Finding Similar Items: Locality Sensitive Hashing
New thread: High dim. data

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Network Analysis
- Spam Detection

Infinite data
- Filtering data streams
- Web advertising
- Queries on streams

Machine learning
- SVM
- Decision Trees
- Perceptron, kNN

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Scene Completion Problem

[Hays and Efros, SIGGRAPH 2007]
Scene Completion Problem

[Hays and Efros, SIGGRAPH 2007]
Scene Completion Problem

10 nearest neighbors from a collection of 20,000 images

[Hays and Efros, SIGGRAPH 2007]
Scene Completion Problem

10 nearest neighbors from a collection of 2 million images

[Hays and Efros, SIGGRAPH 2007]
Many problems can be expressed as finding “similar” sets:

- Find near-neighbors in high-dimensional space

Examples:

- Pages with similar words
 - For duplicate detection, classification by topic
- Customers who purchased similar products
 - Products with similar customer sets
- Images with similar features
 - Users who visited similar websites
Given: High dimensional data points x_1, x_2, \ldots

- **For example:** Image is a long vector of pixel colors

 \[
 \begin{bmatrix}
 1 & 2 & 1 \\
 0 & 2 & 1 \\
 0 & 1 & 0
 \end{bmatrix} \rightarrow [1 2 1 0 2 1 0 1 0]
 \]

- **And some distance function** $d(x_1, x_2)$
 - Which quantifies the “distance” between x_1 and x_2

- **Goal:** Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_j) \leq s$

- **Note:** Naïve solution would take $O(N^2)$
 - where N is the number of data points

- **MAGIC:** This can be done in $O(N)$!! How?
Relation to the Previous Lecture

- **Last time:** Finding frequent pairs

 Naïve solution:
 Single pass but requires space quadratic in the number of items

 N … number of distinct items
 K … number of items with support ≥ s

 A-Priori:
 First pass: Find frequent singletons
 For a pair to be a frequent pair candidate, its singletons have to be frequent!
 Second pass:
 Count only candidate pairs!
Relation to Previous Lecture

- **Last time:** Finding frequent pairs
- **Further improvement:** PCY

- **Pass 1:**
 - Count exact frequency of each item:
 - Take pairs of items \{i,j\}, hash them into \(B\) buckets and count of the number of pairs that hashed to each bucket:

- **Basket 1:** \{1,2,3\}
 - **Pairs:** \{1,2\} \{1,3\} \{2,3\}
Last time: Finding frequent pairs

Further improvement: PCY

- **Pass 1:**
 - Count exact frequency of each item:
 - Take pairs of items \(\{i,j\}\), hash them into \(B\) buckets and count of the number of pairs that hashed to each bucket:

- **Pass 2:**
 - For a pair \(\{i,j\}\) to be a **candidate for a frequent pair**, its singletons \(\{i\}, \{j\}\) have to be frequent and the pair \(\{i, j\}\) has to hash to a frequent bucket!
Relation to Previous Lecture

- Last time: Finding frequent pairs
- Future plan:

> Previous lecture: A-Priori

Main idea: **Candidates**
Instead of keeping a count of each pair, only keep a count of candidate pairs!

> Today’s lecture: Find pairs of similar docs

Main idea: **Candidates**
-- **Pass 1:** Take documents and hash them to buckets such that documents that are similar hash to the same bucket
-- **Pass 2:** Only compare documents that are candidates (i.e., they hashed to a same bucket)

Benefits: Instead of \(O(N^2) \) comparisons, we need \(O(N) \) comparisons to find similar documents
Finding Similar Items
Goal: Find near-neighbors in high-dim. space

- We formally define “near neighbors” as points that are a “small distance” apart.
- For each application, we first need to define what “distance” means.

