Learning through Experimentation

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
Web advertising

- We discussed how to match advertisers to queries in real-time
- But we did not discuss how to estimate the CTR (Click-Through Rate)

Recommendation engines

- We discussed how to build recommender systems
- But we did not discuss the cold start problem
Learning through Experimentation

- What do **CTR** and cold start have in common?
- With every ad we show/product we recommend we gather more data about the ad/product
- Theme: Learning through experimentation
Example: Web Advertising

- Google’s goal: Maximize revenue
- The old way: Pay by impression (CPM)
 - Best strategy: Go with the highest bidder
 - But this ignores “effectiveness” of an ad
- The new way: Pay per click! (CPC)
 - Best strategy: Go with expected revenue
 - What’s the expected revenue of ad \(a \) for query \(q \)?
 - \(E[\text{revenue}_{a,q}] = P(\text{click}_a \mid q) \times \text{amount}_{a,q} \)

Prob. user will click on ad \(a \) given that she issues query \(q \)
(Unknown! Need to gather information)

Bid amount for ad \(a \) on query \(q \)
(Known)
Other Applications

- **Clinical trials:**
 - Investigate effects of different treatments while minimizing patient losses

- **Adaptive routing:**
 - Minimize delay in the network by investigating different routes

- **Asset pricing:**
 - Figure out product prices while trying to make most money
Approach: Bandits
Approach: Multiarmed Bandits
Each arm a

- **Wins** (reward=1) with fixed (unknown) prob. μ_a
- **Loses** (reward=0) with fixed (unknown) prob. $1-\mu_a$
- All draws are independent given $\mu_1 ... \mu_k$

How to pull arms to maximize total reward?
How does this map to our setting?

- Each query is a bandit
- Each ad is an arm
- We want to estimate the arm’s probability of winning μ_a (i.e., ad’s the CTR μ_a)
- Every time we pull an arm we do an ‘experiment’
Stochastic k-Armed Bandit

The setting:
- Set of k choices (arms)
- Each choice a is associated with unknown probability distribution P_a supported in $[0,1]$
- We play the game for T rounds
- In each round t:
 1. We pick some arm j
 2. We obtain random sample X_t from P_j
 - Note reward is independent of previous draws
- Our goal is to maximize $\sum_{t=1}^{T} X_t$
- But we don’t know μ_a! But every time we pull some arm a we get to learn a bit about μ_a
Online Optimization

- **Online optimization with limited feedback**

<table>
<thead>
<tr>
<th>Choices</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>X_6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_k</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Like in online algorithms:**
 - Have to make a choice each time
 - But we only receive information about the chosen action
Policy: a strategy/rule that in each iteration tells me which arm to pull
- Hopefully policy depends on the history of rewards

How to quantify performance of the algorithm? Regret!
Performance Metric: Regret

- Let be μ_a the mean of P_a
- Payoff/reward of best arm: $\mu^* = \max_a \mu_a$
- Let $i_1, i_2 \ldots i_T$ be the sequence of arms pulled
- Instantaneous regret at time t: $r_t = \mu^* - \mu_{a_t}$
- Total regret:

$$R_T = \sum_{t=1}^{T} r_t$$

- Typical goal: Want a policy (arm allocation strategy) that guarantees: $\frac{R_T}{T} \to 0$ as $T \to \infty$
allocation strategies

- If we knew the payoffs, which arm would we pull?

\[
\text{Pick } \arg \max_a \mu_a
\]

- What if we only care about estimating payoffs \(\mu_a \)?

 - Pick each of \(k \) arms equally often: \(\frac{T}{k} \)

 - Estimate: \(\hat{\mu}_a = \frac{k}{T} \sum_{j=1}^{T/k} X_{a,j} \)

 - Regret: \(R_T = \frac{T}{k} \sum_k (\mu^* - \mu_a) \)
Bandit Algorithm: First try

- Regret is defined in terms of average reward
- So, if we can estimate avg. reward we can minimize regret
- Consider algorithm: Greedy
 Take the action with the highest avg. reward
 - Example: Consider 2 actions
 - A1 reward 1 with prob. 0.3
 - A2 has reward 1 with prob. 0.7
 - Play A1, get reward 1
 - Play A2, get reward 0
 - Now avg. reward of A1 will never drop to 0, and we will never play action A2
The example illustrates a classic problem in decision making:

