More algorithms for streams:

1. Filtering a data stream: **Bloom filters**
 - Select elements with property \(x \) from stream

2. Counting distinct elements: **Flajolet-Martin**
 - Number of distinct elements in the last \(k \) elements of the stream

3. Estimating moments: **AMS method**
 - Estimate std. dev. of last \(k \) elements

4. Counting frequent items
(1) Filtering Data Streams
Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys S
- Determine which tuples of stream are in S

Obvious solution: Hash table

- But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering**
 - We know 1 billion “good” email addresses
 - If an email comes from one of these, it is **NOT** spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest
First Cut Solution (1)

- Given a set of keys S that we want to filter
- Create a bit array B of n bits, initially all 0s
- Choose a hash function h with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to 1, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if $B[h(a)] == 1$
First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in \(S \) we surely output it, if not we may still output it
First Cut Solution (3)

- \(|S| = 1\) billion email addresses
 \(|B| = 1GB = 8\) billion bits

- If the email address is in \(S\), then it surely hashes to a bucket that has the big set to \(1\), so it always gets through (no false negatives)

- Approximately \(1/8\) of the bits are set to \(1\), so about \(1/8^{th}\) of the addresses not in \(S\) get through to the output (false positives)
 - Actually, less than \(1/8^{th}\), because more than one address might hash to the same bit
More accurate analysis for the number of false positives

Consider: If we throw m darts into n equally likely targets, what is the probability that a target gets at least one dart?

In our case:
- Targets = bits/buckets
- Darts = hash values of items
Analysis: Throwing Darts (2)

- We have m darts, n targets
- What is the probability that a target gets at least one dart?

$1 - (1 - 1/n)^n$ is equivalent to $1/e$ as $n \to \infty$.

Probability some target X not hit by a dart

Probability at least one dart hits target X
Fraction of 1s in the array B == probability of false positive == $1 - e^{-m/n}$

Example: 10^9 darts, $8 \cdot 10^9$ targets

- Fraction of 1s in B = $1 - e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: $1/8 = 0.125$
Bloom Filter

- **Consider:** $|S| = m$, $|B| = n$
- **Use** k independent hash functions h_1, \ldots, h_k
- **Initialization:**
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, \ldots, k$) *(note: we have a single array B!)*
- **Run-time:**
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, \ldots, k$ then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x
Bloom Filter -- Analysis

- What fraction of the bit vector B are 1s?
 - Throwing $k \cdot m$ darts at n targets
 - So fraction of 1s is $(1 - e^{-km/n})$

- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1

- So, false positive probability $= (1 - e^{-km/n})^k$
Bloom Filter – Analysis (2)

- \(m = 1 \text{ billion}, \ n = 8 \text{ billion} \)
 - \(k = 1: (1 - e^{-1/8}) = 0.1175 \)
 - \(k = 2: (1 - e^{-1/4})^2 = 0.0493 \)

- What happens as we keep increasing \(k \)?

- “Optimal” value of \(k \): \(n/m \ln(2) \)
 - In our case: Optimal \(k = 8 \ln(2) = 5.54 \approx 6 \)
Bloom filters guarantee no false negatives, and use limited memory

- Great for pre-processing before more expensive checks

Suitable for hardware implementation

- Hash function computations can be parallelized

Is it better to have 1 big B or k small Bs?

- It is the same: \((1 - e^{-km/n})^k\) vs. \((1 - e^{-m/(n/k)})^k\)

- But keeping 1 big B is simpler
(2) Counting Distinct Elements
Counting Distinct Elements

Problem:
- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far

Obvious approach:
Maintain the set of elements seen so far
- That is, keep a hash table of all the distinct elements seen so far
Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?

