Analysis of Large Graphs: Link Analysis, PageRank

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
New Topic: Graph Data!

- High dim. data
 - Locality sensitive hashing
 - Clustering
 - Dimensionality reduction

- Graph data
 - PageRank, SimRank
 - Community Detection
 - Spam Detection

- Infinite data
 - Filtering data streams
 - Web advertising
 - Queries on streams

- Machine learning
 - SVM
 - Decision Trees
 - Perceptron, kNN

- Apps
 - Recommender systems
 - Association Rules
 - Duplicate document detection

2/3/2014

Jure Leskovec, Stanford C246: Mining Massive Datasets
Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]
Graph Data: Communication Nets

Internet

domain1

domain2

domain3

router
Graph Data: Technological Networks

Seven Bridges of Königsberg
[Euler, 1735]
Return to the starting point by traveling each link of the graph once and only once.
Web as a Graph

- **Web as a directed graph:**
 - Nodes: Webpages
 - Edges: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer Science Department at Stanford

Stanford University
Web as a directed graph:

- Nodes: Webpages
- Edges: Hyperlinks
Web as a Directed Graph

I'm a student at Univ. of X

My song lyrics

Classes

I teach at Univ. of X

Networks

Networks class blog

Blog post about Company Z

Blog post about college rankings

Univ. of X

I'm applying to college

USNews College Rankings

USNews Featured Colleges
How to organize the Web?

First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart

Second try: Web Search
- Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
- **But:** Web is huge, full of untrusted documents, random things, web spam, etc.
Web Search: 2 Challenges

2 challenges of web search:

1. Web contains many sources of information
 Who to “trust”?
 - **Trick:** Trustworthy pages may point to each other!

2. What is the “best” answer to query “newspaper”?
 - No single right answer
 - **Trick:** Pages that actually know about newspapers might all be pointing to many newspapers
All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

There is large diversity in the web-graph node connectivity.

Let’s rank the pages by the link structure!
We will cover the following Link Analysis approaches for computing importances of nodes in a graph:

- Page Rank
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms
PageRank: The “Flow” Formulation
Idea: Links as votes

- Page is more important if it has more links
 - In-coming links? Out-going links?

Think of in-links as votes:

- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

Are all in-links are equal?

- Links from important pages count more
- Recursive question!
Example: PageRank Scores
Simple Recursive Formulation

- Each link’s vote is proportional to the importance of its source page.

- If page \(j \) with importance \(r_j \) has \(n \) out-links, each link gets \(r_j / n \) votes.

- Page \(j \)’s own importance is the sum of the votes on its in-links:

\[
 r_j = \frac{r_i}{3} + \frac{r_k}{4}
\]
A “vote” from an important page is worth more
A page is important if it is pointed to by other important pages
Define a “rank” r_j for page j

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$$

d_i … out-degree of node i

```
```

“Flow” equations:

$$r_y = r_y/2 + r_a/2$$
$$r_a = r_y/2 + r_m$$
$$r_m = r_a/2$$

The web in 1839
3 equations, 3 unknowns, no constants
- No unique solution
- All solutions equivalent modulo the scale factor

Additional constraint forces uniqueness:
- \(r_y + r_a + r_m = 1 \)
- Solution: \(r_y = \frac{2}{5}, \ r_a = \frac{2}{5}, \ r_m = \frac{1}{5} \)

Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

We need a new formulation!
PageRank: Matrix Formulation

- **Stochastic adjacency matrix** M
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1
- **Rank vector** r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$
- The flow equations can be written

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$
Example

- Remember the flow equation:
 \[r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \]

- Flow equation in the matrix form
 \[M \cdot r = r \]

- Suppose page \(i \) links to 3 pages, including \(j \)

\[
\begin{array}{ccc}
 i & \rightarrow & j \\
 & | & \\
 1/3 & \rightarrow & \\
\end{array}
\]

\[
M \cdot r = r
\]
The flow equations can be written

\[r = M \cdot r \]

So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \)

- In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of \(M \) is 1 since \(M \) is column stochastic (with non-negative entries)
 - We know \(r \) is unit length and each column of \(M \) sums to one, so \(Mr \leq 1 \)

We can now efficiently solve for \(r \)!

