_n \left(\frac{\lambda_n}{\lambda_1} \right)^k x_n \right] \]

- Since $\lambda_1 > \lambda_2$ then fractions $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1} \ldots < 1$
 and so $\left(\frac{\lambda_i}{\lambda_1} \right)^k = 0$ as $k \to \infty$ (for all $i = 2 \ldots n$).

Thus: $M^k r^{(0)} \approx c_1 (\lambda_1^k x_1)$

- Note if $c_1 = 0$ then the method won’t converge
Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time $t + 1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- $p(t)$... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- So, $p(t)$ is a probability distribution over pages
Where is the surfer at time $t+1$?

- Follows a link uniformly at random
 $$p(t + 1) = M \cdot p(t)$$

Suppose the random walk reaches a state

$$p(t + 1) = M \cdot p(t) = p(t)$$

then $p(t)$ is **stationary distribution** of a random walk

- Our original rank vector r satisfies
 $$r = M \cdot r$$

 So, r is a stationary distribution for the random walk
A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $t = 0$.
PageRank: The Google Formulation
PageRank: Three Questions

\[r_{j}^{(t+1)} = \sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{d_{i}} \]

or equivalently

\[r = Mr \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

Example:

\[\begin{align*}
 r_a &= \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \end{pmatrix} \\
 r_b &= \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \end{pmatrix}
\end{align*} \]

Iteration 0, 1, 2, …

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]
Does it converge to what we want?

- Example:

\[
\begin{align*}
\mathbf{r}_a &= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \\
\mathbf{r}_b &= \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}
\end{align*}
\]

Iteration 0, 1, 2, …

\[
\mathbf{r}_j^{(t+1)} = \sum_{i \rightarrow j} \frac{\mathbf{r}_i^{(t)}}{d_i}
\]
2 problems:

1. Some pages are **dead ends** (have no out-links)
 - Random walk has “nowhere” to go to
 - Such pages cause importance to “leak out”

2. **Spider traps:**
 (all out-links are within the group)
 - Random walked gets “stuck” in a trap
 - And eventually spider traps absorb all importance
Problem: Spider Traps

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

 \[
 \begin{pmatrix}
 r_y \\
 r_a \\
 r_m
 \end{pmatrix} =
 \begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 3/6 & 7/12 & 16/24 & 1
 \end{pmatrix}
 \]

 Iteration 0, 1, 2, …

 All the PageRank score gets “trapped” in node m.

- Table:

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>½</td>
<td>½</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>½</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>½</td>
<td>1</td>
</tr>
</tbody>
</table>

 \[
 r_y = \frac{r_y}{2} + \frac{r_a}{2} \\
 r_a = \frac{r_y}{2} \\
 r_m = \frac{r_a}{2} + r_m
 \]
The Google solution for spider traps: At each time step, the random surfer has two options:

- With prob. β, follow a link at random
- With prob. $1-\beta$, jump to some random page
- Common values for β are in the range 0.8 to 0.9

Surfer will teleport out of spider trap within a few time steps
Problem: Dead Ends

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} =
\begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 1/6 & 1/12 & 2/24 & 0
\end{pmatrix}
\]

Iteration 0, 1, 2, …

Here the PageRank “leaks” out since the matrix is not stochastic.
Solution: Always Teleport!

- **Teleports**: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

```
<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/2</td>
<td>1/2</td>
<td>1/3</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>0</td>
<td>1/3</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>1/2</td>
<td>1/3</td>
</tr>
</tbody>
</table>
```
Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- **Spider-traps** are not a problem, but with traps PageRank scores are **not** what we want
 - **Solution:** Never get stuck in a spider trap by teleporting out of it in a finite number of steps

- **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - **Solution:** Make matrix column stochastic by always teleporting when there is nowhere else to go
Google’s solution that does it all:
At each step, random surfer has two options:
- With probability β, follow a link at random
- With probability $1-\beta$, jump to some random page

PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} \cdot \frac{1}{N}$$

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.
The Google Matrix

- **PageRank equation** [Brin-Page, ‘98]

\[
 r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}
\]

- **The Google Matrix A:**

\[
 A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}
\]

- We have a recursive problem: \(r = A \cdot r \)

And the Power method still works!

- **What is \(\beta \)?**
 - In practice \(\beta = 0.8, 0.9 \) (make 5 steps on avg., jump)
Random Teleports ($\beta = 0.8$)

$$
\begin{pmatrix}
1/3 & 0.33 & 0.24 & 0.26 & 7/33 \\
1/3 & 0.20 & 0.20 & 0.18 & \ldots & 5/33 \\
1/3 & 0.46 & 0.52 & 0.56 & 21/33
\end{pmatrix}
$$
How do we actually compute the PageRank?
Key step is matrix-vector multiplication

\[r^{\text{new}} = A \cdot r^{\text{old}} \]

Easy if we have enough main memory to hold \(A, r^{\text{old}}, r^{\text{new}} \)

Say \(N = 1 \text{ billion pages} \)

- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix \(A \) has \(N^2 \) entries
 - \(10^{18} \) is a large number!

