Frequent Itemset Mining & Association Rules
We are releasing HW1 today

- It is due in 2 weeks (1/22 at 5pm)
- The homework is long
 - Requires proving theorems as well as coding
- Please start early

Recitation sessions:

- **Hadoop Clinic**: Today 5-9pm in Herrin T175
- **Review of probability and proof techniques**: Tomorrow 4:15-5:30pm in Gates B01
Supermarket shelf management – Market-basket model:

- **Goal:** Identify items that are bought together by sufficiently many customers
- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items
- **A classic rule:**
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don’t be surprised if you find six-packs next to diapers!
The Market-Basket Model

- A large set of **items**
 - e.g., things sold in a supermarket
- A **large set of baskets**
- Each basket is a **small subset of items**
 - e.g., the things one customer buys on one day
- Want to discover **association rules**
 - People who bought \{x,y,z\} tend to buy \{v,w\}
 - Amazon!

Input:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Rules Discovered:

- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}
More generally

- **A general many-to-many mapping (association) between two kinds of things**
 - But we ask about connections among “items”, not “baskets”

- **Items and baskets are abstract:**
 - **For example:**
 - Items/baskets can be products/shopping basket
 - Items/baskets can be nodes in a graph
 - Items/baskets can be words/documents
 - Items/baskets can be basepairs/genes
 - Items/baskets can be drugs/patients
Applications – (1)

- **Items** = products; **Baskets** = sets of products someone bought in one trip to the store

- **Real market baskets:** Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items
 - Suggests tie-in “tricks”, e.g., run sale on diapers and raise the price of beer
 - Need the rule to occur frequently, or no $$’s

- **Amazon’s people who bought X also bought Y**
Applications – (2)

- **Baskets** = sentences; **Items** = documents containing those sentences
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be “in” baskets

- **Baskets** = patients; **Items** = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - **But requires extension:** Absence of an item needs to be observed as well as presence
Finding communities in graphs (e.g., Twitter)

Baskets = nodes; **Items** = outgoing neighbors

- Searching for complete bipartite subgraphs $K_{s,t}$ of a big graph

How?

- View each node i as a basket B_i of nodes i it points to
- $K_{s,t}$ = a set Y of size t that occurs in s buckets B_i
- Looking for $K_{s,t} \rightarrow$ set of support s and look at layer t – all frequent sets of size t
Outline

First: Define

Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm + 2 refinements
Frequent Itemsets

- **Simplest question:** Find sets of items that appear together “frequently” in baskets
- **Support** for itemset \(I \): Number of baskets containing all items in \(I \)
 - (Often expressed as a fraction of the total number of baskets)
- Given a **support threshold** \(s \), then sets of items that appear in at least \(s \) baskets are called **frequent itemsets**

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Support of \{Beer, Bread\} = 2
Example: Frequent Itemsets

- **Items** = \{milk, coke, pepsi, beer, juice\}
- **Support threshold** = 3 baskets

- \(B_1 = \{m, c, b\} \)
- \(B_2 = \{m, p, j\} \)
- \(B_3 = \{m, b\} \)
- \(B_4 = \{c, j\} \)
- \(B_5 = \{m, p, b\} \)
- \(B_6 = \{m, c, b, j\} \)
- \(B_7 = \{c, b, j\} \)
- \(B_8 = \{b, c\} \)

- **Frequent itemsets**: \{m\}, \{c\}, \{b\}, \{j\}, \{m,b\}, \{b,c\}, \{c,j\}.
Association Rules

- **Association Rules:**
 If-then rules about the contents of baskets

- \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is **likely** to contain \(j \)”

- In practice there are many rules, want to find significant/interesting ones!

- **Confidence** of this association rule is the probability of \(j \) given \(I = \{i_1, \ldots, i_k\} \)

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Not all high-confidence rules are interesting

The rule $X \rightarrow \text{milk}$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high.