The method is called Power iteration

NOTE: \(x \) is an eigenvector with the corresponding eigenvalue \(\lambda \) if:

\[A x = \lambda x \]
Example: Flow Equations & M

\[r = M \cdot r \]

\[
\begin{align*}
\text{y} & \quad \frac{1}{2} & \quad \frac{1}{2} & \quad 0 \\
\text{a} & \quad \frac{1}{2} & \quad 0 & \quad 1 \\
\text{m} & \quad 0 & \quad \frac{1}{2} & \quad 0
\end{align*}
\]

\[
\begin{align*}
\text{r}_y &= \text{r}_y / 2 + \text{r}_a / 2 \\
\text{r}_a &= \text{r}_y / 2 + \text{r}_m \\
\text{r}_m &= \text{r}_a / 2
\end{align*}
\]
Power Iteration Method

- Given a web graph with \(n \) nodes, where the nodes are pages and edges are hyperlinks
- **Power iteration:** a simple iterative scheme
 - Suppose there are \(N \) web pages
 - Initialize: \(r^{(0)} = [1/N, \ldots, 1/N]^T \)
 - Iterate: \(r^{(t+1)} = M \cdot r^{(t)} \)
 - Stop when \(|r^{(t+1)} - r^{(t)}|_1 < \varepsilon \)

\[
|\mathbf{x}|_1 = \sum_{1 \leq i \leq N} |x_i| \text{ is the } L_1 \text{ norm}
\]

Can use any other vector norm, e.g., Euclidean

\[
r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i}
\]

\(d_i \) …. out-degree of node \(i \)
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - 1: $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - 2: $r = r'$
 - Goto 1

- **Example:**

$$\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}$$

Iteration 0, 1, 2, …

```
<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>½</td>
<td>½</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>½</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>½</td>
<td>0</td>
</tr>
</tbody>
</table>
```

- $r_y = \frac{r_y}{2} + \frac{r_a}{2}$
- $r_a = \frac{r_y}{2} + r_m$
- $r_m = \frac{r_a}{2}$
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - $1: r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - $2: r = r'$
 - Goto 1

- **Example:**

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} = \begin{pmatrix}
 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\
 1/3 & 3/6 & 1/3 & 11/24 & \ldots & 6/15 \\
 1/3 & 1/6 & 3/12 & 1/6 & 3/15
\end{pmatrix}
\]

Iteration $0, 1, 2, \ldots$

\[
\begin{array}{|c|c|c|}
\hline
& y & a & m \\
\hline
y & 1/2 & 1/2 & 0 \\
a & 1/2 & 0 & 1 \\
m & 0 & 1/2 & 0 \\
\hline
\end{array}
\]

\[
\begin{align*}
 r_y &= r_y/2 + r_a/2 \\
 r_a &= r_y/2 + r_m \\
 r_m &= r_a/2
\end{align*}
\]
Power iteration:

A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)

- $r^{(1)} = M \cdot r^{(0)}$
- $r^{(2)} = M \cdot r^{(1)} = M(Mr^{(1)}) = M^2 \cdot r^{(0)}$
- $r^{(3)} = M \cdot r^{(2)} = M(M^2r^{(0)}) = M^3 \cdot r^{(0)}$

Claim:

Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ..., M^k \cdot r^{(0)}, ...$ approaches the dominant eigenvector of M
Claim: Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \ldots M^k \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Proof:

- Assume M has n linearly independent eigenvectors, x_1, x_2, \ldots, x_n with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, where $\lambda_1 > \lambda_2 > \cdots > \lambda_n$
- Vectors x_1, x_2, \ldots, x_n form a basis and thus we can write: $r^{(0)} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$
- $Mr^{(0)} = M(c_1 x_1 + c_2 x_2 + \cdots + c_n x_n)$
 $= c_1 (Mx_1) + c_2 (Mx_2) + \cdots + c_n (Mx_n)$
 $= c_1 (\lambda_1 x_1) + c_2 (\lambda_2 x_2) + \cdots + c_n (\lambda_n x_n)$
- Repeated multiplication on both sides produces $M^k r^{(0)} = c_1 (\lambda^k_1 x_1) + c_2 (\lambda^k_2 x_2) + \cdots + c_n (\lambda^k_n x_n)$

2/3/2014
Claim: Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \ldots M^k \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

Proof (continued):

Repeated multiplication on both sides produces

$$M^k r^{(0)} = c_1 (\lambda_1^k x_1) + c_2 (\lambda_2^k x_2) + \cdots + c_n (\lambda_n^k x_n)$$

$$M^k r^{(0)} = \lambda_1^k \left[c_1 x_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \cdots + c_n \left(\frac{\lambda_2}{\lambda_1} \right)^k x_n \right]$$

Since $\lambda_1 > \lambda_2$ then fractions $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1}, \ldots < 1$

and so $\left(\frac{\lambda_i}{\lambda_1} \right)^k = 0$ as $k \rightarrow \infty$ (for all $i = 2 \ldots n$).

Thus: $M^k r^{(0)} \approx c_1 (\lambda_1^k x_1)$

Note if $c_1 = 0$ then the method won’t converge
Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time $t + 1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- $p(t)$... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- So, $p(t)$ is a probability distribution over pages
Where is the surfer at time $t+1$?
- Follows a link uniformly at random
 \[p(t + 1) = M \cdot p(t) \]
- Suppose the random walk reaches a state
 \[p(t + 1) = M \cdot p(t) = p(t) \]
 then \(p(t) \) is **stationary distribution** of a random walk
- **Our original rank vector** \(r \) satisfies \(r = M \cdot r \)
 - So, \(r \) is a stationary distribution for the random walk
A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $t = 0$.
PageRank:
The Google Formulation
PageRank: Three Questions

\[r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \]

or equivalently

\[r = Mr \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

Example:

\[
\begin{align*}
\mathbf{r}_a &= \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \end{bmatrix} \\
\mathbf{r}_b &= \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \end{bmatrix}
\end{align*}
\]

Iteration 0, 1, 2, …

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i}\]
Does it converge to what we want?

- Example:

\[r_a = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \]

\[r_b = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \end{pmatrix} \]

Iteration 0, 1, 2, ...

\[r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \]
2 problems:

1. Some pages are **dead ends** (have no out-links)
 - Random walk has “nowhere” to go to
 - Such pages cause importance to “leak out”

2. **Spider traps:**
 - (all out-links are within the group)
 - Random walked gets “stuck” in a trap
 - And eventually spider traps absorb all importance
Problem: Spider Traps

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

 \[
 \begin{pmatrix}
 r_y \\
 r_a \\
 r_m
 \end{pmatrix} =
 \begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 3/6 & 7/12 & 16/24 & 1
 \end{pmatrix}
 \]

 All the PageRank score gets "trapped" in node m.
The Google solution for spider traps: At each time step, the random surfer has two options

- With prob. β, follow a link at random
- With prob. $1-\beta$, jump to some random page
- Common values for β are in the range 0.8 to 0.9

Surfer will teleport out of spider trap within a few time steps
Problem: Dead Ends

- **Power Iteration:**
 - Set \(r_j = 1 \)
 - \(r_j = \sum_{i \to j} \frac{r_i}{d_i} \)
 - And iterate

- **Example:**

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} =
\begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 1/6 & 1/12 & 2/24 & 0
\end{pmatrix}
\]

Iteration 0, 1, 2, …

Here the PageRank “leaks” out since the matrix is not stochastic.
Solution: Always Teleport!