\[
A = \beta \cdot M + (1-\beta) \left[\frac{1}{N} \right]_{N \times N}
\]

\[
A = \begin{bmatrix}
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 0 \\
 0 & \frac{1}{2} & 1 \\
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
 7/15 & 7/15 & 1/15 \\
 7/15 & 1/15 & 1/15 \\
 1/15 & 7/15 & 13/15 \\
\end{bmatrix}
\]
Rearranging the Equation

- \(\mathbf{r} = A \cdot \mathbf{r} \), where \(A_{ji} = \beta \ M_{ji} + \frac{1-\beta}{N} \)

- \(r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i \)

- \(r_j = \sum_{i=1}^{N} \left[\beta \ M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i \)

 \[= \sum_{i=1}^{N} \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i \]

 \[= \sum_{i=1}^{N} \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N} \]

 since \(\sum r_i = 1 \)

- So we get: \(\mathbf{r} = \beta \ M \cdot \mathbf{r} + \left[\frac{1-\beta}{N} \right]_{N} \)

Note: Here we assumed \(\mathbf{M} \) has no dead-ends

\([x]_N \ldots \text{a vector of length } N \text{ with all entries } x\)
We just rearranged the PageRank equation

\[r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right]_N \]

- where \([(1-\beta)/N]_N\) is a vector with all \(N\) entries \((1-\beta)/N\)

- \(M\) is a **sparse matrix**! (with no dead-ends)
 - 10 links per node, approx 10\(N\) entries
- So in each iteration, we need to:
 - Compute \(r^{new} = \beta M \cdot r^{old}\)
 - Add a constant value \((1-\beta)/N\) to each entry in \(r^{new}\)
 - Note if \(M\) contains dead-ends then \(\sum_j r_j^{new} < 1\) and we also have to renormalize \(r^{new}\) so that it sums to 1
PageRank: The Complete Algorithm

- **Input:** Graph G and parameter β
 - Directed graph G (can have spider traps and dead ends)
 - Parameter β
- **Output:** PageRank vector r^{new}

- **Set:** $r_j^{old} = \frac{1}{N}$
- **repeat until convergence:** $\sum_j |r_j^{new} - r_j^{old}| > \varepsilon$
 - $\forall j$: $r_j^{new} = \sum_{i \rightarrow j} \beta \frac{r_i^{old}}{d_i}$
 - $r_j^{new} = 0$ if in-degree of j is 0
 - **Now re-insert the leaked PageRank:**
 - $\forall j$: $r_j^{new} = r_j^{new} + \frac{1-S}{N}$ where: $S = \sum_j r_j^{new}$
 - $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.

2/2/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets
Sparse Matrix Encoding

- **Encode sparse matrix using only nonzero entries**
 - Space proportional roughly to number of links
 - Say $10N$, or $4 \times 10 \times 1$ billion = 40GB
 - Still won’t fit in memory, but will fit on disk

<table>
<thead>
<tr>
<th>source node</th>
<th>degree</th>
<th>destination nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17, 64, 113, 117, 245</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>
Basic Algorithm: Update Step

- Assume enough RAM to fit r^{new} into memory
 - Store r^{old} and matrix M on disk
- 1 step of power-iteration is:
 - Initialize all entries of $r^{new} = (1-\beta) / N$
 - For each page i (of out-degree d_i):
 - Read into memory: $i, d_i, dest_1, ..., dest_{d_i}, r^{old}(i)$
 - For $j = 1...d_i$
 - $r^{new}(dest_j) += \beta r^{old}(i) / d_i$

<table>
<thead>
<tr>
<th>r^{new}</th>
<th>source</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>17, 64, 113, 117</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
<td></td>
</tr>
</tbody>
</table>
Assume enough RAM to fit r^{new} into memory

- Store r^{old} and matrix M on disk

In each iteration, we have to:

- Read r^{old} and M
- Write r^{new} back to disk

Cost per iteration of Power method:

$$= 2|r| + |M|$$

Question:

- What if we could not even fit r^{new} in memory?
Break r^{new} into k blocks that fit in memory

Scan M and r^{old} once for each block
Similar to nested-loop join in databases

- Break r^{new} into k blocks that fit in memory
- Scan M and r^{old} once for each block

Total cost:

- k scans of M and r^{old}
- **Cost per iteration of Power method:**

 $$k(|M| + |r|) + |r| = k|M| + (k+1)|r|$$

Can we do better?

- **Hint:** M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration
Block-Stripe Update Algorithm

Break M into stripes! Each stripe contains only destination nodes in the corresponding block of r^{new}.

<table>
<thead>
<tr>
<th></th>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

r^{new}

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>

r^{old}

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>
Break M into stripes

- Each stripe contains only destination nodes in the corresponding block of r^{new}

- Some additional overhead per stripe
 - But it is usually worth it

Cost per iteration of Power method:

$$= |M|(1+\varepsilon) + (k+1)|r|$$
Some Problems with Page Rank

- **Measures generic popularity of a page**
 - Biased against topic-specific authorities
 - **Solution:** Topic-Specific PageRank (next)

- **Uses a single measure of importance**
 - Other models of importance
 - **Solution:** Hubs-and-Authorities

- **Susceptible to Link spam**
 - Artificial link topographies created in order to boost page rank
 - **Solution:** TrustRank