Interest of an association rule $I \rightarrow j$:

difference between its confidence and the fraction of baskets that contain j

$$\text{Interest}(I \rightarrow j) = |\text{conf}(I \rightarrow j) - \Pr[j]|$$

Interesting rules are those with high positive or negative interest values (usually above 0.5)
Example: Confidence and Interest

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- Association rule: \(\{m, b\} \rightarrow c \)
 - **Confidence** = \(2/4 = 0.5 \)
 - **Interest** = \(|0.5 - 5/8| = 1/8 \)
 - Item \(c \) appears in \(5/8 \) of the baskets
 - Rule is not very interesting!
Finding Association Rules

- **Problem:** Find all association rules with support $\geq s$ and confidence $\geq c$
 - **Note:** Support of an association rule is the support of the set of items on the left side
- **Hard part:** Finding the frequent itemsets!
 - If $\{i_1, i_2, \ldots, i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, \ldots, i_k\}$ and $\{i_1, i_2, \ldots, i_k, j\}$ will be “frequent”

$$\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}$$
Step 1: Find all frequent itemsets I
- (we will explain this next)

Step 2: Rule generation
- For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - Since I is frequent, A is also frequent
 - Variant 1: Single pass to compute the rule confidence
 - $\text{confidence}(A, B \rightarrow C, D) = \frac{\text{support}(A, B, C, D)}{\text{support}(A, B)}$
 - Variant 2:
 - Observation: If $A, B, C \rightarrow D$ is below confidence, so is $A, B \rightarrow C, D$
 - Can generate “bigger” rules from smaller ones!

Output the rules above the confidence threshold
Example

B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\}
B_3 = \{m, c, b, n\} \quad B_4 = \{c, j\}
B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\}
B_7 = \{c, b, j\} \quad B_8 = \{b, c\}

- **Support threshold** \(s = 3 \), confidence \(c = 0.75 \)

- **1) Frequent itemsets:**
 - \{b,m\} \ {b,c\} \ {c,m\} \ {c,j\} \ {m,c,b\}

- **2) Generate rules:**
 - \(b \rightarrow m: c=4/6 \) \quad \(b \rightarrow c: c=5/6 \) \quad \(b,c \rightarrow m: c=3/5 \)
 - \(m \rightarrow b: c=4/5 \) \quad \ldots \quad \(b,m \rightarrow c: c=3/4 \)
 - \(b \rightarrow c,m: c=3/6 \)
To reduce the number of rules we can post-process them and only output:

- **Maximal frequent itemsets:**

 No immediate superset is frequent

 - Gives more pruning

or

- **Closed itemsets:**

 No immediate superset has the same support (> 0)

 - Stores not only frequent information, but exact supports/counts
Example: Maximal/Closed

<table>
<thead>
<tr>
<th></th>
<th>Support</th>
<th>Maximal(s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Frequent, but superset BC also frequent.
- Frequent, and its only superset, ABC, not frequent.
- Superset BC has same support.
- Its only superset, ABC, has smaller support.
Finding Frequent Itemsets
Itemsets: Computation Model

- **Back to finding frequent itemsets**
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are *small* but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.
The true cost of mining disk-resident data is usually the **number of disk I/Os**.

In practice, association-rule algorithms read the data in **passes** — all baskets read in turn.

We measure the cost by the **number of passes** an algorithm makes over the data.
For many frequent-itemset algorithms, **main-memory** is the critical resource

- As we read baskets, we need to count something, e.g., occurrences of pairs of items
- The number of different things we can count is limited by main memory
- Swapping counts in/out is a disaster (why?)
The hardest problem often turns out to be finding the frequent pairs of items \(\{i_1, i_2\} \).

Why? Freq. pairs are common, freq. triples are rare.

Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size.

Let’s first concentrate on pairs, then extend to larger sets.

The approach:
- We always need to generate all the itemsets.
- But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent.
Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of n items, generate its $n(n-1)/2$ pairs by two nested loops
- Fails if ($#items$)2 exceeds main memory
 - Remember: $#items$ can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10^5 items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 \approx 5*10^9$
 - Therefore, $2*10^{10}$ (20 gigabytes) of memory needed
Counting Pairs in Memory

Two approaches:

- **Approach 1**: Count all pairs using a matrix
- **Approach 2**: Keep a table of triples \([i, j, c]\) = “the count of the pair of items \(\{i, j\}\) is \(c\).”
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

Note:

- **Approach 1** only requires 4 bytes per pair
- **Approach 2** uses 12 bytes per pair (but only for pairs with count > 0)
Comparing the 2 Approaches

Triangular Matrix

4 bytes per pair

Triples

12 per occurring pair
Comparing the two approaches

- **Approach 1: Triangular Matrix**
 - \(n \) = total number items
 - Count pair of items \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1,2\}, \{1,3\},... , \{1,n\}, \{2,3\}, \{2,4\},... ,\{2,n\}, \{3,4\},... \)
 - Pair \(\{i, j\} \) is at position \((i-1)(n-i/2) + j - 1 \)
 - Total number of pairs \(n(n-1)/2 \); total bytes = \(2n^2 \)
 - **Triangular Matrix** requires 4 bytes per pair