Today: Jaccard distance/similarity

- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:
 \[\text{sim}(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} \]
- Jaccard distance: \[d(C_1, C_2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} \]

3 in intersection
8 in union
Jaccard similarity = 3/8
Jaccard distance = 5/8
Task: Finding Similar Documents

- **Goal:** Given a large number \(N \) in the millions or billions) of documents, find “near duplicate” pairs

- **Applications:**
 - Mirror websites, or approximate mirrors
 - Don’t want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by “same story”

- **Problems:**
 - Many small pieces of one document can appear out of order in another
 - Too many documents to compare all pairs
 - Documents are so large or so many that they cannot fit in main memory
3 Essential Steps for Similar Docs

1. **Shingling**: Converts a document into a set

2. **Min-Hashing**: Convert large sets to short signatures, while preserving similarity

3. **Locality-Sensitive Hashing**: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!
The set of strings of length k that appear in the document

Signatures: short integer vectors that represent the sets, and reflect their similarity

Candidate pairs: those pairs of signatures that we need to test for similarity
Step 1: **Shingling**: Convert a document into a set
Step 1: *Shingling:*

Converts a document into a set

Simple approaches:
- Document = set of words appearing in document
- Document = set of “important” words
- Don’t work well for this application. *Why?*

Need to account for ordering of words!

A different way: *Shingles!*
Define: Shingles

- A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the document.
 - Tokens can be *characters*, *words* or something else, depending on the application.
 - Assume tokens = characters for examples.

Example: *k*=2; document *D*₁ = abcab
Set of 2-shingles: *S(D*₁*)* = {ab, bc, ca}

Option: Shingles as a bag (multiset):
 Count ab twice: *S'(D*₁*)* = {ab, bc, ca, ab}
Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
 - **Idea:** Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
 - **Example:** $k=2$; document $D_1 = \text{abcab}$
 - Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - Hash the singles: $h(D_1) = \{1, 5, 7\}$
Document D_1 is a set of its k-shingles $C_1 = S(D_1)$

Equivalently, each document is a 0/1 vector in the space of k-shingles

- Each unique shingle is a dimension
- Vectors are very sparse

A natural similarity measure is the Jaccard similarity:

$$\text{sim}(D_1, D_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$
Working Assumption

- **Documents that have lots of shingles in common have similar text, even if the text appears in different order**

- **Caveat:** You must pick k large enough, or most documents will have most shingles
 - $k = 5$ is OK for short documents
 - $k = 10$ is better for long documents
Suppose we need to find near-duplicate documents among $N = 1$ million documents.

Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs:

- $N(N - 1)/2 \approx 5 \times 10^{11}$ comparisons
- At 10^5 secs/day and 10^6 comparisons/sec, it would take **5 days**

For $N = 10$ million, it takes more than a year...
Step 2: **Min-Hashing**: Convert large sets to short signatures, while preserving similarity.

The set of strings of length k that appear in the document.

Signatures: short integer vectors that represent the sets, and reflect their similarity.
Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets using 0/1 (bit, boolean) vectors:
- One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.

Example: $C_1 = 10111; C_2 = 10011$
- Size of intersection = 3; size of union = 4,
- Jaccard similarity (not distance) = $3/4$
- Distance: $d(C_1, C_2) = 1 - (\text{Jaccard similarity}) = 1/4$
Encode sets using 0/1 (bit, Boolean) vectors

- **Rows** = elements (shingles)
- **Columns** = sets (documents)
 - 1 in row \(e \) and column \(s \) if and only if \(e \) is a member of \(s \)
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- **Typical matrix is sparse!**
- **Each document is a column:**
 - Example: \(\text{sim}(C_1,C_2) = ? \)
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - \(d(C_1,C_2) = 1 - (\text{Jaccard similarity}) = 3/6 \)
So far:
- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix

Next goal: Find similar columns while computing small signatures
- Similarity of columns \approx similarity of signatures

Warnings:
- Comparing all pairs takes too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
Next Goal: Find similar columns, Small signatures

Naïve approach:

1) Signatures of columns: small summaries of columns
2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
3) Optional: Check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
Key idea: “hash” each column C to a small signature $h(C)$, such that:

1. $h(C)$ is small enough that the signature fits in RAM
2. $\text{sim}(C_1, C_2)$ is the same as the “similarity” of signatures $h(C_1)$ and $h(C_2)$

Goal: Find a hash function $h(\cdot)$ such that:

- If $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- If $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hash docs into buckets. Expect that “most” pairs of near duplicate docs hash into the same bucket!
Goal: Find a hash function $h(\cdot)$ such that:

- if $\text{sim}(C_1,C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- if $\text{sim}(C_1,C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

- Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing
Imagine the rows of the boolean matrix permuted under random permutation π

Define a “hash” function $h_{\pi}(C) =$ the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(C) = \min_{\pi} \pi(C)$$

Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Min-Hashing Example

Permutation π

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Signature matrix M

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- $h_2(3)=1$ (permutation 2, column 3)
- 4th element of the permutation (row 1) is the first to map to a 1

- 2nd element of the permutation (row 1) is the first to map to a 1
Choose a random permutation π

Claim: $\Pr[h_\pi(C_1) = h_\pi(C_2)] = sim(C_1, C_2)$

Why?

- Let X be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the min element
- Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
- **Then either:** $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
- So the prob. that both are true is the prob. $y \in C_1 \cap C_2$
- $\Pr[\min(\pi(C_1))=\min(\pi(C_2))] = |C_1 \cap C_2|/|C_1 \cup C_2| = sim(C_1, C_2)$

One of the two cols had to have 1 at position y
Given cols C_1 and C_2, rows may be classified as:

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- $a = \# \text{ rows of type } A$, etc.

Note: $\text{sim}(C_1, C_2) = \frac{a}{a + b + c}$

Then: $\Pr[h(C_1) = h(C_2)] = \text{Sim}(C_1, C_2)$

- Look down the cols C_1 and C_2 until we see a 1
- If it’s a type-A row, then $h(C_1) = h(C_2)$
- If a type-B or type-C row, then not
We know: \(\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2) \)

Now generalize to multiple hash functions

The *similarity of two signatures* is the fraction of the hash functions in which they agree

Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Min-Hashing Example

Permutation π

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Signature matrix M

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th></th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col/Col</td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sig/Sig</td>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Min-Hash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\text{sig}(C)$ as a column vector
- $\text{sig}(C)[i] = \text{according to the } i\text{-th permutation, the index of the first row that has a 1 in column } C$

$$\text{sig}(C)[i] = \min (\pi_i(C))$$

- **Note:** The sketch (signature) of document C is small ~ 400 bytes!

- **We achieved our goal!** We “compressed” long bit vectors into short signatures
Permuting rows even once is prohibitive

Row hashing!
- Pick $K = 100$ hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation
- For each column C and hash-func. k_i keep a “slot” for the min-hash value
- Initialize all $\text{sig}(C)[i] = \infty$
- Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i:
 - If $k_i(j) < \text{sig}(C)[i]$, then $\text{sig}(C)[i] \leftarrow k_i(j)$

How to pick a random hash function $h(x)$?
Universal hashing:
$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$
where:
- a, b ... random integers
- p ... prime number ($p > N$)
Step 3: **Locality Sensitive Hashing:**
Focus on pairs of signatures likely to be from similar documents

Candidate pairs:
those pairs of signatures that we need to test for similarity

Signatures:
short integer vectors that represent the sets, and reflect their similarity

The set of strings of length k that appear in the document
Goal: Find documents with Jaccard similarity at least \(s \) (for some similarity threshold, e.g., \(s=0.8 \))

LSH – General idea: Use a function \(f(x,y) \) that tells whether \(x \) and \(y \) is a candidate pair: a pair of elements whose similarity must be evaluated.