- We need to trade off exploration (gathering data about arm payoffs) and exploitation (making decisions based on data already gathered)

The Greedy does not explore sufficiently

- Exploration: Pull an arm we never pulled before
- Exploitation: Pull an arm \(a \) for which we currently have the highest estimate of \(\mu_a \)
Optimism

- The problem with our Greedy algorithm is that it is too certain in the estimate of μ_a
 - When we have seen a single reward of 0 we shouldn’t conclude the average reward is 0

- Greedy does not explore sufficiently!
Algorithm: Epsilon-Greedy

For t=1:T

- Set $\varepsilon_t = O(1/t)$
- With prob. ε_t: Explore by picking an arm chosen uniformly at random
- With prob. $1 - \varepsilon_t$: Exploit by picking an arm with highest empirical mean payoff

Theorem [Auer et al. ‘02]

For suitable choice of ε_t it holds that

$$R_T = O(k \log T) \Rightarrow \frac{R_T}{T} = O \left(\frac{k \log T}{T} \right) \to 0$$
Issues with Epsilon Greedy

- What are some issues with Epsilon Greedy?
 - “Not elegant”: Algorithm explicitly distinguishes between exploration and exploitation
 - More importantly: Exploration makes suboptimal choices (since it picks any arm equally likely)

- Idea: When exploring/exploiting we need to compare arms
Comparing Arms

Suppose we have done experiments:
- Arm 1: 1 0 0 1 1 0 0 1 0 1
- Arm 2: 1
- Arm 3: 1 1 0 1 1 1 0 1 1 1

Mean arm values:
- Arm 1: 5/10, Arm 2: 1, Arm 3: 8/10

Which arm would you pick next?

Idea: Don’t just look at the mean (that is, expected payoff) but also the confidence!
A confidence interval is a range of values within which we are sure the mean lies with a certain probability.

- We could believe μ_a is within $[0.2,0.5]$ with probability 0.95.
- If we would have tried an action less often, our estimated reward is less accurate so the confidence interval is larger.
- Interval shrinks as we get more information (try the action more often).
Confidence Intervals (2)

- Assuming we know the confidence intervals

- Then, instead of trying the action with the highest mean we can try the action with the highest upper bound on its confidence interval

- This is called an optimistic policy
 - We believe an action is as good as possible given the available evidence

3/5/2014
Confidence Based Selection

After more exploration

99.99% confidence interval
Suppose we fix arm a:
- Let $Y_{a,1} \ldots Y_{a,m}$ be the payoffs of arm a in the first m trials
 - So, $Y_{a,1} \ldots Y_{a,m}$ are i.i.d. rnd. vars. taking values in $[0,1]$
- Mean payoff of arm a: $\mu_a = E[Y_{a,m}]$
- Our estimate: $\hat{\mu}_{a,m} = \frac{1}{m} \sum_{\ell=1}^{m} Y_{a,\ell}$
- Want to find b such that with high probability $|\mu_a - \hat{\mu}_{a,m}| \leq b$
 - Also want b to be as small as possible (why?)
- Goal: Want to bound $P(|\mu_i - \hat{\mu}_{a,m}| \leq b)$
Hoeffding’s Inequality

- **Hoeffding’s inequality:**
 - Let $X_1 \ldots X_m$ be i.i.d. rnd. vars. taking values in $[0,1]$
 - Let $\mu = E[X]$ and $\hat{\mu}_m = \frac{1}{m} \sum_{\ell=1}^{m} X_\ell$
 - Then: $P(|\mu - \hat{\mu}_m| \leq b) \leq 2 \exp(-2b^2m) = \delta$

- To find out the confidence interval b (for a given confidence level δ) we solve
 - $2e^{-2b^2m} \leq \delta$ then $-2b^2m \leq \ln(\delta/2)$

 $$b \geq \sqrt{\frac{\ln\left(\frac{2}{\delta}\right)}{2m}}$$
UCB1 Algorithm

- **UCB1 (Upper confidence sampling) algorithm**
 - Set: \(\hat{\mu}_1 = \cdots = \hat{\mu}_k = 0 \) and \(m_1 = \cdots = m_k = 0 \)
 - \(\hat{\mu}_a \) is our estimate of payoff of arm \(i \)
 - \(m_a \) is the number of pulls of arm \(i \) so far
 - For \(t = 1:T \)
 - For each arm \(a \) calculate: \(UCB(a) = \hat{\mu}_a + \alpha \sqrt{\frac{2 \ln t}{m_a}} \)
 - Pick arm \(j = \arg \max_a UCB(a) \)
 - Pull arm \(j \) and observe \(y_t \)
 - Set: \(m_j \leftarrow m_j + 1 \) and \(\hat{\mu}_j \leftarrow \frac{1}{m_j} (y_t + (m_j - 1) \hat{\mu}_j) \)
UCB₁: Discussion

