Give one attribute (e.g., lifespan), try to predict the value of new people’s lifespans by means of some of the other available attribute

Input attributes:
- d features/attributes: \(x^{(1)}, x^{(2)}, \ldots x^{(d)} \)
- Each \(x^{(j)} \) has **domain** \(O_j \)
 - **Categorical:** \(O_j = \{\text{red, blue}\} \)
 - **Numerical:** \(H_j = (0, 10) \)
- \(Y \) is output variable with domain \(O_Y \):
 - **Categorical:** Classification, **Numerical:** Regression

Data D:
- \(n \) examples \((x_i, y_i) \) where \(x_i \) is a \(d \)-dim feature vector, \(y_i \in O_Y \) is output variable

Task:
- Given an input data vector \(x \) predict \(y \)
A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output.
Decision Trees (1)

- Decision trees:
 - Split the data at each internal node
 - Each leaf node makes a prediction

- Lecture today:
 - Binary splits: $X^{(i)} < v$
 - Numerical attrs.
 - Regression
How to make predictions?

- **Input:** Example x_i
- **Output:** Predicted y_i'

- “Drop” x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits
Decision Trees Vs. SVM

- Alternative view:
How to construct a tree?
How to construct a tree?

- Training dataset D^*, $|D^*| = 100$ examples

```
        A
       / \
      /   \  
     D     C
    /     /
   /     /  
  E     G   H
   \    /  
    \  /   
     F   I
```

- $|D| = 10, |D| = 90$
- $X^{(1)} < v^{(1)}$
- $Y = 0.42$
- $|D| = 45$
- $X^{(2)} < v^{(2)}$
- $|D| = 45$
- $|D| = 25$
- $X^{(3)} < v^{(4)}$
- $|D| = 20$
- $|D| = 25$
- $|D| = 15$
- $X^{(2)} < v^{(5)}$
- $|D| = 30$

of examples traversing the edge
Imagine we are currently at some node G
- Let D_G be the data that reaches G

There is a decision we have to make: Do we continue building the tree?
- **If yes**, which variable and which value do we use for a **split**?
 - Continue building the tree recursively
- **If not**, how do we make a prediction?
 - We need to build a “predictor node”
3 steps in constructing a tree

Algorithm 1

```plaintext
Require: Node n, Data D ⊆ D*
1: (n → split, D_L, D_R) = FindBestSplit(D)  \(\text{(1)}\)
2: if StoppingCriteria(D_L) then
3:     n → left_prediction = FindPrediction(D_L)  \(\text{(2)}\)
4: else
5:     \(\text{BuildSubtree} \ (n \rightarrow \text{left}, D_L)\)
6: if StoppingCriteria(D_R) then
7:     n → right_prediction = FindPrediction(D_R)  \(\text{(3)}\)
8: else
9:     \(\text{BuildSubtree} \ (n \rightarrow \text{right}, D_R)\)
```

- Requires at least a single pass over the data!
(1) How to split? Pick attribute & value that optimizes some criterion

- **Regression: Purity**

 - Find split \((X^{(i)}, v)\) that creates \(D, D_L, D_R\): parent, left, right child datasets and **maximizes**:

 \[
 |D| \cdot Var(D) - (|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R))
 \]

 - \(Var(D) = \frac{1}{n} \sum_{i=1}^{|D|} (y_i - \bar{y})^2\) ... variance of \(y_i\) in \(D\)
(1) How to split? Pick attribute & value that optimizes some criterion

- **Classification:** Information Gain
 - Measures how much a given attribute X tells us about the class Y
 - $\text{IG}(Y \mid X)$: We must transmit Y over a binary link. How many bits on average would it save us if both ends of the line knew X?
Why Information Gain? Entropy

- **Entropy:** What’s the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X’s distribution?

- **The entropy of X:** $H(X) = -\sum_{j=1}^{m} p_j \log p_j$
 - “High Entropy”: X is from a uniform (boring) distribution
 - A histogram of the frequency distribution of values of X is flat
 - “Low Entropy”: X is from varied (peaks and valleys) distribution
 - A histogram of the frequency distribution of values of X would have many lows and one or two highs
Suppose I want to predict Y and I have input X

- $X = \text{College Major}$
- $Y = \text{Likes “Gladiator”}$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
</tbody>
</table>

From this data we estimate

- $P(Y = Yes) = 0.5$
- $P(X = Math \& Y = No) = 0.25$
- $P(X = Math) = 0.5$
- $P(Y = Yes \mid X = History) = 0$

Note:

- $H(Y) = -\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2}) = 1$
- $H(X) = 1.5$
Suppose I want to predict Y and I have input X