For Min-Hash matrices:
- Hash columns of signature matrix \(M \) to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair
- Pick a similarity threshold s ($0 < s < 1$)

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:

 $M(i, x) = M(i, y)$ for at least frac. s values of i

 - We expect documents x and y to have the same (Jaccard) similarity as their signatures
Big idea: Hash columns of signature matrix M several times

Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

Candidate pairs are those that hash to the same bucket
Partition M into b Bands

b bands

M rows per band

One signature

Signature matrix M
Partition M into Bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- *Candidate* column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs
Columns 2 and 6 are probably identical (candidate pair).

Columns 6 and 7 are surely different.
There are **enough buckets** that columns are unlikely to hash to the same bucket unless they are **identical** in a particular band.

Hereafter, we assume that “**same bucket**” means “**identical in that band**”.

Assumption needed only to simplify analysis, not for correctness of algorithm.
Example of Bands

Assume the following case:
- Suppose 100,000 columns of \(\mathbf{M} \) (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose \(b = 20 \) bands of \(r = 5 \) integers/band

- Goal: Find pairs of documents that are at least \(s = 0.8 \) similar
C₁, C₂ are 80% Similar

- **Find pairs of** \(\geq s = 0.8 \) **similarity, set** \(b = 20, \ r = 5 \)
- **Assume:** \(\text{sim}(C₁, C₂) = 0.8 \)
 - Since \(\text{sim}(C₁, C₂) \geq s \), we want \(C₁, C₂ \) to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- **Probability** \(C₁, C₂ \) identical in one particular band: \((0.8)^5 = 0.328 \)
- **Probability** \(C₁, C₂ \) are **not** similar in all of the 20 bands: \((1-0.328)^{20} = 0.00035 \)
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965% pairs of truly similar documents
Find pairs of $\geq s=0.8$ similarity, set $b=20$, $r=5$

Assume: $\text{sim}(C_1, C_2) = 0.3$

- Since $\text{sim}(C_1, C_2) < s$ we want C_1, C_2 to hash to **NO common buckets** (all bands should be different)

Probability C_1, C_2 identical in one particular band: $(0.3)^5 = 0.00243$

Probability C_1, C_2 identical in at least 1 of 20 bands: $1 - (1 - 0.00243)^{20} = 0.0474$

- In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming **candidate pairs**
 - They are **false positives** since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s
LSH Involves a Tradeoff

- **Pick:**
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band

 to balance false positives/negatives

- **Example:** If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up
Analysis of LSH – What We Want

Similarity $t = \text{sim}(C_1, C_2)$ of two sets

- Probability of sharing a bucket
 - No chance if $t < s$
 - Probability $= 1$ if $t > s$

Similarity threshold s
Remember:
Probability of equal hash-values = similarity

Similarity $t = \text{sim}(C_1, C_2)$ of two sets
b bands, r rows/band

- Columns C_1 and C_2 have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = $1 - t^r$
- Prob. that no band identical = $(1 - t^r)^b$
- Prob. that at least 1 band identical = $1 - (1 - t^r)^b$
What \(b \) Bands of \(r \) Rows Gives You

Probability of sharing a bucket

\[s \sim \left(\frac{1}{b} \right)^{1/r} \]

At least one band identical

No bands identical

\[1 - \left(1 - t^r \right)^b \]

Some row of a band unequal

All rows of a band are equal

Similarity \(t = \text{sim}(C_1, C_2) \) of two sets
Example: \(b = 20; r = 5 \)

- **Similarity threshold \(s \)**
- **Prob. that at least 1 band is identical:**

<table>
<thead>
<tr>
<th>(s)</th>
<th>(1-(1-s^r)^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>
Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions ($r=5$, $b=10$)

![Graph showing probability of sharing a bucket vs. similarity]

Blue area: False Negative rate
Green area: False Positive rate
Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.

Check in main memory that candidate pairs really do have similar signatures.

Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents.
Shingling: Convert documents to sets
- We used hashing to assign each shingle an ID

Min-Hashing: Convert large sets to short signatures, while preserving similarity
- We used similarity preserving hashing to generate signatures with property $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- We used hashing to get around generating random permutations

Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
- We used hashing to find candidate pairs of similarity $\geq s$