- \(UCB(\alpha) = \hat{\mu}_a + \alpha \sqrt{\frac{2 \ln t}{m_a}} \)
 - Confidence interval grows with the total number of actions \(t \) we have taken
 - But shrinks with the number of times \(m_a \) we have tried arm \(a \)
 - This ensures each arm is tried infinitely often but still balances exploration and exploitation
 - \(\alpha \) plays the role of \(\delta \): \(\alpha = f \left(\frac{2}{\delta} \right) \)

- Optimism in face of uncertainty
 - The algorithm believes that it can obtain extra rewards by reaching the unexplored parts of the state space

- \(b \geq \sqrt{\frac{\ln \left(\frac{2}{\delta} \right)}{2m}} \)
Theorem [Auer et al. 2002]

- Suppose optimal mean payoff is \(\mu^* = \max_a \mu_a \)
- And for each arm let \(\Delta_a = \mu^* - \mu_a \)
- Then it holds that

\[
E[R_T] = 8 \sum_{a: \mu_a < \mu^*} \frac{\ln T}{\Delta_a} + \left(1 + \frac{\pi^2}{3}\right) \left(\sum_{i=a}^k \Delta_a\right)
\]

\(O(k \ln T) \quad O(k) \)

So: \(O\left(\frac{R_T}{T}\right) = k \frac{\ln T}{T} \)
Summary so far

- \(k \)-armed bandit problem as a formalization of the exploration-exploitation tradeoff

- Analog of online optimization (e.g., SGD, BALANCE), but with limited feedback

- Simple algorithms are able to achieve no regret (in the limit)
 - Epsilon-greedy
 - UCB (Upper Confidence Sampling)
Back to News Recommendation

- Every round receive context [Li et al., WWW ‘10]
 - Context: User features, articles view before
- Model for each article’s click-through rate
News Recommendation

- Feature-based exploration:
 - Select articles to serve users based on contextual information about the user and the articles
 - Simultaneously adapt article selection strategy based on user-click feedback to maximize total number of user clicks
Contextual Bandits

- **Contextual bandit algorithm in round** t

 1. **Algorithm** observes user u_t and a set A of arms together with their features $x_{t,a}$
 - Vector $x_{t,a}$ summarizes both the user u_t and arm a
 - We call vector $x_{t,a}$ the **context**

 2. Based on payoffs from previous trials, algorithm chooses arm $a \in A$ and receives payoff $r_{t,a}$
 - Note only feedback for the chosen a is observed

 3. Algorithm improves arm selection strategy with each observation $(x_{t,a}, a, r_{t,a})$
Payoff of arm a: $E[r_{t,a} | x_{t,a}] = x_{t,a}^T \cdot \theta_a^*$

- $x_{t,a}$... d-dimensional feature vector
- θ_a^* ... unknown coefficient vector we aim to learn
 - Note that θ_a^* are not shared between different arms!

What’s the difference between LinUCB, UCB1?

- UCB2 directly estimates μ_a through experimentation (without any knowledge about arm a)
- LinUCB estimates μ_a by regression $\mu_a = x_{t,a}^T \cdot \theta_a^*$
 - The hope is that we will be able to learn faster as we consider the context x_a (user, ad) of arm a
LinUCB Algorithm (2)

- **Payoff of arm** a: $E[r_{t,a} | x_{t,a}] = x_{t,a}^T \cdot \theta_a^*$
 - $x_{t,a}$... d-dimensional feature vector
 - θ_a^* ... unknown coefficient vector we aim to learn

- **How to estimate** θ_a?
 - D_a ... $m \times d$ matrix of m training inputs $[x_{a,t}]$
 - b_a ... m-dim. vector of responses to a (click/no-click)
 - **Linear regression solution to** θ_a **is then**