- $X = \text{College Major}$
- $Y = \text{Likes “Gladiator”}$

Def: Specific Conditional Entropy

- $H(Y \mid X=v) = \text{The entropy of } Y \text{ among only those records in which } X \text{ has value } v$

Example:

- $H(Y \mid X = Math) = 1$
- $H(Y \mid X = History) = 0$
- $H(Y \mid X = CS) = 0$
Suppose I want to predict Y and I have input X

- $X = $ College Major
- $Y = $ Likes “Gladiator”

Def: Conditional Entropy

- $H(Y \mid X) = $ The average specific conditional entropy of Y
 - $= $ if you choose a record at random what will be the conditional entropy of Y, conditioned on that row’s value of X
 - $= $ Expected number of bits to transmit Y if both sides will know the value of X

$$= \sum_j P(X = v_j)H(Y \mid X = v_j)$$
Why Information Gain?

- Suppose I want to predict Y and I have input X
 - $H(Y \mid X) =$ The average specific conditional entropy of Y

 $$
 = \sum_j P(X = v_j)H(Y \mid X = v_j)
 $$

- Example:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>Yes</td>
</tr>
<tr>
<td>History</td>
<td>No</td>
</tr>
<tr>
<td>CS</td>
<td>Yes</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>Math</td>
<td>No</td>
</tr>
<tr>
<td>History</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V_j</th>
<th>$P(X=v_j)$</th>
<th>$H(Y\mid X=v_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>History</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>CS</td>
<td>0.25</td>
<td>0</td>
</tr>
</tbody>
</table>

- So: $H(Y \mid X) = 0.5 \times 1 + 0.25 \times 0 + 0.25 \times 0 = 0.5$
Why Information Gain?

- Suppose I want to predict Y and I have input X

 - **Def:** Information Gain
 - $IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?
 - $IG(Y|X) = H(Y) - H(Y | X)$

Example:
- $H(Y) = 1$
- $H(Y|X) = 0.5$
- Thus $IG(Y|X) = 1 - 0.5 = 0.5$
Suppose you are trying to predict whether someone is going live past 80 years.

From historical data you might find:

- $\text{IG}(\text{LongLife} \mid \text{HairColor}) = 0.01$
- $\text{IG}(\text{LongLife} \mid \text{Smoker}) = 0.3$
- $\text{IG}(\text{LongLife} \mid \text{Gender}) = 0.25$
- $\text{IG}(\text{LongLife} \mid \text{LastDigitOfSSN}) = 0.00001$

IG tells us how much information about Y is contained in X.

- So attribute X that has high $\text{IG}(Y \mid X)$ is a good split!
3 steps in constructing a tree

Algorithm 1: BuildSubtree

Require: Node n, Data $D \subseteq D^*$

1: $(n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)$

2: if StoppingCriteria(D_L) then

3: $n \rightarrow \text{left_prediction} = \text{FindPrediction}(D_L)$

4: else

5: $(n \rightarrow \text{left}, D_L)$

6: if StoppingCriteria(D_R) then

7: $n \rightarrow \text{right_prediction} = \text{FindPrediction}(D_R)$

8: else

9: $(n \rightarrow \text{right}, D_R)$
(2) When to stop?

- Many different heuristic options
- Two ideas:
 - (1) When the leaf is “pure”
 - The target variable does not vary too much: \(\text{Var}(y_i) < \varepsilon \)
 - (2) When # of examples in the leaf is too small
 - For example, \(|D| \leq 10 \)
How to predict?

(3) How to predict?

- Many options
 - Regression:
 - Predict average y_i of the examples in the leaf
 - Build a linear regression model on the examples in the leaf
 - Classification:
 - Predict most common y_i of the examples in the leaf
Building Decision Trees Using MapReduce
Given a large dataset with hundreds of attributes

Build a decision tree!

General considerations:

- Tree is small (can keep it memory):
 - Shallow (~10 levels)
- Dataset too large to keep in memory
- Dataset too big to scan over on a single machine
- MapReduce to the rescue!
Parallel Learner for Assembling Numerous Ensemble Trees [Panda et al., VLDB ‘09]

- A sequence of MapReduce jobs that builds a decision tree

Setting:

- Hundreds of **numerical** (discrete & continuous, but not categorical) attributes
- Target variable is **numerical**: Regression
- Splits are **binary**: $X(j) < v$
- Decision tree is small enough for each Mapper to keep it in memory
- Data too large to keep in memory
PLANET Architecture

Input data → Model → Master

Master → Attribute metadata

Master → Intermediate results

Intermediate results → Master

Master → MapReduce

MapReduce: Given a set of split candidates compute their quality

Keeps track of the model and decides how to grow the tree
PLANET: Building the Tree