- **Teleports**: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

\[
\begin{array}{ccc}
y & a & m \\
y & \frac{1}{2} & \frac{1}{2} & 0 \\
a & \frac{1}{2} & 0 & 0 \\
m & 0 & \frac{1}{2} & 0 \\
\end{array}
\]
Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- **Spider-traps** are not a problem, but with traps PageRank scores are **not** what we want
 - **Solution:** Never get stuck in a spider trap by teleporting out of it in a finite number of steps

- **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - **Solution:** Make matrix column stochastic by always teleporting when there is nowhere else to go
Google’s solution that does it all:
At each step, random surfer has two options:
- With probability β, follow a link at random
- With probability $1-\beta$, jump to some random page

PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.
The Google Matrix

- **PageRank equation** [Brin-Page, ‘98]
 \[r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]

- **The Google Matrix A:**
 \[A = \beta \ M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N} \]

- We have a recursive problem: \(r = A \cdot r \)
 And the Power method still works!

- **What is \(\beta \)?**
 - In practice \(\beta = 0.8, 0.9 \) (make 5 steps on avg., jump)
Random Teleports ($\beta = 0.8$)

\[
\begin{bmatrix}
1/3 & 0.33 & 0.24 & 0.26 & 7/33 \\
1/3 & 0.20 & 0.20 & 0.18 & \ldots & 5/33 \\
1/3 & 0.46 & 0.52 & 0.56 & 21/33
\end{bmatrix}
\]

\[
M = \begin{bmatrix}
1/2 & 1/2 & 0 \\
1/2 & 0 & 0 \\
0 & 1/2 & 1
\end{bmatrix}
\]

\[
[1/N]_{N \times N} = \begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{bmatrix}
\]
How do we actually compute the PageRank?
Computing Page Rank

- **Key step is matrix-vector multiplication**
 - \(r_{\text{new}} = A \cdot r_{\text{old}} \)

- Easy if we have enough main memory to hold \(A, r_{\text{old}}, r_{\text{new}} \)

- Say \(N = 1 \) billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix \(A \) has \(N^2 \) entries
 - \(10^{18} \) is a large number!

\[
A = \beta \cdot M + (1-\beta) \left[\frac{1}{N} \right]_{N \times N}
\]

\[
A = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1
\end{bmatrix} + 0.2 \begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{bmatrix}
\]

\[
= \begin{bmatrix}
7/15 & 7/15 & 1/15 \\
7/15 & 1/15 & 1/15 \\
1/15 & 7/15 & 13/15
\end{bmatrix}
\]
Suppose there are \(N \) pages

Consider page \(i \), with \(d_i \) out-links

We have \(M_{ji} = 1/|d_i| \) when \(i \rightarrow j \)

and \(M_{ji} = 0 \) otherwise

The random teleport is equivalent to:

- Adding a **teleport link** from \(i \) to every other page and setting transition probability to \((1-\beta)/N \)
- Reducing the probability of following each out-link from \(1/|d_i| \) to \(\beta/|d_i| \)

Equivalent: Tax each page a fraction \((1-\beta) \) of its score and redistribute evenly
Rearranging the Equation

- \(\mathbf{r} = A \cdot \mathbf{r} \), where \(A_{ji} = \beta \; M_{ji} + \frac{1-\beta}{N} \)
- \(r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i \)
- \(r_j = \sum_{i=1}^{N} \left[\beta \; M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i \)
 \[= \sum_{i=1}^{N} \beta \; M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i \]
 \[= \sum_{i=1}^{N} \beta \; M_{ji} \cdot r_i + \frac{1-\beta}{N} \]
 since \(\sum r_i = 1 \)
- So we get: \(\mathbf{r} = \beta \; M \cdot \mathbf{r} + \left[\frac{1-\beta}{N} \right] \mathbf{N} \)

Note: Here we assumed \(M \) has no dead-ends

\([x]_N \) ... a vector of length \(N \) with all entries \(x \)
Sparse Matrix Formulation