- How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

Estimate the count in an unbiased way

Accept that the count may have a little error, but limit the probability that the error is large
Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

- For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$
 - $r(a) = \text{position of first 1 counting from the right}$
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$
 - Record $R = \text{the maximum } r(a) \text{ seen}$
 - $R = \max_a r(a)$, over all the items a seen so far

- Estimated number of distinct elements $= 2^R$
Very very rough and heuristic intuition why Flajolet-Martin works:

- $h(a)$ hashes a with equal prob. to any of N values
- Then $h(a)$ is a sequence of $\log_2 N$ bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
- So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far

- So, it takes to hash about 2^r items before we see one with zero-suffix of length r
Now we show why Flajolet-Martin works

Formally, we will show that probability of finding a tail of r zeros:

- Goes to 1 if $m \gg 2^r$
- Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

Thus, 2^R will almost always be around $m!$
What is the probability that a given $h(a)$ ends in at least r zeros is 2^{-r}

- $h(a)$ hashes elements uniformly at random
- Probability that a random number ends in at least r zeros is 2^{-r}

Then, the probability of NOT seeing a tail of length r among m elements:

$\left(1 - 2^{-r}\right)^m$

- Prob. all end in fewer than r zeros.
- Prob. that given $h(a)$ ends in fewer than r zeros
Note: \((1 - 2^{-r})^m = (1 - 2^{-r})^{2r} (m^{2-r}) \approx e^{-m2^{-r}}\)

Prob. of NOT finding a tail of length \(r\) is:

- If \(m \ll 2^r\), then prob. tends to 1
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1\) as \(m/2^r \to 0\)
 - So, the probability of finding a tail of length \(r\) tends to 0

- If \(m \gg 2^r\), then prob. tends to 0
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0\) as \(m/2^r \to \infty\)
 - So, the probability of finding a tail of length \(r\) tends to 1

Thus, \(2^R\) will almost always be around \(m!\)
Why It Doesn’t Work

- $\mathbb{E}[2^R]$ is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i}?
 - Median? All estimates are a power of 2
- Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians
(3) Computing Moments
Suppose a stream has elements chosen from a set A of N values.

Let m_i be the number of times value i occurs in the stream.

The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$
Special Cases

\[\sum_{i \in A} (m_i)^k \]

- **0th moment** = number of distinct elements
 - The problem just considered
- **1st moment** = count of the numbers of elements = length of the stream
 - Easy to compute
- **2nd moment** = *surprise number* \(S \) = a measure of how uneven the distribution is
Example: Surprise Number

- Stream of length 100
- 11 distinct values

Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Surprise $S = 910$

Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Surprise $S = 8,110$
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We keep track of many variables X:
 - For each variable X we store $X.el$ and $X.val$
 - $X.el$ corresponds to the item i
 - $X.val$ corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$
How to set \(X.val\) and \(X.el\)?

- Assume stream has length \(n\) (we relax this later)
- Pick some random time \(t\) \((t<n)\) to start, so that any time is equally likely
- Let at time \(t\) the stream have item \(i\). \textit{We set} \(X.el = i\)
- Then we maintain count \(c\) \((X.val = c)\) of the number of \(i\)s in the stream starting from the chosen time \(t\)

- Then the estimate of the 2nd moment \((\sum_i m_i^2)\) is:

\[
S = f(X) = n \left(2 \cdot c - 1\right)
\]

- Note, we will keep track of multiple \(Xs\), \((X_1, X_2,...X_k)\) and our final estimate will be

\[
S = \frac{1}{k} \sum_{j=1}^{k} f(X_j)
\]
Expectation Analysis

- **2nd moment is** \(S = \sum_i m_i^2 \)
- \(c_t \) ... number of times item at time \(t \) appears from time \(t \) onwards \((c_1=m_a, c_2=m_a-1, c_3=m_b)\)
- \(E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1) \)
 \[
 = \frac{1}{n} \sum_i n \left(1 + 3 + 5 + \cdots + 2m_i - 1 \right)
 \]

Group times by the value seen

Time \(t \) when the last \(i \) is seen \((c_t=1)\)

Time \(t \) when the penultimate \(i \) is seen \((c_t=2)\)

Time \(t \) when the first \(i \) is seen \((c_t=m_i)\)
\[E[f(X)] = \frac{1}{n} \sum_i n \ (1 + 3 + 5 + \cdots + 2m_i - 1) \]

- Little side calculation:
 \[\sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2 \]

- Then \[E[f(X)] = \frac{1}{n} \sum_i n \ (m_i)^2 \]

- So, \[E[f(X)] = \sum_i (m_i)^2 = S \]

- We have the second moment (in expectation)!
For estimating k^{th} moment we essentially use the same algorithm but change the estimate:

- For $k=2$ we used $n \cdot (2\cdot c - 1)$
- For $k=3$ we use: $n \cdot (3\cdot c^2 - 3c + 1)$ (where $c=X.val$)

Why?