- The tree will be built in levels
 - One level at a time:

- 1) Master decides which nodes/splits to consider, MapReduce computes quality of those splits
- 2) Master then grows the tree for a level
- Goto 1)
Hard part: Computing “quality” of a split
1) **Master** tells the **Mappers** which splits \((X^{(j)}, v)\) to consider
2) Each **Mapper** gets a subset of data and computes partial statistics for a given split
3) **Reducers** collect partial statistics and output the final quality for a given split \((X^{(j)}, v)\)
4) **Master** makes final decision where to split
We build the tree level by level

- One MapReduce step builds **one level of the tree**

Mapper

- Considers a number of possible splits \((X^{(i)}, v)\) on its subset of the data
- For each split it stores **partial statistics**
- Partial split-statistics is sent to **Reducers**

Reducer

- Collects all partial statistics and determines best split

Master grows the tree for one level
Mapper loads the **model** and info about which **attribute splits** to consider

- Each mapper sees a subset of the data D^*
- Mapper “drops” each datapoint to find the appropriate leaf node L
- For each leaf node L it keeps statistics about
 - (1) the data reaching L
 - (2) the data in left/right subtree under split S

Reducer aggregates the statistics (1), (2) and determines the best split for each tree node
Master
- Monitors everything (runs multiple MapReduce jobs)

Three types of MapReduce jobs:
- **(1) MapReduce Initialization** (run once first)
 - For each attribute identify values to be considered for splits
- **(2) MapReduce FindBestSplit** (run multiple times)
 - MapReduce job to find best split (when there is too much data to fit in memory)
- **(3) MapReduce InMemoryBuild** (run once last)
 - Similar to BuildSubTree (but for small data)
 - Grows an entire sub-tree once the data fits in memory

Model file
- A file describing the state of the model
PLANE: Components

(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)
Master controls the entire process

Determines the state of the tree and grows it:

1. Decides if nodes should be split
2. If there is little data entering a tree node, Master runs an InMemoryBuild MapReduce job to grow the entire subtree
3. For larger nodes, Master launches MapReduce FindBestSplit to evaluate candidates for best split
 - Master also collects results from FindBestSplit and chooses the best split for a node
4. Updates the model
PLANET: Components

(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)
Initialization: Attribute metadata

- **Initialization job:** Identifies all the attribute values which need to be considered for splits
 - Initialization process generates “attribute metadata” to be loaded in memory by other tasks

- **Which splits to even consider?**
Which splits to even consider?

- For small data we can sort the values along a particular feature and consider every possible split.
- But data values may not be uniformly populated so many splits may not really make a difference.

Idea: Consider a limited number of splits such that splits “move” about the same amount of data.

\[X^{(j)}: 1.2, 1.3, 1.4, 1.6, 2.1, 7.2, 8.1, 9.8, 10.1, 10.2, 10.3, 10.4, 11.5, 11.7, 12.8, 12.9 \]
Splits for numerical attributes:

- For attribute $X^{(j)}$ we would like to consider every possible value $v \in O_j$
- Compute an approx. equi-depth histogram on D^*
 - Idea: Select buckets such that counts per bucket are equal
- Use boundary points of histogram as splits
Goal: Equal number of elements per bucket (\(B \) buckets total)

Construct by first **sorting** and then taking \(B-1 \) equally-spaced splits

- Faster construction:
 - Sample & take equally-spaced splits in the sample
 - Nearly equal buckets
PLANEt: Components

(1) Master Node
(2) MapReduce Initialization (run once first)
(3) MapReduce FindBestSplit (run multiple times)
(4) MapReduce InMemoryBuild (run once last)
Goal: For a particular split node j find attribute $X^{(j)}$ and value v that maximizes Purity:

$$|D| \cdot Var(D) - (|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R))$$

- D ... training data (x_i, y_i) reaching the node j
- D_L ... training data x_i, where $x_i^{(j)} < v$
- D_R ... training data x_i, where $x_i^{(j)} \geq v$

$$Var(D) = \frac{1}{n} \sum_i y_i^2 - \left(\frac{1}{n} \sum_i y_i \right)^2$$
To compute Purity we need

- \(\text{Var}(D) = \frac{1}{n} \sum_i y_i^2 - \left(\frac{1}{n} \sum_i y_i \right)^2 \)

Important observation: Variance can be computed from sufficient statistics: \(N, S = \sum y_i, Q = \sum y_i^2 \)

- Each Mapper processes subset of data \(D_m \), and computes \(N_m, S_m, Q_m \) for its own \(D_m \)
- Reducer combines the statistics and computes global variance and then Purity:

- \(\text{Var}(D) = \frac{1}{\sum_m N_m} \sum_m Q_m - \left(\frac{1}{\sum_m N_m} \sum_m S_m \right)^2 \)
Mapper:

- Initialized by loading results of **Initialization task**
 - **Current model** (to find which node each datapoint \(x_i \) ends up)
 - **Attribute metadata** (all split points for each attribute)

- **For each data record run the Map algorithm:**
 - For each node store statistics of the data entering the node and at the end emit (to all reducers):
 - \(<\text{NodeId}, \{ S=\sum y, Q=\sum y^2, N=\sum 1 \} >\>
 - For each split store statistics and at the end emit:
 - \(<\text{SplitId}, \{ S, Q, N \} >\>
 - \(\text{SplitId} = (\text{node } n, \text{ attribute } X_j, \text{ split value } v)\)
Reducer:

- **(1)** Load all the `<NodeId, List {S_m, Q_m, N_m}>` pairs and **aggregate** the per node statistics
- **(2)** For all the `<SplitId, List {S_m, Q_m, N_m}>` aggregate the statistics

- \[Var(D) = \frac{1}{\sum_m N_m} \sum_m Q_m - \left(\frac{1}{\sum_m N_m} \sum_m S_m \right)^2 \]
- **For each NodeID**, output the best split found
Overall system architecture

- Master gives the mappers: (1) Tree
 (2) Set of nodes
 (3) Set of candidate splits

Nodes: F, G, H, I
Split candidates: \((X^{(1)}, v^{(1)}), (X^{(1)}, v^{(2)}), (X^{(3)}, v^{(3)}), (X^{(3)}, v^{(4)})\)

Mappers output 2 types of key-value pairs:
(NodeID: S, Q, N)
(NodeID, Split: S, Q, N)

For every (NodeID, Split)
Reducer(s) compute the Purity and output the best split
Example: Need to split nodes F, G, H, I

Map and Reduce:

- **FindBestSplit::Map** (each mapper)
 - Load the current model \(M \)
 - Drop every example \(x_i \) down the tree
 - If it hits G or H, update in-memory hash tables:
 - For each node: \(T_n: (\text{Node}) \rightarrow \{S, Q, N\} \)
 - For each \((\text{Split, Node})\): \(T_{n,j,s}: (\text{Node, Attribute, SplitValue}) \rightarrow \{S, Q, N\} \)
 - **Map::Finalize**: output the key-value pairs from above hashtables

- **FindBestSplit::Reduce** (each reducer)
 - Collect:
 - \(T_1: <\text{Node, List}\{S, Q, N\}> \rightarrow <\text{Node, } \{\Sigma S, \Sigma Q, \Sigma N\}> \)
 - \(T_2: <(\text{Node, Attr. Split}), \text{List}\{S, Q, N\}> \rightarrow <(\text{Node, Attr. Split}), \{\Sigma S, \Sigma Q, \Sigma N\}> \)
 - Compute impurity for each node using \(T_1, T_2 \)
 - Return best split to Master (which then decides on globally best split)
Back to the Master

- Collects outputs from FindBestSplit reducers
 <Split.NodeID, Attribute, Value, Impurity>

- For each node decides the best split
 - If data in D_L/D_R is small enough, later run a MapReduce job
 InMemoryBuild on the node
 - Else run MapReduce FindBestSplit job for both nodes
Decision Trees: Conclusion
Decision Trees

- Decision trees are the single most popular data mining tool:
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
 - It’s possible to get in trouble with overfitting
 - They do classification as well as regression!
Learning Ensembles

- Learn multiple trees and combine their predictions
 - Gives better performance in practice
- Bagging:
 - Learns multiple trees over independent samples of the training data
 - Predictions from each tree are averaged to compute the final model prediction
Bagged Decision Trees

- **How to create random samples of D***?
 - Compute a hash of a training record’s id and tree id
 - Use records that hash into a particular range to learn a tree
 - This way the same sample is used for all nodes in a tree
 - **Note:** This is sampling D* without replacement (but samples of D* should be created with replacement)
SVM vs. DT

- **SVM**
 - **Classification**
 - Usually only 2 classes
 - **Real valued features**
 - (no categorical ones)
 - **Tens/hundreds of thousands of features**
 - **Very sparse features**
 - **Simple decision boundary**
 - No issues with overfitting
 - **Example applications**
 - Text classification
 - Spam detection
 - Computer vision

- **Decision trees**
 - **Classification & Regression**
 - Multiple (~10) classes
 - **Real valued and categorical features**
 - **Few (hundreds) of features**
 - **Usually dense features**
 - **Complicated decision boundaries**
 - Overfitting! Early stopping
 - **Example applications**
 - User profile classification
 - Landing page bounce prediction