- We just rearranged the **PageRank equation**

 $$r = \beta M \cdot r + \left(\frac{1 - \beta}{N} \right)_N$$

 - where $$\left(\frac{1 - \beta}{N} \right)_N$$ is a vector with all $$N$$ entries $$(1-\beta)/N$$

- **$$M$$** is a **sparse matrix**! (with no dead-ends)
 - 10 links per node, approx 10$$N$$ entries

- So in each iteration, we need to:
 - Compute $$r^{\text{new}} = \beta M \cdot r^{\text{old}}$$
 - Add a constant value $$(1-\beta)/N$$ to each entry in $$r^{\text{new}}$$
 - Note if $$M$$ contains dead-ends then $$\sum_j r_j^{\text{new}} < 1$$ and we also have to renormalize $$r^{\text{new}}$$ so that it sums to 1
PageRank: The Complete Algorithm

- **Input:** Graph G and parameter β
 - Directed graph G (can have spider traps and dead ends)
 - Parameter β
- **Output:** PageRank vector r^{new}

Set: $r_j^{old} = \frac{1}{N}$

repeat until convergence: $\sum_j |r_j^{new} - r_j^{old}| > \varepsilon$

- $\forall j$: $r_j^{new} = \sum_i \rightarrow j \beta \frac{r_i^{old}}{d_i}$
 - $r_j^{new} = 0$ if in-degree of j is 0
- Now re-insert the leaked PageRank:
 - $\forall j$: $r_j^{new} = r_j^{new} + \frac{1 - S}{N}$ where: $S = \sum_j r_j^{new}$
- $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1 - \beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.

2/4/2014 Jure Leskovec, Stanford C246: Mining Massive Datasets
Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won’t fit in memory, but will fit on disk

<table>
<thead>
<tr>
<th>source node</th>
<th>degree</th>
<th>destination nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17, 64, 113, 117, 245</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>
Basic Algorithm: Update Step

- Assume enough RAM to fit r^{new} into memory
 - Store r^{old} and matrix M on disk
- 1 step of power-iteration is:

 Initialize all entries of $r^{new} = (1-\beta) / N$
 For each page i (of out-degree d_i):
 - Read into memory: i, d_i, $dest_1$, …, $dest_{d_i}$, $r^{old}(i)$
 - For $j = 1…d_i$
 - $r^{new}(dest_j) += \beta \cdot r^{old}(i) / d_i$

<table>
<thead>
<tr>
<th>source</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 6</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>17, 64, 113, 117</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>
Assume enough RAM to fit \(r^{new} \) into memory

- Store \(r^{old} \) and matrix \(M \) on disk

In each iteration, we have to:

- Read \(r^{old} \) and \(M \)
- Write \(r^{new} \) back to disk

Cost per iteration of Power method:

\[
= 2|r| + |M|
\]

Question:

What if we could not even fit \(r^{new} \) in memory?
Block-based Update Algorithm

- Break r^{new} into k blocks that fit in memory
- Scan M and r^{old} once for each block

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0, 1, 3, 5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0, 5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3, 4</td>
</tr>
</tbody>
</table>

M
Similar to nested-loop join in databases

- Break r^{new} into k blocks that fit in memory
- Scan M and r^{old} once for each block

Total cost:

- k scans of M and r^{old}
- Cost per iteration of Power method:
 \[k(|M| + |r|) + |r| = k|M| + (k+1)|r| \]

Can we do better?

- Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration
Block-Stripe Update Algorithm

Break M into stripes! Each stripe contains only destination nodes in the corresponding block of r^{new}.

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0, 1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend
- r^{new}
- r^{old}

[Diagram showing stripes and nodes]

2/3/2014
Jure Leskovec, Stanford C246: Mining Massive Datasets
Block-Stripe Analysis

- **Break** M **into stripes**
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- **Cost per iteration of Power method:**
 $$= |M|(1+\varepsilon) + (k+1)|r|$$
Some Problems with Page Rank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - **Solution:** Topic-Specific PageRank (next)
- Uses a single measure of importance
 - Other models of importance
 - **Solution:** Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - **Solution:** TrustRank