- **Approach 2** uses **12 bytes** per occurring pair (but only for pairs with count > 0)
 - Beats Approach 1 if less than \(1/3 \) of possible pairs actually occur
Comparing the two approaches

- **Approach 1: Triangular Matrix**
 - \(n = \) total number items
 - Count pair of items \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order: \(\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots \)
 - Pair \(\{i, j\} \) is at position \((i-1)(n-i)/2 + j - 1\)
 - Total number of pairs \(n(n-1)/2 \); total bytes = \(2n^2\)
 - Triangular Matrix requires 4 bytes per pair

- **Approach 2** uses \(12\) bytes per occurring pair (but only for pairs with count > 0)
 - Beats Approach 1 if less than \(1/3\) of possible pairs actually occur

Problem is if we have too many items so the pairs do not fit into memory.

Can we do better?
A two-pass approach called A-Priori limits the need for main memory

Key idea: monotonicity
- If a set of items \(I \) appears at least \(s \) times, so does every subset \(J \) of \(I \)

Contrapositive for pairs:
- If item \(i \) does not appear in \(s \) baskets, then no pair including \(i \) can appear in \(s \) baskets

So, how does A-Priori find freq. pairs?
Pass 1: Read baskets and count in main memory the occurrences of each individual item

- Requires only memory proportional to #items

Items that appear $\geq s$ times are the frequent items

Pass 2: Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)

- Requires memory proportional to square of frequent items only (for counts)
- Plus a list of the frequent items (so you know what must be counted)
Main-Memory: Picture of A-Priori

Main memory

Pass 1

Item counts

Pass 2

Frequent items

Counts of pairs of frequent items (candidate pairs)

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.
You can use the triangular matrix method with \(n \) = number of frequent items

- May save space compared with storing triples

Trick: re-number frequent items 1, 2, … and keep a table relating new numbers to original item numbers
For each k, we construct two sets of k-tuples (sets of size k):

- $C_k = \text{candidate } k\text{-tuples} = \text{those that might be frequent sets (support } \geq s\text{) based on information from the pass for } k-1$
- $L_k = \text{the set of truly frequent } k\text{-tuples}$
Hypothetical steps of the A-Priori algorithm

- \(C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \} \)
- Count the support of itemsets in \(C_1 \)
- Prune non-frequent: \(L_1 = \{ b, c, j, m \} \)
- Generate \(C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \} \)
- Count the support of itemsets in \(C_2 \)
- Prune non-frequent: \(L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \} \)
- Generate \(C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \} \)
- Count the support of itemsets in \(C_3 \)
- Prune non-frequent: \(L_3 = \{ \{b,c,m\} \} \)

Note here we generate new candidates by generating \(C_k \) from \(L_{k-1} \) and \(L_1 \). But that one can be more careful with candidate generation. For example, in \(C_3 \) we know \(\{b,m,j\} \) cannot be frequent since \(\{m,j\} \) is not frequent.
One pass for each k (itemset size)

Needs room in main memory to count each candidate k–tuple

For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory

Many possible extensions:

- Association rules with intervals:
 - For example: Men over 65 have 2 cars

- Association rules when items are in a taxonomy
 - Bread, Butter \rightarrow FruitJam
 - BakedGoods, MilkProduct \rightarrow PreservedGoods

- Lower the support s as itemset gets bigger
PCY (Park-Chen-Yu) Algorithm
Observation:
In pass 1 of A-Priori, most memory is idle
- We store only individual item counts
- **Can we use the idle memory to reduce memory required in pass 2?**

Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
- Keep a **count** for each bucket into which **pairs** of items are hashed
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!
FOR (each basket) :
 FOR (each item in the basket) :
 add 1 to item’s count;
 FOR (each pair of items) :
 hash the pair to a bucket;
 add 1 to the count for that bucket;

- **Few things to note:**
 - Pairs of items need to be generated from the input file; they are not present in the file.
 - We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times.
Observations about Buckets

- **Observation**: If a bucket contains a **frequent pair**, then the bucket is surely **frequent**
- However, even without any frequent pair, a bucket can still be frequent 😞
 - So, we cannot use the hash to eliminate any member (pair) of a “frequent” bucket
- **But, for a bucket with total count less than** s, none of its pairs can be frequent 😊
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)