- **For $k=2$:** Remember we had $(1 + 3 + 5 + \cdots + 2m_i - 1)$ and we showed terms $2c-1$ (for $c=1,...,m$) sum to m^2
 - $\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
 - So: $2c - 1 = c^2 - (c - 1)^2$
- **For $k=3$:** $c^3 - (c-1)^3 = 3c^2 - 3c + 1$

Generally: Estimate $= n \cdot (c^k - (c - 1)^k)$
In practice:

- Compute \(f(X) = n(2c - 1) \) for as many variables \(X \) as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number \(n \), the number of positions in the stream
- But real streams go on forever, so \(n \) is a variable – the number of inputs seen so far
Streams Never End: Fixups

- **(1)** The variables X have n as a factor – keep n separately; just hold the count in X
- **(2)** Suppose we can only store k counts. We must throw some Xs out as time goes on:
 - **Objective:** Each starting time t is selected with probability k/n
 - **Solution:** (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability
Counting Itemsets
New Problem: Given a stream, which items appear more than \(s \) times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- \(1 \) = item present; \(0 \) = not present
- Use **DGIM** to estimate counts of \(1 \)s for all items
Extensions

- In principle, you could count frequent pairs or even larger sets the same way
 - One stream per itemset

- Drawbacks:
 - Only approximate
 - Number of itemsets is way too big
Exponentially decaying windows: A heuristic for selecting likely frequent item(sets)

- What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream

- If stream is $a_1, a_2 ...$ and we are taking the sum of the stream, take the answer at time t to be:
 $$= \sum_{i=1}^{t} a_i (1 - c)^{t-i}$$
 - c is a constant, presumably tiny, like 10^{-6} or 10^{-9}

- When new a_{t+1} arrives:
 Multiply current sum by $(1-c)$ and add a_{t+1}
If each a_i is an “item” we can compute the characteristic function of each possible item x as an Exponentially Decaying Window.

That is: $\sum_{i=1}^{t} \delta_i \cdot (1 - c)^{t-i}$
where $\delta_i=1$ if $a_i=x$, and 0 otherwise.

Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear).

New item x arrives:
- Multiply all counts by $(1-c)$
- Add +1 to count for element x

Call this sum the “weight” of item x
Important property: Sum over all weights \(\sum_t (1 - c)^t \) is \(1/[1 - (1 - c)] = 1/c \)
What are “currently” most popular movies?

Suppose we want to find movies of weight > ½

Important property: Sum over all weights
\[\sum_t (1 - c)^t \text{ is } \frac{1}{[1 - (1 - c)]} = \frac{1}{c} \]

Thus:

There cannot be more than \(\frac{2}{c} \) movies with weight of \(\frac{1}{2} \) or more

So, \(\frac{2}{c} \) is a limit on the number of movies being counted at any time
Extension to Itemsets

- **Count (some) itemsets in an E.D.W.**
 - **What are currently “hot” itemsets?**
 - **Problem:** Too many itemsets to keep counts of all of them in memory

- **When a basket B comes in:**
 - Multiply all counts by \((1-c)\)
 - For uncounted items in \(B\), create new count
 - Add 1 to count of any item in \(B\) and to any *itemset* contained in \(B\) that is already being counted
 - Drop counts < \(\frac{1}{2}\)
 - Initiate new counts (next slide)
Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B

- **Intuitively:** If all subsets of S are being counted, this means they are “frequent/hot” and thus S has a potential to be “hot”

- **Example:**
 - Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
 - Start counting $S=\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
Counts for single items < $(2/c) \cdot (\text{avg. number of items in a basket})$

Counts for larger itemsets = ??

But we are conservative about starting counts of large sets

- If we counted every set we saw, one basket of 20 items would initiate 1M counts