 $\hat{\theta}_a = \arg \min_\theta \sum_{m \in D_a} \left(x_{t,a}^T \cdot \theta_a - b_a^{(m)} \right)^2$

 Which is solved by: $\hat{\theta}_a = \left(D_a^T D_a + I_d \right)^{-1} D_a^T b_a$

 I_d is $d \times d$ identity matrix
One can then show (using similar techniques as we used for UCB) that

\[
\left| x_{t,a}^\top \hat{\theta}_a - \mathbb{E}[r_{t,a} | x_{t,a}] \right| \leq \alpha \sqrt{x_{t,a}^\top (D_a^\top D_a + I_d)^{-1} x_{t,a}}
\]

\[
\alpha = 1 + \frac{\sqrt{\ln(2/\delta)}}{2}
\]

So LinUCB arm selection rule is:

\[
a_t \overset{\text{def}}{=} \arg \max_{a \in A_t} \left(x_{t,a}^\top \hat{\theta}_a + \alpha \sqrt{x_{t,a}^\top A_a^{-1} x_{t,a}} \right)
\]

Estimated \(\mu_a \)

Confidence interval: Standard deviation

\[
A_a \overset{\text{def}}{=} D_a^\top D_a + I_d
\]
LinUCB Algorithm (3)

Initialization:
For each arm a:
\[A_a = I_d \]
\[b_a = [0]_d \]

Online algorithm:
For $t = 1, 2, 3, \ldots T$:
Observe features of all arms a : $x_{t,a} \in \mathbb{R}^d$
For each arm a:
\[\theta_a = A_a^{-1} b_a \]
regression coefficients
\[p_{t,a} = \theta_a^T x_{t,a} + \alpha \sqrt{x_{t,a}^T A_a^{-1} x_{t,a}} \]
confidence bound
Choose arm $a_t = \arg \max_a p_{t,a}$ choose arm
\[A_{a_t} = A_{a_t} + x_{t,a_t} x_{t,a_t}^T \]
update A for the chosen arm a_t
\[b_{a_t} = b_{a_t} + r_t x_{t,a_t} \]
updated b for the chosen arm a_t
LinUCB: Discussion

- LinUCB computational complexity is
 - Linear in the number of arms and
 - At most cubic in the number of features

- LinUCB works well for a dynamic arm set (arms come and go):
 - For example, in news article recommendation, for instance, editors add/remove articles to/from a pool
Yahoo! News Experiment

What to put in slots F1, F2, F3, F4 to make the user click?
Results

The diagram shows the performance of different algorithms as a function of data size. The x-axis represents the data size (100%, 30%, 20%, 10%, 5%, 1%). The y-axis represents the ctr (conversion rate). The algorithms compared include:

- **ε-greedy** (solid black)
- **ucb** (dashed black)
- **ε-greedy (seg)** (solid gray)
- **ucb (seg)** (dashed gray)
- **ε-greedy (disjoint)** (solid dark gray)
- **linucb (disjoint)** (dashed dark gray)
- **ε-greedy (hybrid)** (solid black with crosses)
- **linucb (hybrid)** (dashed black with crosses)
- **omniscient** (dashed line)

The ctr values are shown for each data size, illustrating the performance of each algorithm.
Relevance vs. Diversity

- Want to choose a set that caters to as many users as possible
- Users may have different interests, queries may be ambiguous
- Want to optimize both the relevance and diversity
Announcement:
Final Exam Logistics
Final: At Stanford

- **Alternate final:**
 Tue 3/14 7:00-10:00pm in Cubberly Auditorium
 - We have 100 slots. First come first serve!

- **Final:**
 Mon 3/17 12:15-3:15pm in NVidia (lastname starting with A-J), GatesB01 (K-S), and Packard 101 (T-Z)
 - See http://campus-map.stanford.edu
 - Practice finals are posted on Piazza!

- SCPD students can take the exam at Stanford!
Exam protocol for SCPD students:

- On Friday 3/14 your exam proctor will receive the PDF of the final exam from SCPD
- If you take the exam at Stanford:
 - Ask the exam monitor to delete the SCP email
- If you don’t take the exam at Stanford:
 - Arrange **3h** slot with your exam monitor
 - You can take the exam **anytime** but return it in time
 - Email exam PDF to **cs246.mmds@gmail.com** by **Tuesday 3/15 11:59pm Pacific time**