- **Pass 2:**
 Only count pairs that hash to frequent buckets
PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector:
 - 1 means the bucket count exceeded the support s (call it a frequent bucket); 0 means it did not

- 4-byte integer counts are replaced by bits, so the bit-vector requires 1/32 of memory

- Also, decide which items are frequent and list them for the second pass
PCY Algorithm – Pass 2

- Count all pairs \(\{i, j\} \) that meet the conditions for being a candidate pair:
 1. Both \(i \) and \(j \) are frequent items
 2. The pair \(\{i, j\} \) hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)

- Both conditions are necessary for the pair to have a chance of being frequent
Main-Memory: Picture of PCY

Hash table
for pairs

Item counts

Main memory

Frequent items

Bitmap

Counts of candidate pairs

Pass 1

Pass 2

1/7/2015

Buckets require a few bytes each:

- **Note:** we do not have to count past s
- #buckets is $O(\text{main-memory size})$

On second pass, a table of (item, item, count) triples is essential (we cannot use triangular matrix approach, why?)

- Thus, hash table must eliminate approx. 2/3 of the candidate pairs for PCY to beat A-Priori
Limit the number of candidates to be counted

- **Remember:** Memory is the bottleneck
- Still need to generate all the itemsets but we only want to count/keep track of the ones that are frequent

Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY

- \(i \) and \(j \) are frequent, and
- \(\{i, j\} \) hashes to a frequent bucket from **Pass 1**

On middle pass, fewer pairs contribute to buckets, so fewer **false positives**

Requires 3 passes over the data
Main-Memory: Multistage

Pass 1
Count items
Hash pairs \{i,j\}

Pass 2
Hash pairs \{i,j\} into Hash2 iff:
\{i,j\} hashes to freq. bucket in B1

Pass 3
Count pairs \{i,j\} iff:
i,j are frequent,
\{i,j\} hashes to freq. bucket in B1
\{i,j\} hashes to freq. bucket in B2

Item counts
Freq. items
Bitmap 1
Freq. items
Bitmap 1
Bitmap 2
Counts of candidate pairs

First hash table
Second hash table

Main memory
Count only those pairs \(\{i, j\} \) that satisfy these candidate pair conditions:

1. Both \(i \) and \(j \) are frequent items
2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1
3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1
Important Points

1. The two hash functions have to be independent

2. We need to check both hashes on the third pass
 - If not, we would end up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket
Refinement: Multihash

- **Key idea:** Use several independent hash tables on the first pass

- **Risk:** Halving the number of buckets doubles the average count
 - We have to be sure most buckets will still not reach count s

- If so, we can get a benefit like multistage, but in only 2 passes
Main-Memory: Multihash

- Item counts
- Freq. items
- Bitmap 1
- Bitmap 2
- Counts of candidate pairs

First hash table
Second hash table

Pass 1
Pass 2
Either multistage or multihash can use more than two hash functions.

In multistage, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory.

For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$.
Frequent Itemsets in ≤ 2 Passes
A-Priori, PCY, etc., take \(k \) passes to find frequent itemsets of size \(k \)

Can we use fewer passes?

Use 2 or fewer passes for all sizes, but may miss some frequent itemsets

- Random sampling
- SON (Savasere, Omiecinski, and Navathe)
- Toivonen (see textbook)
Random Sampling (1)

- Take a random sample of the market baskets
- Run a-priori or one of its improvements in main memory
 - So we don’t pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match the sample size

Main memory

Copy of sample baskets

Space for counts
To avoid false positives: Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass

But you don’t catch sets frequent in the whole but not in the sample

- Smaller threshold, e.g., $s/125$, helps catch more truly frequent itemsets
 - But requires more space
SON Algorithm: Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets

- Note: we are not sampling, but processing the entire file in memory-sized chunks

- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets.
SON Algorithm – (2)

- On a **second pass**, count all the candidate itemsets and determine which are frequent in the entire set.

- **Key “monotonicity” idea:** an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
SON – Distributed Version

- SON lends itself to distributed data mining

- Baskets distributed among many nodes
 - Compute frequent itemsets at each node
 - Distribute candidates to all nodes
 - Accumulate the counts of all candidates
SON: Map/Reduce

- **Phase 1:** Find candidate itemsets
 - Map?
 - Reduce?

- **Phase 2:** Find true frequent itemsets
 - Map?
 - Reduce?